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Abstract— The main aim of this research is to present the 

method of extracting structure of 3D image datasets captured 
from a 3D scanner by using a Piecewise Surface Fitting 
Algorithm that is independent from object structures. Our 
approach begins by dividing data into small groups and 
analyzing each group to find an appropriate coordinate system 
by encoding into tensor, and decomposing it to eigenvectors and  
eigenvalues. The eigenvector  set is used as a transform matrix 
to transform local data points into a new coordinate system. 
Then the method has been implemented using approximate 
mathematical function that describes the data points as a whole. 
The experimental results are given which shows that the 
algorithm can produce surfaces of high visual quality and 
reduce large databases. 
 

Index Terms— 3D image data, Tensor, Transformation,  
Surface fitting.  
 

I. INTRODUCTION 
 For many years  3D image processing  has evolved  both 

in hardware and software. Advances in technology, has 
allowed scientists to accurately capture the high resolution 
and clarity of 3D images. 

To obtain data of a large object using 3D scanning process, 
we have to scan it in several angles and areas, then combine 
and build up the obtained data as a 3D image. This primary 
data are scatter (point cloud data) which contain many 
unnecessary data points. There are several researchers using 
various methods and techniques for surface extraction i.e. 
Marching Cube technique [1], [2] or Tensor Voting 
technique [3], [4].  

Surface Fitting is one among several techniques used to 
create  the surface of an image based on  a  fairly  large 
number of given data points [5], [6], [7]  by using an 
approximate mathematical function. But  to analyze the large 
databases based on  only one function can easily give 
inaccuracy or error result; therefore, the concept of Piecewise 
Surface Fitting Algorithm  is to divide data into smaller parts 
and analyze  each part before using an approximate function 
that present  local data  as a whole.  However, some local data 
may have coordinate system that inappropriate to represent 

the surface – since  the appropriate system has to be one value 
of domain  presenting only one surface point of  that local 
data, thus, we have to transform the system to be correct by 
definition of function. 

 
Manuscript received June 3, 2008. This work was supported in part by the 

Chandrakasem Rajabhat University  
Mongkol Hunkrajok is with  the Department of Mathematics , the Faculty 

of  Science, Chandrakasem Rajabhat University, Bangkok, Thailand 10900. 
(corresponding author to provide phone: 66-86-793-7949; e-mail: 
mongkolh@ chandra.ac.th).  

Wanrudee Skulpakdee  is with with  the Department of Mathematics, the 
Faculty of  Science , Chandrakasem Rajabhat University, Bangkok, Thailand 
10900. (corresponding author to provide phone: 66-86-793-7949; e-mail: 
wanrudee@ chandra.ac.th). 

 

Tensor is a generalized linear 'quantity' or 'geometrical 
entity' that can be expressed as a multi-dimensional array 
relative to a choice of  basis of the particular space on  which 
it is defined. [8]  Tensor can be  decomposed into 3 
orthogonal eigenvectors  with 3 eigenvalues describing the 
array  of  data in the group [9], [10].  Generally, the direction 
of eigenvector with smallest eigenvalue is perpendicular to 
the object’s surface. As a result the eigenvector set is used to 
transform local data points into the new coordinate system 
appropriated for generating the function, and then use the 
function to display surface of each selected area.[11] 

The remaining of this paper will discuss in details as 
follows: Section 2 Data Transformation;  Section 3   Surface 
fitting; Section 4 Experimental results and the  last Section as 
conclusion. 

 
 

II. DATA TRANSFORMATION 

A.  Information capturing  from tensor 
3D local image features are encoded into Tensor field 

( )3
3: Ω →F T  where is the image domain and Ω   ( )3

3T

denotes the set of
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We can explain the array of local data as the following: 
 

Let  ω p
 is  used to be a center for creating  tensor matrix.  

Let B p
a set of  local  points  surrounding  ω p

 which can be 

written as 
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where    Ω  is a set of whole data 
             k  is number of all partitioning data set 
             r  is radius  constant 

 

 
Fig. 1. Graphical representation of symmetric positive 
semidefinite tensor on . 3

 
 We consider  variation along direction v  among all point 

in B p
 

       ( ) ( )
2

var
∈

= − ⋅∑
ω B

v ω ω v
p

T

p
 

          ( )( )
∈

= − −∑
ω B

v ω ω ω ω v
p

TT
p p

          ( )( )
∈

⎡
= − −⎢

⎢ ⎥⎣ ⎦
∑
ω B

v ω ω ω ω v
p

TT
p p

⎤
⎥

         = v A vT
p  

 
where              ( )( )

∈

= − −∑
ω B

A ω ω ω ω
p

T

p p p
       (3) 

 
A p

is  a matrix shown data relationship in local area 

 
Fig. 2. Eigenvectors of  local points in 3 dimensional data. 
 

Figure  2 illustrates eigenvectors with largest eigenvalues 
capture the most variation (  and eigenvectors with 

smallest eigenvalues has the least variation  among all of 

vector (

)1e

( )3e

)−ω ω p
. 

To avoid the effect of norm of vector ( )−ω ω p
on 

eigenvectors’ direction, we normalize vectors ( )−ω ω p
, then 

(3)  can be rewritten as follows: 
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B. Rotation of 3D  points  
Let are any points in B   ∈ω B p

  
p

 , a set of point in local 

area surrounding .  We transform ω p
  the coordinates from 

the original system to

3λ
2λ

1λ   the new system by using eigenvectors 
decomposed from tensor ; therefore,  the vectors in the new 
system have basis as ,  and .     
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Or it can be written in matrix form as 
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vector space which consist of 3 basis, which are [ ]1 0 0 T , 

[ ]0 1 0 T and[ ]0 0 1 T and is called “ Original system”.   
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    are vectors in vector space 

which consist of  3 basis, which are  
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can be written in matrix form as: 
 
                            = ⋅x E xO N                (5) 
 
so                        1−= ⋅ = ⋅x E x E xN O T O                   (6) 
 
so that data coordinate in the  old system can be transformed 
to the  new system as shown in (6) and can be inversed to the 
original system by using (5).[12] 

III. SURFACE FITTING  
Let ,x y  are independent variables and   z  is a dependent 

variable. Let D p
 is a set of points in   local area after 

transformation. 
Let ⎡ ⎤= ⎣ ⎦x

TN N N N
i i i ix y z such that   , 1, 2,....,∈ =x DN

i p i l  

when l  is a number of  points in D p
   

We want to find a function which approximates a set of 
data points in D p

 by using function  ( ),f x y  which 

represents the relation between ,x y  and . z
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Bivariate surface function can be written in the form  
 
                   ( ) ( ) (, = ⋅NM N M )f x y S x S y              (7) 

 
when    ( )NS x  is a function of  variable x  which has N   

                      parameters 
       S ( )M y  is a function of  variable  which has y M  

                  parameters 
 
Assume that the function in (7) has c  term and  

coefficient, we can calculate coefficient by solving the 
systems of linear equations with c  variables and l  equations 
generated by replacing (7) by the component of D

c

p
’s data. 
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or can be written in matrix form as  =Fc z
when  F   is a constant matrix of the system of equations after 
replacing N

ix  and   for all i l  N
iy 1, 2,....,=

    is a column matrix representing coefficient c
  z   is a column matrix representing   N

iz
We try to find least squares error solution minimizing the 
norm of the error vector 
 

= −e Fc z  
 
Then, our problem is to minimize the objective function 
 

        [ ] [221 1 1
2 2 2

TJ = = − = − −e Fc z Fc z Fc ]z     (8) 

 
whose solution can be obtained by setting the derivative of 
(8) with respect to c  to zero 
 

[ ] 0TJ∂
= −

∂
F Fc z

c
=  

              [ ] 1T T−
=c F                (9) F F z

 
Note that the matrix F having the number of row greater than 
the number of column ( )>l c  does not have its left psudo 

inverse  [ ] 1T −F F FT  as long as F  is not rank deficient. [13] 

 

IV. EXPERIMENTAL RESULT 
In this research, we applied the method on the sample data 

of pagodas in Thailand. Figure 5(a) illustrates pagodas code 
Pa.01T and Pa.02T with different types of surfaces from 
smooth, curved to rough areas. 

 

Data Partitioning 

Whole data (point cloud) 

Data composing 

Tensor encoding 

Tensor decomposition 

Data  transformation 

Surface fitting 

Data inverse transformation 

Fig. 3. Piecewise Surface Fitting Algorithm 
  
The sample data have been implemented through the 

process in Figure3 we begin with dividing data into smaller 
parts as in (2). Figure 4(a) demonstrates partitioning data of 
Pa.01T, and then the data will be transformed into a new 
coordinate system as shown in Figure4 (b). We use the data 
of the system to generate a function for approximating 
surface, and we get a structure as shown in Figure 4(c). After 
that inverse it to the original system as has shown in Figure 4 
(d). The last step, we merge all extracted data together and 
illustrate as a whole image as in Figure 5(b) and 5(c). 

 

  
      (a)              (b) 

  
       (c)                (d) 
Fig. 4.  (a) Point cloud partitioned data   
   (b) Transformed data into new space 
   (c) Extracted surface data 
   (d) Transformed back into real space 
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The experimental results are shown in Table 1. 
 
Table 1 : Tested data details and PSF algorithm Outputs. 
 

SAMPLE SET PA.01T PA.02T 
No. of original data points 187,592 54,537 

No. of extracted data points 59,101 17,024 

Radius constant 0.6 0.5 

Fitting by Polynomial function degree 7x7 
12.04 12.86 

Fitting by Fourier function order 12x12 
Root mean square error 

10.40 10.86 

 

    
           (a) 

    
           (b) 

    
           (c) 

Fig. 5  (a) Point cloud  data  object 
            (b) Surface extracted  object using polynomial fit 

        (c) Surface extracted  object using fourier fit 

V. CONCLUSION 
From the experimental results, we see that Piecewise 

Surface Fitting Algorithm is an effective method to extract 
the structure of 3D object from scatter data that contain many 
unnecessary data points, cause images unclear, and are not 
suitable for creating 3D models. The algorithm gives an 
output of new dataset which has structure similar to the old 
one, but with smaller data points.  

From the experiment, we find that the error of algorithm  
depends upon following  factors: 

1) Size of study area (ball’s radius) should be 
appropriate with surface’s characteristics. To set a small 
study area, the numbers of data points maybe not enough 
for calculating an appropriate coefficient of the function. 
2) If  the study areas have too many noises -- when use 
the data to calculate eigenvectors and eigenvalues, the 
vectors maybe not in proper direction for axis rotation. 
3) Types of functions using in Surface Fitting, including 
orders (or degrees) of functions, are appropriate for 
surface’s characteristics or not. 

 
In this research, we experiment mainly based on objects 

with pagodas’ surface; therefore, we would experiment our 
future work with different types of objects. 
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