
 
 

 

  
Abstract—The purpose of a variable step-size normalized 

LMS filter is to solve the problem of fast convergence or low 
mis-adjustment. While most VSS-NLMS algorithms need to 
tune several parameters for better performance, we presented a 
tuning-free square-error-based VSS-NLMS algorithm recently 
[4]. In this paper, we propose a more general structure of that of 
[4], the generalized square-error-regularized LMS 
(GSER-LMS) algorithm. Extensive simulation results 
demonstrate that our GSER-LMS outperforms existing 
schemes in speed of convergence, tracking ability, and low 
mis-adjustment. 
 

Index Terms—Adaptive filters, normalized least mean square 
(NLMS), variable step-size NLMS, regularization parameter. 
 

I. INTRODUCTION 
Adaptive filtering algorithms have been widely employed 

in many signal processing applications. The normalized least 
mean square (NLMS) adaptive filter is very popular because 
of its simplicity and robustness. It is well-know that the 
stability of NLMS is controlled by a step-size parameter µ , 
which also controls the speed of convergence, tracking 
ability and steady-state mis-adjustment of the filter. In 
practice, the NLMS is implemented by dividing the step-size 
parameter by the squared norm of the input vector plus a 
small positive constant ε  called the regularization parameter. 
The inclusion of ε  alleviates the problem when the squared 
norm getting too close to zero in certain applications. Since 
the overall step-size affects the performance of the NLMS, 
this regularization parameter ε  has an effect on the 
convergence properties and mis-adjustment as well.  

There are conflicting objectives between fast convergence 
and low mis-adjustment for fixed regularized NLMS 
algorithms. In the past two decades, many variable step-size 
NLMS (VSS-NMS) algorithms have been proposed to solve 
this dilemma associated with the fixed regularized NLMS 
[1-8]. Mandic [6] presented a generalized normalized 
gradient descent (GNGD) algorithm which used a 
time-varying regularization parameter ( )nε . Mandic claimed 
that the GNGD adapts its learning rate according to the 
dynamics of the input signals, and its performance is bounded 
from below by the performance of the NLMS. Very recently, 
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Mandic introduced another scheme with hybrid filters 
structure to further improve the steady-state mis-adjustment 
of the GNGD [5]. Choi, Shin, and Song [3] introduced a 
normalized gradient in the update process for the 
regularization parameter and proposed a modified GNGD 
which improves the steady-state performance.  

While most VSS-NLMS algorithms need to tune several 
parameters for better performance, we presented a 
tuning-free square-error-based VSS-NLMS algorithm [4] 
recently. Our new regularized NLMS algorithm outperforms 
existing schemes in convergence, tracking, and 
mis-adjustment. In this paper, we propose a more general 
structure of that of [4], the generalized 
square-error-regularized LMS (GSER-LMS) algorithm.  

II. GENERALIZED SQUARE-ERROR- REGULARIZED LMS 
ALGORITHM 

In this section, we summarize several algorithms including 
NLMS, GNGD algorithm [6], and Choi’s regularized NLMS 
[3]. We then present the generalized square-error-regularized 
LMS.  

Let ( )d n  be the desired response signal of the adaptive 
filter 

( ) ( ) ( ) ( )x hTd n n n v n= + , (1) 
where ( )h n denotes the coefficient vector of the unknown 
system with length N  ,  

0 1 1( ) [ ( ), ( ), , ( )]TNn h n h n h nh −= … , (2) 
( )x n  is the input vector 

( ) [ ( ), ( 1), , ( 1)]Tn x n x n x n N= − − +x … , (3) 
and ( )v n  is the additive noise that is independent of ( )x n . 

A. Conventional Regularization for NLMS (ε-NLMS) 
Let the adaptive filter have the same structure and same 

order as that of the unknown system. Denoting the coefficient 
vector of the filter at iteration n as ( )w n . We may express the 
a priori estimation error as  

( ) ( ) ( ) ( )Te n d n n n= − x w . (4) 
The ε-NLMS algorithm updates ( )w n  as follows 

2
2

( 1) ( ) ( ) ( )
( )

n n e n n
n

µ

ε
w w x

x
+ = +

+
, (5) 

where µ  is the fixed positive step-size and ε  is a fixed 
small positive constant called regularization parameter. For 
signals that have great spectrum, the overall effective 

step-size ( )2
2( )x nµ ε+  might vary radically, and the 
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value of ε  may notably affect the convergence and tracking 
performance of the ε-NLMS adaptive filter. 

B. GNGD algorithm [6] 
The GNGD algorithm uses a time-varying regularization 

parameter ( )nε  calculated as 

2 2
2

( ) ( 1) ( ) ( 1)
( ) ( 1)

( ( 1) ( 1))
x x

x

Te n e n n n
n n

n n
ε ε ρµ

ε

− −
= − −

− + −
, (6) 

where ρ  is an adaptation parameter needs tuning, and the 
initial value (0)ε  has to be set as well.  

C. Choi’s Regularized NLMS Algorithm [3] 
To improve the steady-state performance of GNGD, Choi 

proposed a time-varying regularization parameter as  

min

min min

'( ) ( 1) sgn ( ) ( 1) ( ) ( 1)

'( ), '( )
( )

, '( )
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⎡ ⎤= − − − −⎣ ⎦
≥⎧

= ⎨ <⎩

, (7) 

where sgn( )x  represents the sign function, and minε , a 
minimum allowable value of ( )nε , is a parameter needs 
tuning. 

D. Proposed GSER-LMS Algorithm 
For the conventional ε-NLMS algorithm, the role of ε  is 

to prevent the associated denominator from getting too close 
to zero, so as to keep the filter from divergence. However, in 
applications of speech signals, a too small ε  may make the 
denominator very close to zero while a too big ε  will slow 
down the adaptation of the filter. In this paper, we propose a 
generalized square-error-regularized LMS which employs 
the inverse of the weighted square-error as the time-varying 
regularization parameter. The proposed GSER-LMS 
algorithm updates ( )w n  as follows 

2 1
2

( 1) ( ) ( ) ( )
( ) ( )

w w x
x

n n e n n
n n

µ

αδ −
+ = +

+
, (8) 

where α  is a positive parameter that makes the filter more 
general, and the error signal power ( )nδ can be estimated as 

2( ) (1 ) ( 1) ( )n n e nδ λ δ λ= − − + . (9) 
The positive constant λ  is less than, and usually close to, 
unity.  

The idea behind GSER-LMS is that when error signal 
power ( )nδ gets bigger, the regularization parameter 

1( )nαδ −  gets smaller, and the effective step-size becomes 
relatively large. Consequently, the filter can make bigger 
adaptation at this mode. When the estimation error is small, 
our 1( )nαδ −  gets larger, and it gives smaller effective 
step-size. At this stage, the adaptive filter makes small 
adjustment. A good property of our GSER-LMS is that, in 
practice, neither ( )nδ   nor 1( )nδ −  gets too close to zero. 
Therefore, we do not need to set an minε  as that of Choi’s 
algorithm [3].  

III. SIMULATION RESULTS 
In this section, we present the results of several 

experiments that compare the performance of ε-NLMS, 
GNGD, Choi’s NLMS, and our GSER-LMS. The adaptive 
filter was used to identify a 512-tap acoustic echo system. 
The acoustic echo impulse response was set to be 
time-varying from seconds 1.9 to 5.1. The evolution of 
coefficients is described by 

( ) ( )h hon g n= + , (10) 

where 1o =h  and ( )g n  is a white Gaussian noise with 

variance 410− . We have used the normalized squared 
coefficient error (NSCE) to evaluate the performance of the 
algorithms. The NSCE is defined as 

2

10 2

( ) ( )
( ) 10 log

( )

h w

h

n n
NSCE n

n

−
=  (11) 

where ( )w n  is the filter coefficient vector. We have run 
extensive simulations. The results are pretty consistent. In 
this section, we show simulation results with the following 
setup:  min 0.001ε = , 0.15ρ = , and 1µ = . 

A. AR processes 
We have used AR processes as the reference input signals. 
The power of each AR process is approximately 1. The 
NSCE curves shown here are results of ensemble averages 
over 20 independent runs. Figures 1 and 2 demonstrate the 
results of AR(1) as reference input signal and the additive 
noise is a zero mean white Gaussian with variance 210−  
and 410− , respectively. The results showed that ε-NLMS and 
GNGD had similar performance. Choi’s algorithm performed 
reasonably well. Our GSER-LMS ( 10=α ) outperformed 
others in the case shown in Fig. 1, and GSER-LMS ( 0.1=α ) 
was the best in the case shown in Fig. 2. 

B. Speech Signals 
In this experiment, the excitations are 8-second-long 

Chinese speech signals. Speech I was given in Figure 3, and 
results of additive white Gaussian noise with variance 210−  
and 410−  were illustrated in Figures 4 and 5, respectively. The 
results showed that ε-NLMS performed badly. GNGD and 
Choi’s NLMS did not perform consistently. It is obvious to 
see that our filters performed consistently well. 

Simulation results of Speech II and Speech III were 
illustrated in Figures 6-11. Notice that Choi’s filter had a 
pretty good performance in one case (shown in Fig. 8.) 
However, just like that observed earlier, GNGD and Choi’s 
algorithm had unsatisfactory performance in some cases. It is 
clear that our GSER-LMS outperformed other competing 
algorithms. 

IV. CONCLUSIONS 
This paper presented a general square-error-regularized 

LMS algorithm. Extensive simulation results demonstrated 
that our GSER-LMS algorithm performed consistently well. 
However, we observed that the parameter α  may affect the 
performance of GSER-LMS.  We are currently investigating 
this issue. 
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Fig. 1, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is AR(1). Additive noise is zero mean white 
Gaussian with variance 0.01 . 

 
 
 

 
Fig. 2, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is AR(1). Additive noise is zero mean white 
Gaussian with variance 0.0001 . 

 
Fig. 3, Speech I. 

 
 
 
 
 
 
 

 
Fig. 4, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech I. Additive noise is zero mean white 
Gaussian with variance 0.01 . 

 
 
 

 
Fig. 5, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech I. Additive noise is zero mean white 
Gaussian with variance 0.0001 . 
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Fig. 6, Speech II. 

 
 
 
 
 

 
Fig. 7, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech II. Additive noise is zero mean white 
Gaussian with variance 0.01 . 

 
 
 

 
Fig. 8, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech II. Additive noise is zero mean white 
Gaussian with variance 0.0001  

 
Fig. 9, Speech III. 

 
 
 
 
 

 
Fig. 10, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech III. Additive noise is zero mean white 
Gaussian with variance 0.01 . 

 
 
 

 
Fig. 11, NSCE curves of ε-NLMS, GNGD [6], Choi’s [3], and our 

GSER-LMS. Input signal is Speech III. Additive noise is zero mean white 
Gaussian with variance 0.0001  
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