

Simulation of Fault Effect on Redundant Multi-
Threading Execution

Huan-yu Tu and Sarah Tasneem

ABSTRACT – One of the most cost-effective fault-tolerant
schemes in commercial computing systems is using redundant
multi-threading executions. These systems detect faults by
redundantly executing more than one (usually two) instances
of a program, and comparing the architected states of these
instances. In these systems, though a fault might decrease the
overall performance but will not affect the correctness of the
execution. In this paper, through simulations we investigate
the fault effects of redundant multi-threading executions by
injecting transient faults to redundant computing systems. The
results are presented and discussed here.

Keywords – simulations, redundant, multi-threading, fault-
tolerant, lock-stepping

1. INTRODUCTION

Redundant execution has been the most widely used
scheme in commercial fault tolerant systems. Most redundant
systems use a technique called lock-stepping in which two
processors execute the same instructions and compare the
results. When the results of the two operations are not
identical, indicating the failure of one of the processors, the
system has to perform a series of tests to determine which one
is faulty. Easy-implementation and cost-effectiveness are
major advantages of lock-stepping. Examples of such systems
include IBM S/390 mainframes [1, 2] and Tandem Himalaya
systems [3].

In simple core systems, lock stepped execution can be
easily achieved by comparing the architected state of the
machine. However, modern processors use speculative
mechanisms which involve many non-architected states. The
decisions taken by these mechanisms are validated. They may
improve performance, but can never affect the correctness of
the program. They take much more area in processor cores
than the architected state, therefore are more likely to be
affected by transient or permanent faults. When two
processing elements have different internal speculative states,
a non-deterministic output signal timing issues could make
the lock-stepping scheme problematic without a full processor
state reset. For example, a fault could flip a bit in the branch
prediction table. This faulty entry could mislead the fetch unit

Manuscript received June 28, 2008.
Huan-yu Tu is with Eastern Connecticut State University, Willimantic,

Connecticut 06226 USA (phone: 860-465-5050; e-mail: tuh@easternct.edu).
Sarah Tasneem is with Eastern Connecticut State University, Willimantic,

Connecticut 06226 USA (e-mail: tasneems@easternct.edu).

of one processor. The processor pairs then start fetching and
executing instructions in different paths of a branch, falling
out of lock-stepped execution. This kind of non-deterministic
timing for a modern processor has been discussed in [4].

Recently, simultaneous multi-threading (SMT) has
gained popularity, and processors implementing SMT are
becoming more prevalent. SMT shares resources such as,
fetch bandwidth, instruction window, register file, caches
between multiple threads. This fine-grained sharing, leads to
effective utilization of resources between multiple threads,
and hence higher throughput. SMT has led to micro-
architectural fault-tolerant technique such as AR-SMT, RMT
(Redundant Multi-threading), SRT (Simultaneous Redundant
Threading). These techniques run the same program as
independent threads on SMT processor, and compare their
outputs. Some techniques compare committed stores (as in
von Neumann machine there is a total-load-store order); while
other approaches compare the end of a dependence chain. A
mismatch during comparison indicates a fault which may or
may not be recoverable depending on the approach.

Redundant execution on SMT is not lock-stepped
execution. However, the non-determinism introduced by
speculative techniques is the same. Motivated by: (a) non-
determinism in modern processor cores; (b) prevalence and
use of SMT for fault-tolerance, we study the effect of faults in
branch predictor, branch target buffer, and return address
stack of a SMT processor executing a redundant copy of the
program. We also study the effect on error detection, and the
slack it introduces between the two threads. We are aware of
no other work that studies the effect of faults on structures
maintained by speculative techniques.

In section 2, we discuss some typical fault detection
techniques and its relevance to this paper. In section 3 we
discuss our experimental setup and simulation model. In
section 4, we present and discuss our simulation results.
Conclusion is given in section 5.

2. FAULT DETECTION MECHANISMS

Most redundant systems use a technique called AR-SMT
[7] for multi-threading fault detection. In AR-SMT, two
threads, namely active thread (A-thread) and redundant thread
(R-thread), are generated for each application thread. The A-
thread leads and passes its result to the corresponding R-
thread via a micro-architecture extension called delay buffer.
Information passed via delay buffer includes control flow and
data flow information e.g. register values, load and store

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

addresses, etc. On the other hand the R-thread trails and
exploits the branch outcomes and pre-fetching side effect of
the A-thread, hence runs more efficiently. R-thread checks its
results with those from A-thread. In case of discrepancy, R-
stream committed state is used (the results agreed upon by
both threads) to recover both A and R threads. AR-SMT does
not have a strict timing requirement. However, the size of the
delay buffer determines the acceptable range of slack between
the two threads; otherwise, one of the threads will be blocked
due to delay buffer.

SRT, SRT/R and SRT with Recovery are the recent work
based on AR-SMT [8]. SRT/R proposes enhanced error
recovery mechanism based on SRT. In SRT, a leading
instruction may commit before the trailing thread checks for a
fault. In contrast, SRT/R must not allow any leading
instruction to commit before checking occurs since a faulty
instruction cannot be undone once the instruction commits
any result out of the sphere of recovery. To support a short
slack, SRT/R’s leading thread provides the trailing thread
with branch predictions while SRT’s leading thread provides
branch outcomes.

Redundant Simultaneous Multi-Threading [9] studies
redundant threading error detection mechanism in a
commercial-grade SMT processor i.e. DEC Alpha 21464
processor. They uncovered some subtle implementation
complexities and realized that RMT can be of more
significant burden to single processor devices than indicated
by previous studies.

In all of the redundant threading schemes as mentioned
above, except SRT/R, trailing threads have much better
instruction delivery streams than normal prediction and
speculation mechanism can provide because the rarely faulty
leading thread functions as an oracle for the corresponding
trailing thread. It provides nearly perfect control, value
prediction and data pre-fetching for its trailing peer. This fact
motivated the slipstream processor design [5, 6], which is
more performance oriented.

Compared with lock-stepped execution, all of the
redundant multi-threading schemes have a relaxed, though
limited, timing requirement i.e. slack between the leading and
trailing threads. The slack is usually constrained to the
buffering mechanism between the two threads for efficient
execution of both threads; otherwise one of the threads would
be blocked for synchronization. The coupling and buffering
mechanisms between the redundant threads are not as
straightforward as lockstep as the RMT paper indicates. There
are many important implications to be well understood before
such schemes can be applied in real commercial fault tolerant
systems. An advantage of redundant multi-threading over
lock-stepped execution is that it allows two threads to fall out
synchronization, as long the lag between them would not be
big enough to trigger watchdog timers.

In DIVA micro-architecture [10], there are two processor
cores. One processor core is an aggressive, complex, and out-
of-order superscalar core that would be fabricated with
aggressively deep submicron technology. The other one is a
conventional in-order “checker” processor core that would be

fabricated with conventional technology that tolerates
transient hardware faults by itself or by designer’s assumption.
Completed instructions are passed to the checker core for
dynamic verification. Once the aggressive core finishes
execution, all source operands for an instruction are available
before checker processor executes that instruction. Hence,
there is no dependence amongst the instructions inside the
checker core. When an error is detected, the order of the
instruction streams only helps in identifying the first faulty
instruction. DIVA claims to be able to detect all of the
transient and permanent errors, including the design errors.

3. SIMULATION MODEL

In this section, we discuss the simulators, benchmarks
and fault injections.

3.1 Simulator

Two simulators, Sim-multi [11] and PharmSim [12], are
used to study execution behavior under faulty branch
prediction state. Since most simulators do not take fault-
tolerance into account, we implemented fault injection
mechanisms and emulated lockstep execution in our
simulators to perform the study.

Front End A 64KB instruction cache, 64KB YAGS

branch predictor, 32 KB cascading indirect
branch predictor, 64-entry return address
stack. The front end is assumed to be perfect,
i.e. it can fetch past taken branches, BTB is
assumed for providing target addresses,
which are available at decode, for direct
branches.

Caches The first-level data cache is 2-way set
associative 64KB cache, with 64 byte lines, 3
cycle access latency. L2 is 4-way set
associative, 2MB unified cache with 128-
byte lines and 6-cycle access. Caches are
write-back and write-allocate.

Execution
Core

Two threads, 8-wide machine has 256-entry
window, 4 load and store ports, all integer
units are fully pipelined. The pipeline depth
is 14 stages.

Table 1: Simulation Parameters for Sim-multi

Sim-multi is a complete timing simulator of the Alpha
architecture loosely based on SimpleScalar toolkit was used
for simulation. The simulated SMT-processor parameters are
shown in Table 1. The machine is capable of executing two
thread contexts simultaneously by fine-grained sharing of the
resources. Two copies of the same benchmark program was
executed on the two thread contexts. The fetch unit fetches
instructions from the cache for the two thread contexts based
on Icount fetch policy [13]. The policy counts the number of
instructions from active threads that are currently in the
instruction buffers, and fetches instructions from the thread

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

that has the fewest instructions. The assumption is that this
thread is moving instruction through the processor quickly,
and hence, marking most efficient use of the pipeline. Faults
are detected by comparing the committed stores, that are
buffered by each thread in their respective the committed
stores in “store queues”.

The experiments were performed on SPEC2000 integer
benchmark programs. The programs were compiled with
Compaq C compiler with peak optimization. All simulations
were run on train inputs.

PharmSim is a combination of SimOS-PPC with
SimpleMP. SimOS-PPC is a full system simulator that is
capable of booting real PowerPC ISA based OS such as IBM
AIX. SimpleMP is the multi-processor version of
SimpleScalar simulator. PharmSim combines them together
by dynamically translating PowerPC ISA into PISA ISA,
which is actually supported by SimpleScalar. However, in our
simulation, we do not utilize most of the features in
PharmSim. It is chosen by its availability.

The branch predictor in PharmSim consists of two branch
direction predictors. One is the bi-modal predictor that uses an
array to hold 2-bit saturation counters for individual branch
instructions. Another is the 2-level adaptive branch predictor
with a global history pattern and a level two table. Bi-modal
predictor has high prediction accuracy when branches are not
correlated, while 2-level adaptive predictors are better when
the correlation between the branches is more important. There
is a higher level predictor that decides which prediction from
these two predictors should be used.

As PharmSim is a precise but slow simulator, we
configure it to run 200 million cycles for each of the
SPEC2000 integer benchmarks. Faults are injected only
during the first 100 million cycles. We do not inject faults in
the second 100 millions cycles. However, we continue the
measurement of the effect of fault, by measuring the latency
of fault manifestation.

3.2 Branch Prediction

In section one, we introduced non-determinism which
used by many speculative techniques. However, in this paper,
we limit our study to an important micro-architectural
technique: branch prediction and its related structures. We
characterize how faulty branch prediction state affect
processor execution behavior. Faults are injected into branch
predictor table, branch target buffer and return address stack.

Branch prediction tables and Branch Target Buffer (BTB),
are big arrays in a processor core. The BTB provides the
target address of a branch, and branch prediction tables store
history to decide whether a branch is taken or not taken. Both
have an arrangement very similar to the arrangement of tag
arrays in caches. RAS or Return address stack is smaller in
area compared to the branch predictor and BTB tables. It is
used to predict the return address for return instructions.

3.3 Fault Injection

Faults occur unpredictably in real hardware both in terms
of time and space. In a simulator, especially one designed for
architecture study, there is no direct mapping between
simulator source code and real transistors or wires. Even the
simulation time is not exactly the same as physical time. In
our simulation, we only model transient faults in speculative
state arrays; no effort was spent on logic, as there is no
straightforward way to do so. Faults are injected into
simulation “randomly” based on either simulation cycle time
or the number of committed conditional branch instructions.
Faults are primarily flips of either the decision of branch
predictor, or a bit in the prediction structures. We talk more
about this, in the next section on simulation results.

4. SIMULATION RESULTS

In this section, we present results from our simulations.

The results in subsection 4.1 are from PharmSim, and are
used to study the behavior of the faults. The subsection
presents the percentage of faults that are manifested, for two
different branch predictor configurations. The results in
subsection 4.2 are from Sim-multi, and it talks about effect of
faults on slack between main and redundant threads,
performance, and branch prediction accuracy.

4.1 Fault Manifestation of Branch Predictors, BTB and RAS

Fault Injection. A random number is generated every
1024 cycles. If the number is divisible by 1024, a fault is
injected. Fault injection in PharmSim was done by generating
a random position in the predictor arrays and flipping that bit.

A fault is considered excited, when the predictor looks up
an entry into which a fault has been injected. For branch
predictor, we also count the number of unique manifestations,
as a fault could be manifested multiple times, before it is
removed. For BTB and RAS, once a fault is excited, it will be
detected and removed shortly by the instruction commit stage.
A fault is considered removed, when the branch predictor
updates an entry into which a fault was injected.

 Config. 1 Config. 2
Bimod predictor table size
2-level predictor L2 size
2-level predictor History size
Combining predictor table size
BTB configure: sets, assoc.
RAS table size

8192
8192

8
8192

8192 by 4
64

2048
2048

8
2048

2048 by 4
32

Table 2: Two different branch prediction configurations

To perform the study on how the injected faults are
actually excited and its latency for excitation, we pass a
current simulation cycle token when injecting a fault. This
token allows us to find latency between injection of a fault
and its excitation or removal. The fault excitation/removal
characteristics depend on both the configuration of the branch
predictor and the runtime behavior of the benchmarks. Our
simulations were run on two different branch predictior

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

configurations to see how array sizes change the faulty
behavior. The two branch prediction configurations are
summarized in the following Table 2.

Figure 1: Percentage of faults injected into RAS that are manifested

RAS faulty behavior is captured in the Figure 1 for 64-

entry (configuration 1) RAS (results are not presented for
configuration 2 due to similarity except for larger numbers),
the percentages of injected faults that are excited later are
very small, usually well less than 10%. Taking into account
that RAS is a stack and accesses are push/pop operations, one
may conclude that in our simulation, the RAS array is empty
most of the time, i.e. faults are injected onto unused entries by
randomness. RAS faults are removed later with RAS push for
a procedure call operation. A fault introduced into a valid
RAS entry is manifested by a later RAS pop operation that
returns a procedure’s predicted return address to instruction
fetch unit. Simulation results show that if a fault is injected
onto RAS array, it will be either removed or excited
immediately. Removal takes thousands of cycles while
excitation is usually less than 1000 cycles (we do not present
this result for brevity of this report). The results indicate that
RAS operations are very frequent during execution because of
the highly frequent procedure call/return instructions in the
benchmark programs. Unlike BTB or branch predictor, all
injected RAS faults are either removed or excited and
removed shortly.

As expected, when we shrink RAS array size from 64
down to 32, the percentage of excited faults increases because
more RAS entries are used on average. However, as the array
size shrinks, the probability that it will be affected by
transient faults also decreases. We summarize the
characteristics for RAS as that, first, it’s not very likely
affected by transient faults due to it relative small size in the
processor core; second, even if faults occur, they will most
likely be destroyed or excited immediately. The effect on
performance is negligible.

Faults injected into BTB, are manifested or removed after
longer time. Thousands or even millions of cycles may have
elapsed before a fault is actually excited. As only a small
portion of the injected faults were excited or removed during
our 200 million cycle simulation (this can be seen by adding
the percentages of fault removed and excited in our simulation
results), we can speculate that many faults could get excited

or removed only after more than 100 million cycles. Figure 2
shows the fault manifestation and removal percentage for the
first configuration.

Fault excitation data for level 2 branch predictor is shown
in Figure 3. Next subsection will talk about this in great detail.

Figure 2: Percentage of faults excited and removed when faults are

introduced into BTB

Figure 3: Percentage of faults excited when faults are introduced into

branch predictor table

4.2 Faulty Behavior of Processor Pipeline

Two facts are observed: 1. Faults occur rarely; 2.
Detailed timing simulator incurs a slowdown of a factor of
10,000 from native execution.

Hence, detailed execution of programs and injecting
faults at the rate at which it occurs in real world is an
impossible task at hand. We (like other computer architects)
acknowledge fact 1, but ignore it for the study. This allows us
to study the worst case behavior of faults on branch prediction
structure, and its impact on performance and slack, when
injected at various points in the execution of the program. The
study, as far as possible, tries to reduce the interfering effect
of multiple injected faults.

Base Case: The base case is a SMT processor with
parameters described in the previous section. The two copies
of the program executing are called: “main” thread, and
“redundant” thread respectively. Stores committed by the two
threads are queued separately, and compared. The two threads
are not synchronized. The stores are not bound to commit at
the same clock cycle, because of the finegrained sharing of

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

resources between the two threads. Resources such as read
and write ports, scheduling and selection logic, fetch
bandwidth are some of the important factors that will lead to
slack between main and redundant threads. The committed
stores are queued in a FIFO store queue (due to in-order
commits), and their results compared. For this structure to be
off-the critical path of the program, there should be enough
entries in the queue, to buffer committed stores. If the queue
is full, no more instructions (head of which is a store
instruction) are allowed to commit.

Performance and Branch Prediction Accuracy: To
study the effects that faults in branch prediction hardware
could introduce, we inject faults into the branch predictor. We
do this by flipping the branch predictor’s taken or not taken
decision. In the first part, we flip the decision of a branch that
is picked randomly in a window of 1,000 conditional branches
executed by the redundant thread. Only decisions of the
redundant thread are flipped. The flipped decision is returned
to the front-end, which continues fetching from taken or not-
taken path depending on the decision. The faulty decision
could be

1. Misprediction. The branch predictor predicts the branch

correctly, but the decision is flipped because of a fault.
The misprediction is detected later, when the branch is
executed. The wrong path instructions that are in-flight
and/or executing, are squashed, and the front-end starts
fetching the correct path. Hence, this faulty decision
reduces the branch prediction accuracy, and may degrade
performance. It also puts pressure on the committed stores
queue (Reason will be explained later.)

2. Correct prediction. The branch predictor mispredicted
the branch. But, the fault flipped the decision. This boosts
branch prediction accuracy, and may improve performance.

On average, every branch out of 1,000 branches (i.e. 0.1%

of the total executed branches) has a decision that conflicts
with branch predictor’s decision. The fault-injection rate,
might not allow a fault’s effect to die down, before another
fault is introduced. However, the results are for merely
demonstrating the worst-case hit in performance because of
faults. The store queue is assumed to infinite to ignore the
effect of stalls when the queue is full. Hence, the results are
the effect of faulty-decisions only (besides finegrained
resource sharing). Figure 4 shows the percentage relative
change in IPC (Instructions per cycle) when a fault is injected
every 1000 conditional branches executed (w.r.t base case).
Here, positive percentages indicate improved performance.
Store queue size was assumed to be infinite. In Figure 4, the
IPC of the execution of redundant thread with 0.1% faulty
branch prediction decisions relative to the execution without
any faults. crafty, gap, parser and vpr have no impact.
gcc has improved performance, and the rest have degraded
performance. The reason for a change in IPC is shown in
Figure 5. Figure 5 shows the percentage relative change in
branch prediction accuracy when a fault is injected every
1000 conditional branches executed (w.r.t base case). Positive

percentages indicate reduced branch prediction accuracy.
Store queue size was assumed to be infinite. In Figure 5, the
increase in mispredictions of a processor with faulty predictor
relative to one with no faults. eon has the highest increase of
0.84% in mispredictions. This increase in misprediction, leads
to around 2% degraded performance. gcc is the interesting
aspect of this result. The benchmark has 0.05% improvement
in its prediction accuracy (hence the negative bar). This leads
to 5% improvement in performance. vpr, parser, gap
have no degraded performance, even with a reduced
prediction accuracy (i.e. increase in mispredictions). For most
benchmarks, with the assumption of infinite sized store queue,
faults do not affect performance significantly.

Figure 4: Percentage relative change in IPC when a fault is injected

every 1000 conditional branches executed.

Figure 5: Percentage relative change in branch prediction accuracy
when a fault is injected every 1000 conditional branches executed.

Slack: Branches are control transfer instructions. They

allow us to jump to different instructions in a sequential
program, and continue execution. Since branches are big
performance impediments (inability to fetch beyond branches
is the biggest problem), they are predicted by the front-end,
which continues its fetch from the predicted PC. The branch
is later executed, and prediction is checked. Correct
predictions can lead to big boost in performance. However, as
previous results showed, branches and performance are not
directly correlated. The reason for this: all branches are not
equally important [14] (we do not wish to describe this in any
more detail, as it requires background in processor micro-
architecture). This, along with the fact that, resources are

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

shared at a fine-grained level in SMT processor, could lead to
enormous pressure on store queue. The thread going down the
wrong-path due to faulty decision will get to committing the
store which is in the head of the other thread’s queue much
later. Many other stores could have been committed by the
other thread by then, which will lead to store queue getting
full, and stalling the thread.

To demonstrate and study the slack caused by the above
problem, we consider the following case: the branch predictor
flips one decision every 10 million conditional branches
executed by the redundant thread. The reason for reducing the
probability of fault, by increasing the distance between two
faults it to filter out the “snow-balling” effect that a fault
might have (i.e. effect of one fault affecting subsequent fault).
Note that faults are introduced successively to study the effect
of it at various points in the program.

 % Stores
Lead

% Stores
Lag

Lag By
(cycles)

crafty
eon
gap
gcc
parser
perlbmk
twolf
vortex
vpr

27
0
4

30
2
0
0
0

39

73
100
96
70
98

100
100
100
61

100
20,000

400,000
5,000

1,480,000
837,000
339,000
21,000

250
Table 3: Percentage of committed stores in the redundant thread that
lag or lead with respect to the main thread. Fault is introduced every

10 million conditional branches executed.

 Unique Fault
Manifestation (%)

Fault
Manifestation (%)

crafty
eon
gap
gcc
parser
perlbmk
twolf
vortex
vpr

7.7
2.3
9.6

43.8
9.8
7.5
4.9
15
1.7

71
16

366
465
63

549
41
52
10

Table 4: Percentage of faults introduced into the branch predictor
table are manifested as (unique) faults

Results for this study are listed in Table 3. The model

detects faults by comparing the stores that have been retired
by the main and redundant thread. Columns 2 and 3 in Table
3 list the percentage of committed stores in the redundant
thread that lead and lag respectively with respect to the main
thread. A committed store in the redundant thread leads, when
it commits earlier than the main thread. This lead slack
between the main thread and redundant thread was found to
be negligible and hence not reported in the table. The lag
slack is shown in column 3 of the table. The number of cycles
varies drastically from 100 to 1 million cycles. The large
slack is due to the following reasons:

1. YAGS [15] branch predictor that we used in the

simulator has a high prediction accuracy (around 95%) on
SPEC2000 benchmarks. Hence, the flipped branch
prediction decision introduced because of a fault misleads
the redundant thread into executing wrong path
instructions. The speculative execution of instructions
waste cycles, and introduces slack between the two
threads. The slack depends on how long it takes for the
redundant thread to resolve the branch, squash wrong-
path instructions, fetch, execute and commit instructions
from the right path.

2. Fine-grained sharing of resource across multiple threads
in a SMT processor. SMT processors are sensitive to
resource usage, and accordingly direct the front-end to
fetch from different threads based on fetch policy. This
could severely penalize the poorly-performing redundant
thread, leading to large slack between main and
redundant thread.

 Fault Manifestation: So far, we have been studying the

effect of injecting faults by flipping the decision of the branch
predictor. We conclude this section by studying the effect of
injecting faults into the branch predictor table. Most modern
branch predictors are very sophisticated. They store
information about the branch’s direction in its previous
instances, and also the path that lead to the branch. For this
study, we randomly pick an entry in the branch predictor table
and inject fault, by changing the confidence counters. The
fault that has been introduced will be considered “manifested”
only when the faulty entry is read for taking a decision. It is
not “manifested” when a faulty entry is destroyed (i.e. if the
entry is thrown out of the table, or if it is over-written). A
faulty entry can be read multiple times, before it is destroyed.
Table 4 lists the fault manifestation rate for various
benchmarks. Column 2 of table 4 shows the percentage of
unique fault manifestation. Column 3 of the table shows the
percentage of “all” fault manifestations. For gcc, 43% of
faults introduced in the branch predictor table, are read for
taking a decision. However, a fault that is introduced is read
more than 10 times (hence, 465% in column 3) before it is
destroyed. An entry that was used for taking a decision for a
branch (at fetch time), is updated (i.e. overwritten) when the
branch commits. A faulty entry being read more than 10 times
before being updated, leads us to the following observations:
(a) there are many in-flight instructions and, (b) many
instances of the same branch are in-flight before they are
committed. More in-flight instructions is due to large
instruction window (256 entries). More instances of the same
branch is because of the characteristic of the benchmark. gcc
has short loops, and the conditional branch that forms the loop
is executed many times, before the first instance of it is
committed. gap and perlbmk are pointer intensive
benchmarks, looping on complex data structures.

5. CONCLUSION

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Redundant lock-stepped execution is a popular technique
for designing fault-tolerant computing systems. In this paper,
we studied the non-determinism in a branch predictor. We
randomly introduced faults into branch predictor table, branch
target buffer, and return address stack, and see how it impacts,
(a) performance, (b) branch prediction accuracy, (c) slack (in
cycles) between the main and redundant thread, and (d) fault
manifestation.

We conclude that, deep speculation in future processors
will complicate the design of fault-tolerant systems
significantly. Speculative techniques maintain large structures,
most of which are on the critical path of the execution of the
program. Hence, these structures cannot be protected by error
correcting codes. Unfortunately, the probability of transient
faults in these structures in submicron designs is very high.
Deep speculation can improve performance; however, faults
in these structures could also adversely affect performance.

 REFERENCES

[1] M. Mueller et al. Ras strategy for IBM S/390 G5 and G6.
In IBM journal of Research and Development. VOL 43. NO
5/6, Sept/Nov 1999.
[2] L. Spainhower and T. A. Gregg. IBM S/390 parallel
enterprise server G5 fault tolerance: A historical perspective.
In IBM journal of Research and Development. VOL 43. NO
5/6, Sept/Nov 1999.
[3] Online. Tandem nonstop himalaya system. In WEB, page
http://nonstop.compaq.com/, 2002.
[4] Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau.
Fail-stutter fault tolerance. In The Eighth Workshop on Hot
Topics in Operating Systems (HotOS VIII), pages pages 33–
38, May 2001 Schloss Elmau, Germany.
[5] Z. Purser K. Sundaramoorthy and E. Rotenberg.
Slipstream processors: Improving both performance and fault
tolerance. In 9th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Nov. 2000.
[6] K. Sundaramoorthy Z. Purser and E. Rotenberg. A study
of slipstream processors. In 33rd International Symposium on
Micro Architecture, Dec. 2000.
[7] Eric Rotenberg. AR-SMT: A micro-architecture approach
to fault tolerance in microprocessors. In Proceedings of the
29th International Symposium on
Fault Tolerant computing systems, June 1999.
[8] Karl Cheng T. N. Vijaykumar, Irth Pomeranz. Transient
fault recovery using simultaneous multithreading. In
Proceedings of ISCA, 2002.
[9] Steven K. Reinhardt Shubhendu S. Mukherjee, Michael
Kontz. Detailed design and evaluation of redundant
multithreading alternatives. In Proceedings of ISCA, 2002.
[10] Todd M. Austin. Diva: A reliable substrate for deep
submicron micro-architecture design. In Proceedings of the
32nd Annual IEEE/ACM international Symposium on Micro-
Architecture, Nov, 1999.
[11] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar,
Multiscalar Processors, In Proceedings of the 22nd annual

international symposium on Computer architecture, pages
414 - 425, 1995.
[12] PharmSim. http://www.cdl.edu/pharmsim/index.html.
[13] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous multithreading: Maximizing onchip parallelism.
In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, June 1995.
[14] C.B. Zilles and G.S. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In Proc. 27th
International Symposium on Computer Architecture, June
2000.
[15] A. N. Eden and T. Mudge. The YAGS branch prediction
scheme. In Proceedings of the 31st Annual International
Symposium on Microarchitecture, pages 69 - 77, November
1998.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

