
  

  

Abstract— We describe a resource oriented modelling 
method for robotic flow shops and exemplify it by a galvanic 
plant with 25 tanks and 2 transporting units. Deadlocks due to 
loops in the process plan and collisions among the two 
transporting units are the major problems which occur in this 
kind of discrete parts manufacturing. To avoid deadlocks we 
describe an event dependent and a capacity dependent strategy. 
We also describe a collision avoidance strategy for two robots 
with overlapping handover areas. Both strategies are 
implemented in a Petri net based simulation environment. The 
off line tool is used for the interactive design of schedules and 
routings for robotic flow shop transport systems. 
 

Keywords— Timed Petri Nets, Manufacturing, Hoist 
Scheduling 

I. PROBLEM STATEMENT 

HE increasing use of flexible production environments  
poses high demands on production planners. Besides the 

necessity to optimize the stationary production process over 
a long period it is more and more important to be able to 
change quickly and efficiently between different production 
modes. For plants with automated transport systems we have 
to find optimum control sequences for the transporter to meet 
the requirements. Therefore we have developed a simulation 
model to find control sequences both for stationary and for 
flexible production environments. We extend the model 
described in [1] by a capacity dependent deadlock avoidance 
strategy and a collision avoidance strategy for two transport 
robots and discuss results of a real plant application. 

The application considered is a line of basins containing 
chemical, electrolytic or rinsing bathes served by one or 
more transporters (Fig.1). The plant consists of m machines 
(or basins, or tanks) M1, …, Mm, an input station M0 and an 
output station Mm+1 sometimes combined at the same place.  

The input station houses a set of parts J. Each part has to 
be processed according to its process plan, the list of the 
operation times oi, (i ∈M) at the machines and the transport 
times tij (i, j ∈M)  between them. The operation times oi of 

part J are kept in intervals J J
i il u,  with a lower bound Jil and 

an upper bound Jiu . If the upper bound is equal to the lower 

bound, we speak of a no-wait condition. The upper bound 
can be infinity, too. There are one or more transporters Tn 

operating within defined areas on the same or on different 
tracks. The travel times δij can be constant, additive or 
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Euclidean. Additive travel times follow the triangle equality 
and Euclidean travel times follow the triangle inequality. 
They are symmetric (δij=δji) and zero from a machine to itself 
(δii=0). The transport times tij between the operations oi are 
the sum of travel times δij and a constant time needed for 
loading and unloading the part. The parts in the input station 
can be of the same type or of different types. The goal is to 
minimize the cycle time V for the transporter sequence 
which equals the job release time in case of identical parts 
(or products, or jobs), or to minimize the throughput time in 
case of different part types. 
 

 
Fig. 1 Layout of the plant 
 

II. ROBOTIC FLOW SHOP SCHEDULING: STATE OF THE ART 

We address the Hoist Scheduling Problem (HSP) here as a  
special case of a robotic flow shop [2] [3]. An overview of 
different kinds of HSPs is given by Manier and Bloch in [7]. 
They extend the Graham notation for job and flow shop 
scheduling [3][8] to HSPs.  

In HSP, the operation times per machine are not fixed but 
decision variables whose values must be selected from a 
given range called the interval processing time. The 
transporters have Euclidean travel times [2], and loaded 
transporters are not allowed to wait (no-wait condition). The 
NP-completeness is proven by Crama and Klundert [4]. 
Phillips and Unger [5] solved the monocyclic case with 
integer programming. Rodozek and Wallace used a hybrid 
constraint logic programming (CLP) and mixed integer 
programming (MIP) algorithm [6].  

In [9] we presented a process centered modelling method 
for the HSP according to the A-path method of Zhou and 
DiCesare [10]. Additionally, we developed a resource 
centered model for one hoist in [1]. In this paper, we extend 
our previous investigations for multiple hoists. In such 
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applications, collisions among several hoists (or cranes, or 
transporting units) pose a major problem to system 
scheduling and deadlock control. Before we design suitable 
deadlock and collision avoidance algorithms in Sections IV 
and V, we summarize the fundamental properties of the used 
scheduling models in the next section.          

III. PROCESS VS. RESOURCE CENTERED MODELLING 

The general structure of the scheduling model is shown in 
Fig. 2. The parts or jobs are modelled as process tokens with 
the processing times of operations as attributes. They are 
released to the request generator with constant release times 
V.  

 
 

Fig. 2 Scheduling model 
 

The request generator (which is the model of the plant) 
sends transport requests to the request sequencer if the state 
of the model has changed because of a finished transport 
operation and the starting of a tank operation. According to 
the predetermined priority, the sequencer decides which of 
the transport requests is fulfilled next as soon as the 
transporter is available. Then the time tabled request releases 
a transporter move if the transporter is not at the needed 
place. Finally, the allocated request causes a transport 
operation and a new transport request. 

 

 
Fig. 3 Process centered model (A-path model) 

 

The start value of V for the first simulation run is the sum 
of the maximum operation times of the bottleneck tank and 
the transport times to and from the tank. If a cyclic behavior 
can not be achieved or if the operation times exceed the 
upper bounds of the given intervals, the release time V will 
be increased by a small amount and the simulation starts 
again until the constraints as prescribed by the (Petri net) 
model are fulfilled.  

In Fig.3 the simplified process centered Petri net model is 
shown. The A-path as the sequence of tank and transport 
operations for one process (or job) are on the right and the 
move operations and the sequencer are on the left side.The 
signal flow of the requests takes place along the dashed lines. 
The process flow occurs along the bold lines. Just the 
processing times of operations can be changed by input data 
not the sequence of operations. 

In flexible manufacturing environments there is a fast 
change in product types, however. To find sequences for lot 
switching or for new products, the process centered model is 
unsuitable because for each new process plan (or product) a 
new A-path has to be implemented. As in improvement in 
modelling flexibility, the resource centered model is shown 
in Fig.4. Compared to the process centered model, now the 
resources are at the primary focus of interest instead of 
processes or A-paths. The signal flow is similar to the 
process centered model but the process flow is composed of 
single operation elements using the corresponding resources. 
Therewith flexible A-paths are possible. The flexibility is 
reflected in Fig.4 in the number of process flow connections, 
too. In the process centered model there is just one way for 
the parts whereas in the resource centered model the 
processes can be composed in any order. In [12] the 
Compact Modelling as a similar concept for the Job Shop 
Scheduling Problem (JSP) is described and the effects on the 
number of Petri net elements are calculated. 

 
 

 

 
 
 

Fig. 4 Resource centered model 
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IV. DEADLOCK PREVENTION 

In Discrete Event Systems with loops in the process plans 
deadlocks may occur. We therefore need a deadlock 
prevention algorithm in the resource centered model to 
enable the model to simulate processes with loops in the 
process plan. The idea is to prevent the last change in the 
state of the plant which closes a deadlock. The following 
example may illustrate the algorithm: 
 Given are three resources a1, a2 and a3. Each resource has 
capacity one, i.e., each resource can handle just one of the 
processes. For process P1 the actual resource may be a1, for 
process P2 a2 and for P3 a3. Then these four combinations 
for the following two resources for the three processes are 
possible: 
 

( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )
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     
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. 

 
Each combination of the three processes P1, P2 and P3 is a 
deadlock with either size 2 if two processes or resources are 
involved or size 3 for three involved processes. For example, 
if  P1=(a1 a2 a1) and P2=(a2 a1 a2) then there is a deadlock 
because P1 blocks the next tank of P2 and P2 uses the next 
tank of P1. A deadlock with size 3 occurs if P1=(a1 a2 a1), 
P2=(a2 a3 a2) and P3=(a3 a1 a3), because there are three 
involved processes and for each of the three processes there 
exists a process which uses the next resource. That means 
there is a deadlock if: 
  
Let P be the set of processes in the plant   

{ }P1 Pn nP ... ;= ∈ℕ           (1) 

and each Pi consists of the actual and the next operation, 

 ( )i i
i actual nextP a a ; i=1...n=        (2) 

then there exists a subset Q of P 

{ }1 m; = Q Q m;...⊆ ∈Q P Q ℕ      (3) 

with 

=Q Q
actual nextA A            (4) 

where Q
actualA  is the set of the actual resources occupied by 

the processes of Q and Q
nextA the set of the next resources 

used by the processes of Q. 
 
 In the implementation of the resource centered model we 
have to prohibit the transport of the last job to that resource 
which leads to Eqn.(4) and results in a deadlock. We call it 
an event dependent deadlock prevention. In the worst case it 
needs a lot of calculation time to decide if a transport 
operation results in a deadlock because we have to look 
ahead at least until each process in the plant took one step 

forward. Therefore we implemented process dependent 
capacity restrictions, instead. The prevention algorithm 
works as follows:  
 

 
 
In Table 1 a process with 11 operations and 8 resources 

(tanks) is given as an example. There are 3 loop resources in 
the process plan: tank 1, tank 3, and tank 8. The resources 
with loops are marked as bold numbers. The idea is to 
restrict the capacity of the area between two loop resources 
to the number of non-loop resources. If there is no non-loop 
resource between bold numbers, they are grouped together 
and considered as one loop resource. Table 1 shows 3 ranges 
S1 to S3 with the capacities allowed. With this entrance 
restriction for new tokens (or jobs) it is guaranteed that it is 
always possible to move a part (or job) from a loop resource 
to a non-loop resource. 

In Fig. 5 the simplified model with deadlock prevention is 
displayed. The decision of the sequencer for one out of 
several concurrent processes is based on the due date of the 
actual tank operation. Other priority rules are possible as 
well. The timetabled request which is sent from the 
sequencer to the deadlock prevention module contains 
information about the operation number. The deadlock 
prevention algorithm then decides if the capacity of the area 
under consideration will be exceeded when the process will 
be transported to the next tank, or not. If so, the deadlock 
prevention module sends an inhibit signal to the sequencer 
for this process and tries the next one. Every time the state of 
the request generator changes as caused by a transport 
operation, all the inhibited requests stored in the sequencer 
module are tested whether the danger for deadlock still holds 
or not.  

 
Fig. 5 Resource centered model with deadlock prevention module 
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V. COLLISION AVOIDANCE 

In our plant application there are two transporters on one 
track serving two overlapping areas. Because of the 
overlapping areas a collision avoidance strategy is a must.  
Fig. 6 shows the extended model. 

  

 
 

Fig. 6 Resource centered model with two transporters and one collision 
avoidance module 

 

There are n tanks and two transporters. Each of the two 
transporters needs its own sequencer. After sequencing the 
transport requests, the deadlock prevention module checks 
the possibility of a deadlock. Then the collision avoidance 
module tests if the transporter intends to enter the collision 
endangered area. The size of the collision endangered area 
depends on the layout of the plant and therewith on the 
implemented allocation conditions. Fig.7 shows an example 
for a collision endangered area.  

 
 

 
 

Fig. 7 Allocation conditions for the transporters 
 

 
The solid lines mark possible start tanks s of a transport 

operation and dashed lines mark possible destination tanks e 
of the transport. There are three conditions a,b,c for each 
transporter. These conditions read as follows (compare Fig. 
7): 
 
 

 
1. The transport operation is conducted by transporter 1 if 

condition a1 b1 c1∨ ∨  is true,    

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

a1 s 114 e 118

b1 s 15 16 e 115

c1 s 17 18 e 113

, , ,

, , ,

, , ,

 = ∈ ∧ ∈
 = ∈ ∧ ∈


= ∈ ∧ ∈

 

2. the transport operation is conducted by transporter 2 if 

condition a2 b2 c2∨ ∨  is true,  

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

a2 s 17 32 e 14 32

b2 s 15 16 e 16 32

c2 s 14 14 e 19 32

, , ,

, , ,

, , .

 = ∈ ∧ ∈
 = ∈ ∧ ∈


= ∈ ∧ ∈

 

 
The ranges of a1 and a2 define the handover area and b1, 

c1, and b2, c2 describe the behaviour of the transporters if 
start tanks are within the handover area. If the minimum 
distance between two transporters should always be larger 
than 1 tank then the collision endangered area results to 
[13,19] in the example of Fig. 7. There is only one 
transporter allowed in this area and it has to leave as soon as 
the transport has been finished. During this time period the 
second transporter can only perform transport operations 
outside that area.  

The Petri net implementation of the collision avoidance 
algorithm for one transporter is shown in Fig. 8. There is a 
similar algorithm for the second transporter. If there is a 
transport request for transporter 1 (the place at the top right 
is marked by a token), it will be tested if either the start or 
the end tank is in the collision endangered area.  
 

 
 

Fig. 8 Collision avoidance algorithm for transporter 1 

 
If not, the token goes straight to the transport release 

place. If yes, it will be tested if there is a disabling signal 
from transporter 2. In case of a missing signal the transport 
request will be released. If there is a signal the transporter 
has to wait until transporter 2 has left the collision 
endangered area. Other strategies can be implemented as 
well. 
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VI. FACTORY APPLICATIONS 

The concepts of Sections IV and V have been 
implemented in a simulation tool being used for plant design 
and scheduling. The result of a simulation run is a transporter 
sequence in a text file which can be directly transferred into 
a PLC to control the transporters at the factory floor. The 
input is an Excel file with the process plan, the move times 
for the unloaded transporters, the information about the 
overlapping area, and the information about the process 
dependent capacity restrictions. The model is implemented in 
PACE 5.0, a simulation tool for coloured timed Petri nets 
[13]. Illustrative examples for plant design and transport 
scheduling for 1-hoist galvanic plants are given and 
described in detail in [1].  

A complex real world problem for two transporting units 
T1, T2 is shown in Table 2. The table in the first two 
columns contains the process plan as the sequence of 
operations in the respective tanks and the process interval 
times. For each process, 25 tank resources are used, 6 of 
them more than once. Some of them are in parallel, for 
example tank 20 and tank 21 which are the bottleneck 
resources.  The transporters follow Euclidean travel times 
between 0 and 35 seconds. For loading and unloading they 
need 10 seconds. Transporter T1 starts the process with the 
transport to tank 2 and tank 17. Transporter T2 serves tanks 
1 to 14, and transporter T2 tanks 14 to 25, with a handover 
range  from tank 14 to 18 (compare Fig.7).  
 

 

Besides the 2 transporters, 6 loop resources exist ( 
indicated grey in Table 2, first column). According to the 
deadlock prevention strategy in Section IV, there are 7 
restricted areas S1 to S7 with maximum capacities of 1 to 4 
(indicated white in Table 2, first column). Two types of 
simulations have been conducted to understand  the 
functionalities of the deadlock prevention and collision 
avoidance modules. Table 2, columns 4 and 6 show the 
results for two different capacitiy restrictions, the second one 
more restrictive than the first. In both cases, we only need to 
restrict those areas S1 and S2 (respectively the relevant 
resources tank 25 and 22) which lie upstream of the 
bottleneck resources tank 21 and 20.  For these two cases, 
columns 4 and 6 show the deviations from the lower 
boundary of the processing time interval for the first set of 
processes which uses one set of parallel resources (tanks 4, 
13 and 20), and for the second set of processes (which uses 
tanks 5, 14 and 21). In this application, the less restricted 
deadlock prevention strategy (column 4) performs better as it 
results in a transport schedule which only slightly deviates 
from the prescribed process plan (tank 25, in grey). Finally, 
Figs. 9 and 10 show the transport schedules as the upper two 
lines of the resource Gantt charts. The chart displays 8 
processes (or jobs) concurrently being processed in the plant 
in periodic (stationary) operation.  
 

 
Fig. 9 Gantt chart for a release time V=1245 with two restricted areas 
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Fig. 10 Gantt chart for a release time of  V=1245 with one restricted area 

VI. CONCLUSIONS 

We described a modelling method for a scheduler based 
on coloured timed Petri nets. It leads to stationary transporter 
sequences to feed them into a PLC to control the transporter. 
The process plans can be easily changed just by modifying 
an Excel file. If there are loops in the process plans, 
deadlocks are resolved with a deadlock prevention algorithm 
based on capacity restrictions. Collisions between 
transporters are avoided too. Lot switching and dynamic 
scheduling solutions can be obtained as well. The scheduler 
is implemented for a real 25 tank plant with two transporters 
in a factory for electronic devices. 
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