
 
 

 

  
Abstract— The optimal minimax solution to the N segment 

piecewise linear approximation of arbitrary convex 
differentiable functions over a finite range is described. The 
optimal solution is uniquely described by the derivatives at N 
distinct points.  The optimality of the solution is proven and a 
recursive algorithm is proposed.  The efficacy of the algorithm 
and optimality of the solution are demonstrated in example 
solutions for common functions such as 1/x and sin(πx). 
 

Index Terms— approximation linear minimax optimal 
piecewise  
 

I.     INTRODUCTION 
 

Approximation of functions by piecewise linear (PWL) 
functions are widely used in many hardware and software 
design applications.  PWL functions allow the representation 
of arbitrary functions to any accuracy by simply increasing 
the number of segments until the desired accuracy is met.  
The purpose of this paper is to present a methodology for 
obtaining an optimal PWL function approximation to a 
convex (or concave) function over a finite range, where the 
PWL function is constrained to a fixed number of segments, 
and the optimization criteria is to minimize the maximum 
absolute error over the range, i.e. the minimax solution. 
 

II.     BACKGROUND 
 

A function )(xf is approximated by a linear function 
)(xg defined over the range 1+≤≤ ii x αα  by the segment 

connection endpoints ),( ii βα  and ),( 11 ++ ii βα .  The 
minimax solution is defined as the function g(x) such that it 
minimizes the error ε  given by 

)()(max
1

xfxg
ii x −=

+≤≤ ααε . (1) 

 
Figure 1 shows the construct of the minimax solution 

where f(x) is a convex, continuously differentiable function.  
The segment connecting the endpoints ))(,( ii f αα  and 

))(,( 11 ++ ii f αα has a maximum error of ε2 .  The segment 
connecting the endpoints ))(,( εαα +ii f  and 

))(,( 11 εαα +++ ii f  has a maximum error of ε and is the 
minimax solution.   
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Figure 1 − 1 Segment Minimax Solution 
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Figure 2 − Minimax Solution, Alternate Construct 

 
Figure 2 shows an alternate construct of the minimax 

solution, which we will then use to construct the N segment 
piecewise linear solution.  We define it as the segment pivot, 

where 
ii

ii
itf

αα
ββ

−
−

=
+

+

1

1)(' . The minimax solution can then be 

defined as ε−+−= )())((')( iii tftxtfxg , where the 
maximum error is ε .  The tangent at it , given 
by )())((')(~

iii tftxtfxg +−= , has the property that   the 
error function )()(~)( xfxgxe −= is strictly positive, convex, 
with maximum error ε   at the endpoints iα   and 1+iα .     
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Furthermore, since the error function is convex, the 
minimax solution over an alternate range 

1
*

+≤≤ ii x αα where 11
*

++ < ii αα  results in εε <* and 

ii tt <* .  Similarly, if 11
*

++ > ii αα , then εε >* and ii tt >* .   
 

III.     PROPOSED SOLUTION 
 

A convex function )(xf is approximated by an N segment 
continuous piecewise linear function )(xg defined over the 

range Nx αα ≤≤0  by the set of points or knots N
iii 0),( =βα  

connected by N segments given by 
 

∑ −
== 1

0 )()( N
i i xgxg , where (2) 

 

⎪
⎩

⎪
⎨

⎧
≤≤+

= +

otherwise
xforbxm

xg iiii
i 0

)( 1αα   (3) 

ii

ii
im

αα
ββ

−
−

=
+

+

1

1        (4) 

iiii mb αβ −= ,   for i=0 to N-1 (5) 
 

Furthermore, we define the set of pivots 
),...,( 110 −Nttt where 

ii mtf =)(' , 1+≤≤ iii ttα  (6) 
 

We propose that g(x) is the minimax optimal N segment 
piecewise linear approximation, i.e. 

)()(max
0

xfxg
Nx −= ≤≤ ααε is minimized (7) 

 if for i= 0 to N, and j = 0 to N-1: 
εαα =−=− )()()()( jjii tftgfg . (8) 
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Figure 3 − 2 Segment Minimax Solution 

 
Fig. 3 shows a representation of a 2 segment solution.  

Note that the set of pivots ),...,( 110 −Nttt fully defines g(x) and 
that g(x) may be alternately written as 
 

ε−+−= −
= )())(('max)( 1

0 iii
N
i tftxtfxg . (9) 

 

 
IV.     PROOF OF OPTIMALITY 

 
Define )(xgi , iα , and it  such that 

 
εαα =− )()( iii fg , for i=0 to N. (10) 

 
Assume )(* xg , *α , and *t  exist to represent a better 

solution (i.e. one with a smaller ε ) such that  
 

εαα <− )()( ***
iii fg , for i=0 to N (11) 

 
and *

0α = 0α and *
Nα = Nα . 

 
If  

εαα <− )()( 00
*

0 fg  (12) 

and 

εαα <− )()( 1
*

1
*

1 fg ,  (13) 

then 0
*
0 tt < , 1

*
1 αα < . 

 
Similarly, ii αα <* ,  ii tt <*  for i=1 to N-1.  
 
Since NN αα =* , if 1

*
1 −− < NN tt ,  1

*
1 −− < NN tα , then  

εαα >−− )()(*
1 NNN fg . (14) 

Equation (14) shows that εαα <− )()( ***
iii fg  cannot 

be true for N.  Therefore, a better solution with a smaller 
ε does not exist and )(xgi as defined in (10) is the optimal 
minimax PWL solution. 
 

V.     RECURSIVE ALGORITHM 
 

Recursive solutions to finding the minimax solution of 
piecewise linear approximations have been previously 
proposed in [1] and [2].  However, these solutions are based 
on splitting algorithms, where a search algorithm is used to 
find the segments that meet a certain error criteria.  An upper 
bound and lower bound is used, and the algorithm searches 
for improved approximations by reducing the lower and 
upper bounds until it converges to an acceptable accuracy.   

We propose a recursive algorithm for finding the optimal 
N segment PWL approximation directly by finding the 
solution to (8), the locations of the pivots jit , .  

The algorithm, shown in Figure 4,  starts with an estimate 
of the pivots jit , .  The initial estimate 0,it  can simply be 

uniformly spaced on Nx αα <<0 .   The tangent segments 
)(, xg ji and the knot locations )(, xjiα at the intersection of 

the tangent segments are then computed based on the pivots.  
The errors at the knots, )()( ,,,, jijijiji fg ααε −= , are 
computed and then used to provide a better estimate of the 
pivot locations 1, +jit .   
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Figure 4 − PWL Search Algorithm 

 
The computation of 1, +jit is depicted graphically in Figure 

5.  To ensure convergence, step control Δ is used to ensure 
that the error decreases with each iteration. The algorithm 
converges to it when the errors are essentially equal within a 
desired accuracy δ . 
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Figure 5 − Updating Pivot Estimates 

VI.     EXAMPLES 
 

The efficacy of the recursive algorithm is shown in the 
following examples.   

Table 1 shows the 8 segment solution for the function 

x
xf 1)( =  from 21 ≤≤ x .  The pivots ( it ), knots ),( ii βα , 

and segments )( ii bxm +  are shown.  As discussed 
previously, the pivots it uniquely describe the solution and 
the knots and segments are easily derived once the pivot 
locations are known. 

 
TABLE 1 

8 SEGMENT PWL APPROXIMATION 

00067.0,21,1
=≤≤ εx

x
 

i it  iα  iβ  im  ib  
0 1.0380 1.0000 0.9987 -0.9281 1.9274 
1 1.1200 1.0775 0.9268 -0.7972 1.7863 
2 1.2121 1.1643 0.8576 -0.6806 1.6506 
3 1.3161 1.2620 0.7911 -0.5773 1.5202 
4 1.4341 1.3726 0.7272 -0.4862 1.3953 
5 1.5687 1.4984 0.6661 -0.4064 1.2756 
6 1.7231 1.6423 0.6076 -0.3368 1.1614 
7 1.9015 1.8079 0.5518 -0.2766 1.0524 
8  2.0000 0.4987   

 
Figure 6 shows the piecewise linear approximation g(x) 

and the error e(x) = g(x)-1/x  over the range 21 ≤≤ x  .  The  
equal maximum errors in each segment clearly demonstrate 
that g(x) is the minimax solution and that the  error of the 
approximation is 0.00067.   
 
 

8 Segment PWL, 1/x
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Figure 6 − 8 Segment PWL Error 

00067.0,21,1
=≤≤ εx

x
 

 
Figure 7 shows the construction of the PWL using the 8 

segments displayed over the entire range, showing the 
relationship between the pivots and tangent segments in  
creating the piecewise linear approximation.  

 

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008



 
 

 

8 Segment PWL, 1/x

0.5

0.6

0.7

0.8

0.9

1.0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x

gi
(x

)

 
Figure 7 − 8 Segment PWL 
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A second example shows the algorithms’ easy scalability 

to more complex solutions.  Table 2 shows the pivots for the 
64 segment approximation of )sin( xπ from 5.00 ≤≤ x .  The 
pivot locations are an efficient method of describing the 
solution and the knots and segments are easily computed 
from the pivots.   
 

TABLE 2 
64 SEGMENT PWL APPROXIMATION, PIVOTS it  

000022.0,5.00),sin( =≤≤ επ xx  

 
0.016198 0.191817 0.305997 0.406857 
0.037175 0.199673 0.312562 0.412945 
0.053101 0.207396 0.319083 0.419018 
0.066903 0.214999 0.325561 0.425075 
0.079413 0.222489 0.331999 0.431119 
0.091019 0.229877 0.338399 0.437150 
0.101943 0.237168 0.344764 0.443169 
0.112327 0.244370 0.351095 0.449179 
0.122270 0.251488 0.357395 0.455179 
0.131841 0.258529 0.363665 0.461171 
0.141095 0.265496 0.369906 0.467156 
0.150074 0.272395 0.376122 0.473136 
0.158811 0.279229 0.382312 0.479111 
0.167333 0.286003 0.388480 0.485082 
0.175663 0.292720 0.394625 0.491050 
0.183819 0.299384 0.400750 0.497017 

 
The PWL approximation and error of the approximation 

are shown in Figure 8.  The maximum error for 64 segments 
is 0.000022.  Figure 9 shows the construction of the PWL 
approximation from the 64 segments. 

64 segment PWL, sin(πx)
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Figure 8 − 64 Segment PWL Error 
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64 segment PWL, sin(π x)
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Figure 9 − 64 Segment PWL 
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