

Abstract— We describe a resource oriented modelling
method for robotic flow shops and exemplify it by a galvanic
plant with 25 tanks and 2 transporting units. Deadlocks due to
loops in the process plan and collisions among the two
transporting units are the major problems which occur in this
kind of discrete parts manufacturing. To avoid deadlocks we
describe an event dependent and a capacity dependent strategy.
We also describe a collision avoidance strategy for two robots
with overlapping handover areas. Both strategies are
implemented in a Petri net based simulation environment. The
off line tool is used for the interactive design of schedules and
routings for robotic flow shop transport systems.

Keywords— Timed Petri Nets, Manufacturing, Hoist
Scheduling

I. PROBLEM STATEMENT

HE increasing use of flexible production environments
poses high demands on production planners. Besides the

necessity to optimize the stationary production process over
a long period it is more and more important to be able to
change quickly and efficiently between different production
modes. For plants with automated transport systems we have
to find optimum control sequences for the transporter to meet
the requirements. Therefore we have developed a simulation
model to find control sequences both for stationary and for
flexible production environments. We extend the model
described in [1] by a capacity dependent deadlock avoidance
strategy and a collision avoidance strategy for two transport
robots and discuss results of a real plant application.

The application considered is a line of basins containing
chemical, electrolytic or rinsing bathes served by one or
more transporters (Fig.1). The plant consists of m machines
(or basins, or tanks) M1, …, Mm, an input station M0 and an
output station Mm+1 sometimes combined at the same place.

The input station houses a set of parts J. Each part has to
be processed according to its process plan, the list of the
operation times oi, (i ∈M) at the machines and the transport
times tij (i, j ∈M) between them. The operation times oi of

part J are kept in intervals J J
i il u,  with a lower bound Jil and

an upper bound Jiu . If the upper bound is equal to the lower

bound, we speak of a no-wait condition. The upper bound
can be infinity, too. There are one or more transporters Tn

operating within defined areas on the same or on different
tracks. The travel times δij can be constant, additive or

Claudia Fiedler and Wolfgang Meyer are with the Institute of Automation,
Hamburg University of Technology, 21071 Hamburg, Germany
(e-mail: claudia.fiedler@tu-harburg.de; w.meyer@tu-harburg.de)

Euclidean. Additive travel times follow the triangle equality
and Euclidean travel times follow the triangle inequality.
They are symmetric (δij=δji) and zero from a machine to itself
(δii=0). The transport times tij between the operations oi are
the sum of travel times δij and a constant time needed for
loading and unloading the part. The parts in the input station
can be of the same type or of different types. The goal is to
minimize the cycle time V for the transporter sequence
which equals the job release time in case of identical parts
(or products, or jobs), or to minimize the throughput time in
case of different part types.

Fig. 1 Layout of the plant

II. ROBOTIC FLOW SHOP SCHEDULING: STATE OF THE ART

We address the Hoist Scheduling Problem (HSP) here as a
special case of a robotic flow shop [2] [3]. An overview of
different kinds of HSPs is given by Manier and Bloch in [7].
They extend the Graham notation for job and flow shop
scheduling [3][8] to HSPs.

In HSP, the operation times per machine are not fixed but
decision variables whose values must be selected from a
given range called the interval processing time. The
transporters have Euclidean travel times [2], and loaded
transporters are not allowed to wait (no-wait condition). The
NP-completeness is proven by Crama and Klundert [4].
Phillips and Unger [5] solved the monocyclic case with
integer programming. Rodozek and Wallace used a hybrid
constraint logic programming (CLP) and mixed integer
programming (MIP) algorithm [6].

In [9] we presented a process centered modelling method
for the HSP according to the A-path method of Zhou and
DiCesare [10]. Additionally, we developed a resource
centered model for one hoist in [1]. In this paper, we extend
our previous investigations for multiple hoists. In such

Deadlock- and Collision-Control in Robotic Flow Shops

Claudia Fiedler and Wolfgang Meyer

T

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

applications, collisions among several hoists (or cranes, or
transporting units) pose a major problem to system
scheduling and deadlock control. Before we design suitable
deadlock and collision avoidance algorithms in Sections IV
and V, we summarize the fundamental properties of the used
scheduling models in the next section.

III. PROCESS VS. RESOURCE CENTERED MODELLING

The general structure of the scheduling model is shown in
Fig. 2. The parts or jobs are modelled as process tokens with
the processing times of operations as attributes. They are
released to the request generator with constant release times
V.

Fig. 2 Scheduling model

The request generator (which is the model of the plant)
sends transport requests to the request sequencer if the state
of the model has changed because of a finished transport
operation and the starting of a tank operation. According to
the predetermined priority, the sequencer decides which of
the transport requests is fulfilled next as soon as the
transporter is available. Then the time tabled request releases
a transporter move if the transporter is not at the needed
place. Finally, the allocated request causes a transport
operation and a new transport request.

Fig. 3 Process centered model (A-path model)

The start value of V for the first simulation run is the sum
of the maximum operation times of the bottleneck tank and
the transport times to and from the tank. If a cyclic behavior
can not be achieved or if the operation times exceed the
upper bounds of the given intervals, the release time V will
be increased by a small amount and the simulation starts
again until the constraints as prescribed by the (Petri net)
model are fulfilled.

In Fig.3 the simplified process centered Petri net model is
shown. The A-path as the sequence of tank and transport
operations for one process (or job) are on the right and the
move operations and the sequencer are on the left side.The
signal flow of the requests takes place along the dashed lines.
The process flow occurs along the bold lines. Just the
processing times of operations can be changed by input data
not the sequence of operations.

In flexible manufacturing environments there is a fast
change in product types, however. To find sequences for lot
switching or for new products, the process centered model is
unsuitable because for each new process plan (or product) a
new A-path has to be implemented. As in improvement in
modelling flexibility, the resource centered model is shown
in Fig.4. Compared to the process centered model, now the
resources are at the primary focus of interest instead of
processes or A-paths. The signal flow is similar to the
process centered model but the process flow is composed of
single operation elements using the corresponding resources.
Therewith flexible A-paths are possible. The flexibility is
reflected in Fig.4 in the number of process flow connections,
too. In the process centered model there is just one way for
the parts whereas in the resource centered model the
processes can be composed in any order. In [12] the
Compact Modelling as a similar concept for the Job Shop
Scheduling Problem (JSP) is described and the effects on the
number of Petri net elements are calculated.

Fig. 4 Resource centered model

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

IV. DEADLOCK PREVENTION

In Discrete Event Systems with loops in the process plans
deadlocks may occur. We therefore need a deadlock
prevention algorithm in the resource centered model to
enable the model to simulate processes with loops in the
process plan. The idea is to prevent the last change in the
state of the plant which closes a deadlock. The following
example may illustrate the algorithm:
 Given are three resources a1, a2 and a3. Each resource has
capacity one, i.e., each resource can handle just one of the
processes. For process P1 the actual resource may be a1, for
process P2 a2 and for P3 a3. Then these four combinations
for the following two resources for the three processes are
possible:

()
()
()
()

()
()
()
()

()
()
()
()

1 2 1 2 1 2 3 1 3

1 3 1 2 3 2 3 2 3

1 2 3 2 1 3 3 1 2

1 3 2 2 3 1 3 2 1

a a a a a a a a a

a a a a a a a a a
P1 P2 and P3

a a a a a a a a a

a a a a a a a a a

;

     
     
     

= = =     
     
     
     

.

Each combination of the three processes P1, P2 and P3 is a
deadlock with either size 2 if two processes or resources are
involved or size 3 for three involved processes. For example,
if P1=(a1 a2 a1) and P2=(a2 a1 a2) then there is a deadlock
because P1 blocks the next tank of P2 and P2 uses the next
tank of P1. A deadlock with size 3 occurs if P1=(a1 a2 a1),
P2=(a2 a3 a2) and P3=(a3 a1 a3), because there are three
involved processes and for each of the three processes there
exists a process which uses the next resource. That means
there is a deadlock if:

Let P be the set of processes in the plant

{ }P1 Pn nP ... ;= ∈ℕ (1)

and each Pi consists of the actual and the next operation,

 ()i i
i actual nextP a a ; i=1...n= (2)

then there exists a subset Q of P

{ }1 m; = Q Q m;...⊆ ∈Q P Q ℕ (3)

with

=Q Q
actual nextA A (4)

where Q
actualA is the set of the actual resources occupied by

the processes of Q and Q
nextA the set of the next resources

used by the processes of Q.

 In the implementation of the resource centered model we
have to prohibit the transport of the last job to that resource
which leads to Eqn.(4) and results in a deadlock. We call it
an event dependent deadlock prevention. In the worst case it
needs a lot of calculation time to decide if a transport
operation results in a deadlock because we have to look
ahead at least until each process in the plant took one step

forward. Therefore we implemented process dependent
capacity restrictions, instead. The prevention algorithm
works as follows:

In Table 1 a process with 11 operations and 8 resources

(tanks) is given as an example. There are 3 loop resources in
the process plan: tank 1, tank 3, and tank 8. The resources
with loops are marked as bold numbers. The idea is to
restrict the capacity of the area between two loop resources
to the number of non-loop resources. If there is no non-loop
resource between bold numbers, they are grouped together
and considered as one loop resource. Table 1 shows 3 ranges
S1 to S3 with the capacities allowed. With this entrance
restriction for new tokens (or jobs) it is guaranteed that it is
always possible to move a part (or job) from a loop resource
to a non-loop resource.

In Fig. 5 the simplified model with deadlock prevention is
displayed. The decision of the sequencer for one out of
several concurrent processes is based on the due date of the
actual tank operation. Other priority rules are possible as
well. The timetabled request which is sent from the
sequencer to the deadlock prevention module contains
information about the operation number. The deadlock
prevention algorithm then decides if the capacity of the area
under consideration will be exceeded when the process will
be transported to the next tank, or not. If so, the deadlock
prevention module sends an inhibit signal to the sequencer
for this process and tries the next one. Every time the state of
the request generator changes as caused by a transport
operation, all the inhibited requests stored in the sequencer
module are tested whether the danger for deadlock still holds
or not.

Fig. 5 Resource centered model with deadlock prevention module

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

V. COLLISION AVOIDANCE

In our plant application there are two transporters on one
track serving two overlapping areas. Because of the
overlapping areas a collision avoidance strategy is a must.
Fig. 6 shows the extended model.

Fig. 6 Resource centered model with two transporters and one collision
avoidance module

There are n tanks and two transporters. Each of the two
transporters needs its own sequencer. After sequencing the
transport requests, the deadlock prevention module checks
the possibility of a deadlock. Then the collision avoidance
module tests if the transporter intends to enter the collision
endangered area. The size of the collision endangered area
depends on the layout of the plant and therewith on the
implemented allocation conditions. Fig.7 shows an example
for a collision endangered area.

Fig. 7 Allocation conditions for the transporters

The solid lines mark possible start tanks s of a transport

operation and dashed lines mark possible destination tanks e
of the transport. There are three conditions a,b,c for each
transporter. These conditions read as follows (compare Fig.
7):

1. The transport operation is conducted by transporter 1 if

condition a1 b1 c1∨ ∨ is true,

[] []()
[] []()
[] []()

a1 s 114 e 118

b1 s 15 16 e 115

c1 s 17 18 e 113

, , ,

, , ,

, , ,

 = ∈ ∧ ∈
 = ∈ ∧ ∈


= ∈ ∧ ∈

2. the transport operation is conducted by transporter 2 if

condition a2 b2 c2∨ ∨ is true,

[] []()
[] []()
[] []()

a2 s 17 32 e 14 32

b2 s 15 16 e 16 32

c2 s 14 14 e 19 32

, , ,

, , ,

, , .

 = ∈ ∧ ∈
 = ∈ ∧ ∈


= ∈ ∧ ∈

The ranges of a1 and a2 define the handover area and b1,

c1, and b2, c2 describe the behaviour of the transporters if
start tanks are within the handover area. If the minimum
distance between two transporters should always be larger
than 1 tank then the collision endangered area results to
[13,19] in the example of Fig. 7. There is only one
transporter allowed in this area and it has to leave as soon as
the transport has been finished. During this time period the
second transporter can only perform transport operations
outside that area.

The Petri net implementation of the collision avoidance
algorithm for one transporter is shown in Fig. 8. There is a
similar algorithm for the second transporter. If there is a
transport request for transporter 1 (the place at the top right
is marked by a token), it will be tested if either the start or
the end tank is in the collision endangered area.

Fig. 8 Collision avoidance algorithm for transporter 1

If not, the token goes straight to the transport release

place. If yes, it will be tested if there is a disabling signal
from transporter 2. In case of a missing signal the transport
request will be released. If there is a signal the transporter
has to wait until transporter 2 has left the collision
endangered area. Other strategies can be implemented as
well.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

VI. FACTORY APPLICATIONS

The concepts of Sections IV and V have been
implemented in a simulation tool being used for plant design
and scheduling. The result of a simulation run is a transporter
sequence in a text file which can be directly transferred into
a PLC to control the transporters at the factory floor. The
input is an Excel file with the process plan, the move times
for the unloaded transporters, the information about the
overlapping area, and the information about the process
dependent capacity restrictions. The model is implemented in
PACE 5.0, a simulation tool for coloured timed Petri nets
[13]. Illustrative examples for plant design and transport
scheduling for 1-hoist galvanic plants are given and
described in detail in [1].

A complex real world problem for two transporting units
T1, T2 is shown in Table 2. The table in the first two
columns contains the process plan as the sequence of
operations in the respective tanks and the process interval
times. For each process, 25 tank resources are used, 6 of
them more than once. Some of them are in parallel, for
example tank 20 and tank 21 which are the bottleneck
resources. The transporters follow Euclidean travel times
between 0 and 35 seconds. For loading and unloading they
need 10 seconds. Transporter T1 starts the process with the
transport to tank 2 and tank 17. Transporter T2 serves tanks
1 to 14, and transporter T2 tanks 14 to 25, with a handover
range from tank 14 to 18 (compare Fig.7).

Besides the 2 transporters, 6 loop resources exist (
indicated grey in Table 2, first column). According to the
deadlock prevention strategy in Section IV, there are 7
restricted areas S1 to S7 with maximum capacities of 1 to 4
(indicated white in Table 2, first column). Two types of
simulations have been conducted to understand the
functionalities of the deadlock prevention and collision
avoidance modules. Table 2, columns 4 and 6 show the
results for two different capacitiy restrictions, the second one
more restrictive than the first. In both cases, we only need to
restrict those areas S1 and S2 (respectively the relevant
resources tank 25 and 22) which lie upstream of the
bottleneck resources tank 21 and 20. For these two cases,
columns 4 and 6 show the deviations from the lower
boundary of the processing time interval for the first set of
processes which uses one set of parallel resources (tanks 4,
13 and 20), and for the second set of processes (which uses
tanks 5, 14 and 21). In this application, the less restricted
deadlock prevention strategy (column 4) performs better as it
results in a transport schedule which only slightly deviates
from the prescribed process plan (tank 25, in grey). Finally,
Figs. 9 and 10 show the transport schedules as the upper two
lines of the resource Gantt charts. The chart displays 8
processes (or jobs) concurrently being processed in the plant
in periodic (stationary) operation.

Fig. 9 Gantt chart for a release time V=1245 with two restricted areas

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Fig. 10 Gantt chart for a release time of V=1245 with one restricted area

VI. CONCLUSIONS

We described a modelling method for a scheduler based
on coloured timed Petri nets. It leads to stationary transporter
sequences to feed them into a PLC to control the transporter.
The process plans can be easily changed just by modifying
an Excel file. If there are loops in the process plans,
deadlocks are resolved with a deadlock prevention algorithm
based on capacity restrictions. Collisions between
transporters are avoided too. Lot switching and dynamic
scheduling solutions can be obtained as well. The scheduler
is implemented for a real 25 tank plant with two transporters
in a factory for electronic devices.

REFERENCES
[1] C. Fiedler and W. Meyer, “Process Centred versus Resource Centred

Modelling for Flexible Production Lines”, Proc. of Int.
MultiConference of Engineers and Computer Scientists, Hongkong,
March 2008.

[2] Y. Crama, V. Kats, J. van de Klundert and E. Levner, “Cyclic
scheduling in robotic flowshops”, Annals of Operations Research,
vol. 96, pp. 97–124, 2000.

[3] M. Dawande, H.N. Geismar, S.P. Sethi and C. Sriskandarajah,
“Sequencing and Scheduling in Robotic Cells: Recent
Developments”, Journal of Scheduling, vol. 8, pp. 387–426, 2005.

[4] Y. Crama and J. Klundert, “Robotic flowshop scheduling is strongly
NP-complete”, in Ten Years LNMB (W.K.Klein Haneveld, O.J. Vrieze
and L.C.M. Kallenberg, eds.), CWI Tract 122, Amsterdam, pp. 277-
286, 1997.

[5] L. W. Phillips and P. S. Unger, “Mathematical Programming Solution
of a Hoist Scheduling Program”, AIIE Transactions, vol. 28, no. 2,
pp. 219-225, June 1976.

[6] R. Rodošek and M. Wallace, “A Generic Model and Hybrid
Algorithm for Hoist Scheduling Problems”, in Lecture Notes in
Computer Science, vol.1520, pp. 385-399, Springer Verlag, Berlin,
1998.

[7] M.-A. Manier and C. Bloch, “A Classification for Hoist Scheduling
Problems”, International Journal of Flexible Manufacturing Systems,
vol. 15, no.1, pp. 37 – 55, Jan 2003.

[8] R.L.Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnoy Kan,
“Optimization and approximation in deterministic sequencing and
scheduling: A survey”, Annals of Discrete Mathematics, 5, 287-326,
1979.

[9] C. Fiedler, ”Event-driven Generation of Periodic Hoist Schedules”,
Proc. IEEE Conf. Systems, Man, and Cybernetics, Taipei, Oct. 2006.

[10] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems, London: Kluwer Academic
Publishers, 1993.

[11] M. Lawley, S. Reveliotis, and P. Ferreira, “Design Guidelines for
Deadlock-Handling Startegies in Flexible Manufacturing Systems”,
The International Journal of Flexible Manufacturing Systems,
Kluwer Academic Publishers, Boston, 9, pp. 5-30, 1997.

[12] A. v.Drathen, “Compact Modeling of Manufacturing Systems with
Petri nets”, Proc. IEEE Conf. Systems, Man, and Cybernetics,
Montreal, Oct. 2007.

[13] www.ibepace.com

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

