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ABSTRACT – One of the most cost-effective fault-tolerant 
schemes in commercial computing systems is using redundant 
multi-threading executions. These systems detect faults by 
redundantly executing more than one (usually two) instances 
of a program, and comparing the architected states of these 
instances. In these systems, though a fault might decrease the 
overall performance but will not affect the correctness of the 
execution. In this paper, through simulations we investigate 
the fault effects of redundant multi-threading executions by 
injecting transient faults to redundant computing systems. The 
results are presented and discussed here. 
  
Keywords – simulations, redundant, multi-threading, fault-
tolerant, lock-stepping 
 

1. INTRODUCTION 
 

Redundant execution has been the most widely used 
scheme in commercial fault tolerant systems. Most redundant 
systems use a technique called lock-stepping in which two 
processors execute the same instructions and compare the 
results. When the results of the two operations are not 
identical, indicating the failure of one of the processors, the 
system has to perform a series of tests to determine which one 
is faulty. Easy-implementation and cost-effectiveness are 
major advantages of lock-stepping. Examples of such systems 
include IBM S/390 mainframes [1, 2] and Tandem Himalaya 
systems [3]. 

In simple core systems, lock stepped execution can be 
easily achieved by comparing the architected state of the 
machine. However, modern processors use speculative 
mechanisms which involve many non-architected states. The 
decisions taken by these mechanisms are validated. They may 
improve performance, but can never affect the correctness of 
the program. They take much more area in processor cores 
than the architected state, therefore are more likely to be 
affected by transient or permanent faults. When two 
processing elements have different internal speculative states, 
a non-deterministic output signal timing issues could make 
the lock-stepping scheme problematic without a full processor 
state reset. For example, a fault could flip a bit in the branch 
prediction table. This faulty entry could mislead the fetch unit 
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of one processor. The processor pairs then start fetching and 
executing instructions in different paths of a branch, falling 
out of lock-stepped execution. This kind of non-deterministic 
timing for a modern processor has been discussed in [4]. 

Recently, simultaneous multi-threading (SMT) has 
gained popularity, and processors implementing SMT are 
becoming more prevalent. SMT shares resources such as, 
fetch bandwidth, instruction window, register file, caches 
between multiple threads. This fine-grained sharing, leads to 
effective utilization of resources between multiple threads, 
and hence higher throughput. SMT has led to micro-
architectural fault-tolerant technique such as AR-SMT, RMT 
(Redundant Multi-threading), SRT (Simultaneous Redundant 
Threading). These techniques run the same program as 
independent threads on SMT processor, and compare their 
outputs. Some techniques compare committed stores (as in 
von Neumann machine there is a total-load-store order); while 
other approaches compare the end of a dependence chain. A 
mismatch during comparison indicates a fault which may or 
may not be recoverable depending on the approach. 

Redundant execution on SMT is not lock-stepped 
execution. However, the non-determinism introduced by 
speculative techniques is the same. Motivated by: (a) non-
determinism in modern processor cores; (b) prevalence and 
use of SMT for fault-tolerance, we study the effect of faults in 
branch predictor, branch target buffer, and return address 
stack of a SMT processor executing a redundant copy of the 
program. We also study the effect on error detection, and the 
slack it introduces between the two threads. We are aware of 
no other work that studies the effect of faults on structures 
maintained by speculative techniques. 

In section 2, we discuss some typical fault detection 
techniques and its relevance to this paper. In section 3 we 
discuss our experimental setup and simulation model. In 
section 4, we present and discuss our simulation results. 
Conclusion is given in section 5. 
 

2. FAULT DETECTION MECHANISMS 
 

Most redundant systems use a technique called AR-SMT 
[7] for multi-threading fault detection. In AR-SMT, two 
threads, namely active thread (A-thread) and redundant thread 
(R-thread), are generated for each application thread. The A-
thread leads and passes its result to the corresponding R-
thread via a micro-architecture extension called delay buffer. 
Information passed via delay buffer includes control flow and 
data flow information e.g. register values, load and store 
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addresses, etc. On the other hand the R-thread trails and 
exploits the branch outcomes and pre-fetching side effect of 
the A-thread, hence runs more efficiently. R-thread checks its 
results with those from A-thread. In case of discrepancy, R-
stream committed state is used (the results agreed upon by 
both threads) to recover both A and R threads. AR-SMT does 
not have a strict timing requirement. However, the size of the 
delay buffer determines the acceptable range of slack between 
the two threads; otherwise, one of the threads will be blocked 
due to delay buffer. 

SRT, SRT/R and SRT with Recovery are the recent work 
based on AR-SMT [8]. SRT/R proposes enhanced error 
recovery mechanism based on SRT. In SRT, a leading 
instruction may commit before the trailing thread checks for a 
fault. In contrast, SRT/R must not allow any leading 
instruction to commit before checking occurs since a faulty 
instruction cannot be undone once the instruction commits 
any result out of the sphere of recovery. To support a short 
slack, SRT/R’s leading thread provides the trailing thread 
with branch predictions while SRT’s leading thread provides 
branch outcomes.  

Redundant Simultaneous Multi-Threading [9] studies 
redundant threading error detection mechanism in a 
commercial-grade SMT processor i.e. DEC Alpha 21464 
processor. They uncovered some subtle implementation 
complexities and realized that RMT can be of more 
significant burden to single processor devices than indicated 
by previous studies. 

In all of the redundant threading schemes as mentioned 
above, except SRT/R, trailing threads have much better 
instruction delivery streams than normal prediction and 
speculation mechanism can provide because the rarely faulty 
leading thread functions as an oracle for the corresponding 
trailing thread. It provides nearly perfect control, value 
prediction and data pre-fetching for its trailing peer. This fact 
motivated the slipstream processor design [5, 6], which is 
more performance oriented. 

Compared with lock-stepped execution, all of the 
redundant multi-threading schemes have a relaxed, though 
limited, timing requirement i.e. slack between the leading and 
trailing threads. The slack is usually constrained to the 
buffering mechanism between the two threads for efficient 
execution of both threads; otherwise one of the threads would 
be blocked for synchronization. The coupling and buffering 
mechanisms between the redundant threads are not as 
straightforward as lockstep as the RMT paper indicates. There 
are many important implications to be well understood before 
such schemes can be applied in real commercial fault tolerant 
systems. An advantage of redundant multi-threading over 
lock-stepped execution is that it allows two threads to fall out 
synchronization, as long the lag between them would not be 
big enough to trigger watchdog timers. 

In DIVA micro-architecture [10], there are two processor 
cores.  One processor core is an aggressive, complex, and out-
of-order superscalar core that would be fabricated with 
aggressively deep submicron technology. The other one is a 
conventional in-order “checker” processor core that would be 

fabricated with conventional technology that tolerates 
transient hardware faults by itself or by designer’s assumption. 
Completed instructions are passed to the checker core for 
dynamic verification. Once the aggressive core finishes 
execution, all source operands for an instruction are available 
before checker processor executes that instruction. Hence, 
there is no dependence amongst the instructions inside the 
checker core. When an error is detected, the order of the 
instruction streams only helps in identifying the first faulty 
instruction. DIVA claims to be able to detect all of the 
transient and permanent errors, including the design errors.  
  

3. SIMULATION MODEL 
 

In this section, we discuss the simulators, benchmarks 
and fault injections. 
  
3.1 Simulator 
 

Two simulators, Sim-multi [11] and PharmSim [12], are 
used to study execution behavior under faulty branch 
prediction state. Since most simulators do not take fault-
tolerance into account, we implemented fault injection 
mechanisms and emulated lockstep execution in our 
simulators to perform the study.  

  
Front End A 64KB instruction cache, 64KB YAGS 

branch predictor, 32 KB cascading indirect 
branch predictor, 64-entry return address 
stack. The front end is assumed to be perfect, 
i.e. it can fetch past taken branches, BTB is 
assumed for providing target addresses, 
which are available at decode, for direct 
branches. 

Caches The first-level data cache is 2-way set 
associative 64KB cache, with 64 byte lines, 3 
cycle access latency. L2 is 4-way set 
associative, 2MB unified cache with 128-
byte lines and 6-cycle access. Caches are 
write-back and write-allocate. 

Execution 
Core 

Two threads, 8-wide machine has 256-entry 
window, 4 load and store ports, all integer 
units are fully pipelined. The pipeline depth 
is 14 stages. 

Table 1: Simulation Parameters for Sim-multi 
 

Sim-multi is a complete timing simulator of the Alpha 
architecture loosely based on SimpleScalar toolkit was used 
for simulation. The simulated SMT-processor parameters are 
shown in Table 1. The machine is capable of executing two 
thread contexts simultaneously by fine-grained sharing of the 
resources. Two copies of the same benchmark program was 
executed on the two thread contexts. The fetch unit fetches 
instructions from the cache for the two thread contexts based 
on Icount fetch policy [13]. The policy counts the number of 
instructions from active threads that are currently in the 
instruction buffers, and fetches instructions from the thread 

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008



 
 

 

that has the fewest instructions. The assumption is that this 
thread is moving instruction through the processor quickly, 
and hence, marking most efficient use of the pipeline. Faults 
are detected by comparing the committed stores, that are 
buffered by each thread in their respective the committed 
stores in “store queues”. 

The experiments were performed on SPEC2000 integer 
benchmark programs. The programs were compiled with 
Compaq C compiler with peak optimization. All simulations 
were run on train inputs. 

PharmSim is a combination of SimOS-PPC with 
SimpleMP. SimOS-PPC is a full system simulator that is 
capable of booting real PowerPC ISA based OS such as IBM 
AIX. SimpleMP is the multi-processor version of 
SimpleScalar simulator. PharmSim combines them together 
by dynamically translating PowerPC ISA into PISA ISA, 
which is actually supported by SimpleScalar. However, in our 
simulation, we do not utilize most of the features in 
PharmSim. It is chosen by its availability. 

The branch predictor in PharmSim consists of two branch 
direction predictors. One is the bi-modal predictor that uses an 
array to hold 2-bit saturation counters for individual branch 
instructions. Another is the 2-level adaptive branch predictor 
with a global history pattern and a level two table. Bi-modal 
predictor has high prediction accuracy when branches are not 
correlated, while 2-level adaptive predictors are better when 
the correlation between the branches is more important. There 
is a higher level predictor that decides which prediction from 
these two predictors should be used. 

As PharmSim is a precise but slow simulator, we 
configure it to run 200 million cycles for each of the 
SPEC2000 integer benchmarks. Faults are injected only 
during the first 100 million cycles. We do not inject faults in 
the second 100 millions cycles. However, we continue the 
measurement of the effect of fault, by measuring the latency 
of fault manifestation. 

 
3.2 Branch Prediction 
 

In section one, we introduced non-determinism which 
used by many speculative techniques. However, in this paper, 
we limit our study to an important micro-architectural 
technique: branch prediction and its related structures. We 
characterize how faulty branch prediction state affect 
processor execution behavior. Faults are injected into branch 
predictor table, branch target buffer and return address stack. 

Branch prediction tables and Branch Target Buffer (BTB), 
are big arrays in a processor core. The BTB provides the 
target address of a branch, and branch prediction tables store 
history to decide whether a branch is taken or not taken. Both 
have an arrangement very similar to the arrangement of tag 
arrays in caches. RAS or Return address stack is smaller in 
area compared to the branch predictor and BTB tables. It is 
used to predict the return address for return instructions. 

 
3.3 Fault Injection 
 

Faults occur unpredictably in real hardware both in terms 
of time and space. In a simulator, especially one designed for 
architecture study, there is no direct mapping between 
simulator source code and real transistors or wires. Even the 
simulation time is not exactly the same as physical time. In 
our simulation, we only model transient faults in speculative 
state arrays; no effort was spent on logic, as there is no 
straightforward way to do so. Faults are injected into 
simulation “randomly” based on either simulation cycle time 
or the number of committed conditional branch instructions. 
Faults are primarily flips of either the decision of branch 
predictor, or a bit in the prediction structures. We talk more 
about this, in the next section on simulation results. 

 
4. SIMULATION RESULTS 

 
In this section, we present results from our simulations. 

The results in subsection 4.1 are from PharmSim, and are 
used to study the behavior of the faults. The subsection 
presents the percentage of faults that are manifested, for two 
different branch predictor configurations. The results in 
subsection 4.2 are from Sim-multi, and it talks about effect of 
faults on slack between main and redundant threads, 
performance, and branch prediction accuracy. 

 
4.1 Fault Manifestation of Branch Predictors, BTB and RAS 
 

Fault Injection. A random number is generated every 
1024 cycles. If the number is divisible by 1024, a fault is 
injected. Fault injection in PharmSim was done by generating 
a random position in the predictor arrays and flipping that bit. 

A fault is considered excited, when the predictor looks up 
an entry into which a fault has been injected. For branch 
predictor, we also count the number of unique manifestations, 
as a fault could be manifested multiple times, before it is 
removed. For BTB and RAS, once a fault is excited, it will be 
detected and removed shortly by the instruction commit stage. 
A fault is considered removed, when the branch predictor 
updates an entry into which a fault was injected. 

  
 Config. 1 Config. 2
Bimod predictor table size 
2-level predictor L2 size 
2-level predictor History size 
Combining predictor table size 
BTB configure: sets, assoc. 
RAS table size 

8192 
8192 

8 
8192 

8192 by 4
64 

2048 
2048 

8 
2048 

2048 by 4
32 

Table 2: Two different branch prediction configurations 
 

To perform the study on how the injected faults are 
actually excited and its latency for excitation, we pass a 
current simulation cycle token when injecting a fault. This 
token allows us to find latency between injection of a fault 
and its excitation or removal. The fault excitation/removal 
characteristics depend on both the configuration of the branch 
predictor and the runtime behavior of the benchmarks. Our 
simulations were run on two different branch predictior 
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configurations to see how array sizes change the faulty 
behavior. The two branch prediction configurations are 
summarized in the following Table 2. 

 
 

 

 

 
Figure 1: Percentage of faults injected into RAS that are manifested 

 
RAS faulty behavior is captured in the Figure 1 for 64-

entry (configuration 1) RAS (results are not presented for 
configuration 2 due to similarity except for larger numbers), 
the percentages of injected faults that are excited later are 
very small, usually well less than 10%. Taking into account 
that RAS is a stack and accesses are push/pop operations, one 
may conclude that in our simulation, the RAS array is empty 
most of the time, i.e. faults are injected onto unused entries by 
randomness. RAS faults are removed later with RAS push for 
a procedure call operation. A fault introduced into a valid 
RAS entry is manifested by a later RAS pop operation that 
returns a procedure’s predicted return address to instruction 
fetch unit. Simulation results show that if a fault is injected 
onto RAS array, it will be either removed or excited 
immediately. Removal takes thousands of cycles while 
excitation is usually less than 1000 cycles (we do not present 
this result for brevity of this report). The results indicate that 
RAS operations are very frequent during execution because of 
the highly frequent procedure call/return instructions in the 
benchmark programs. Unlike BTB or branch predictor, all 
injected RAS faults are either removed or excited and 
removed shortly. 

As expected, when we shrink RAS array size from 64 
down to 32, the percentage of excited faults increases because 
more RAS entries are used on average. However, as the array 
size shrinks, the probability that it will be affected by 
transient faults also decreases. We summarize the 
characteristics for RAS as that, first, it’s not very likely 
affected by transient faults due to it relative small size in the 
processor core; second, even if faults occur, they will most 
likely be destroyed or excited immediately. The effect on 
performance is negligible. 

Faults injected into BTB, are manifested or removed after 
longer time. Thousands or even millions of cycles may have 
elapsed before a fault is actually excited. As only a small 
portion of the injected faults were excited or removed during 
our 200 million cycle simulation (this can be seen by adding 
the percentages of fault removed and excited in our simulation 
results), we can speculate that many faults could get excited 

or removed only after more than 100 million cycles. Figure 2 
shows the fault manifestation and removal percentage for the 
first configuration. 

Fault excitation data for level 2 branch predictor is shown 
in Figure 3. Next subsection will talk about this in great detail. 

 

 
Figure 2: Percentage of faults excited and removed when faults are 

introduced into BTB 
 

 
Figure 3: Percentage of faults excited when faults are introduced into 

branch predictor table 
 

4.2 Faulty Behavior of Processor Pipeline 
 

Two facts are observed: 1. Faults occur rarely; 2. 
Detailed timing simulator incurs a slowdown of a factor of 
10,000 from native execution. 

Hence, detailed execution of programs and injecting 
faults at the rate at which it occurs in real world is an 
impossible task at hand. We (like other computer architects) 
acknowledge fact 1, but ignore it for the study. This allows us 
to study the worst case behavior of faults on branch prediction 
structure, and its impact on performance and slack, when 
injected at various points in the execution of the program. The 
study, as far as possible, tries to reduce the interfering effect 
of multiple injected faults. 

Base Case: The base case is a SMT processor with 
parameters described in the previous section. The two copies 
of the program executing are called: “main” thread, and 
“redundant” thread respectively. Stores committed by the two 
threads are queued separately, and compared. The two threads 
are not synchronized. The stores are not bound to commit at 
the same clock cycle, because of the finegrained sharing of 
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resources between the two threads. Resources such as read 
and write ports, scheduling and selection logic, fetch 
bandwidth are some of the important factors that will lead to 
slack between main and redundant threads. The committed 
stores are queued in a FIFO store queue (due to in-order 
commits), and their results compared. For this structure to be 
off-the critical path of the program, there should be enough 
entries in the queue, to buffer committed stores. If the queue 
is full, no more instructions (head of which is a store 
instruction) are allowed to commit. 

Performance and Branch Prediction Accuracy: To 
study the effects that faults in branch prediction hardware 
could introduce, we inject faults into the branch predictor. We 
do this by flipping the branch predictor’s taken or not taken 
decision. In the first part, we flip the decision of a branch that 
is picked randomly in a window of 1,000 conditional branches 
executed by the redundant thread. Only decisions of the 
redundant thread are flipped. The flipped decision is returned 
to the front-end, which continues fetching from taken or not-
taken path depending on the decision. The faulty decision 
could be 

 
 

 

 
1. Misprediction. The branch predictor predicts the branch 

correctly, but the decision is flipped because of a fault. 
The misprediction is detected later, when the branch is 
executed. The wrong path instructions that are in-flight 
and/or executing, are squashed, and the front-end starts 
fetching the correct path. Hence, this faulty decision 
reduces the branch prediction accuracy, and may degrade 
performance. It also puts pressure on the committed stores 
queue (Reason will be explained later.) 

2. Correct prediction. The branch predictor mispredicted 
the branch. But, the fault flipped the decision. This boosts 
branch prediction accuracy, and may improve performance. 

 
On average, every branch out of 1,000 branches (i.e. 0.1% 

of the total executed branches) has a decision that conflicts 
with branch predictor’s decision. The fault-injection rate, 
might not allow a fault’s effect to die down, before another 
fault is introduced. However, the results are for merely 
demonstrating the worst-case hit in performance because of 
faults. The store queue is assumed to infinite to ignore the 
effect of stalls when the queue is full. Hence, the results are 
the effect of faulty-decisions only (besides finegrained 
resource sharing).  Figure 4 shows the percentage relative 
change in IPC (Instructions per cycle) when a fault is injected 
every 1000 conditional branches executed (w.r.t base case). 
Here, positive percentages indicate improved performance. 
Store queue size was assumed to be infinite. In Figure 4, the 
IPC of the execution of redundant thread with 0.1% faulty 
branch prediction decisions relative to the execution without 
any faults. crafty, gap, parser and vpr have no impact. 
gcc has improved performance, and the rest have degraded 
performance. The reason for a change in IPC is shown in 
Figure 5. Figure 5 shows the percentage relative change in 
branch prediction accuracy when a fault is injected every 
1000 conditional branches executed (w.r.t base case). Positive 

percentages indicate reduced branch prediction accuracy. 
Store queue size was assumed to be infinite. In Figure 5, the 
increase in mispredictions of a processor with faulty predictor 
relative to one with no faults. eon has the highest increase of 
0.84% in mispredictions. This increase in misprediction, leads 
to around 2% degraded performance. gcc is the interesting 
aspect of this result. The benchmark has 0.05% improvement 
in its prediction accuracy (hence the negative bar). This leads 
to 5% improvement in performance. vpr, parser, gap 
have no degraded performance, even with a reduced 
prediction accuracy (i.e. increase in mispredictions). For most 
benchmarks, with the assumption of infinite sized store queue, 
faults do not affect performance significantly. 
 

 
Figure 4: Percentage relative change in IPC when a fault is injected 

every 1000 conditional branches executed. 
 

 
Figure 5: Percentage relative change in branch prediction accuracy 
when a fault is injected every 1000 conditional branches executed. 

 
Slack: Branches are control transfer instructions. They 

allow us to jump to different instructions in a sequential 
program, and continue execution. Since branches are big 
performance impediments (inability to fetch beyond branches 
is the biggest problem), they are predicted by the front-end, 
which continues its fetch from the predicted PC. The branch 
is later executed, and prediction is checked. Correct 
predictions can lead to big boost in performance. However, as 
previous results showed, branches and performance are not 
directly correlated. The reason for this: all branches are not 
equally important [14] (we do not wish to describe this in any 
more detail, as it requires background in processor micro-
architecture). This, along with the fact that, resources are 
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shared at a fine-grained level in SMT processor, could lead to 
enormous pressure on store queue. The thread going down the 
wrong-path due to faulty decision will get to committing the 
store which is in the head of the other thread’s queue much 
later. Many other stores could have been committed by the 
other thread by then, which will lead to store queue getting 
full, and stalling the thread. 

To demonstrate and study the slack caused by the above 
problem, we consider the following case: the branch predictor 
flips one decision every 10 million conditional branches 
executed by the redundant thread. The reason for reducing the 
probability of fault, by increasing the distance between two 
faults it to filter out the “snow-balling” effect that a fault 
might have (i.e. effect of one fault affecting subsequent fault). 
Note that faults are introduced successively to study the effect 
of it at various points in the program. 
 

 % Stores 
Lead 

% Stores 
Lag 

Lag By 
(cycles) 

crafty 
eon 
gap 
gcc 
parser 
perlbmk 
twolf 
vortex 
vpr 

27 
0 
4 

30 
2 
0 
0 
0 

39 

73 
100 
96 
70 
98 

100 
100 
100 
61 

100 
20,000 

400,000 
5,000 

1,480,000 
837,000 
339,000 
21,000 

250 
Table 3: Percentage of committed stores in the redundant thread that 
lag or lead with respect to the main thread. Fault is introduced every 

10 million conditional branches executed. 
 

 Unique Fault 
Manifestation (%) 

Fault 
Manifestation (%)

crafty 
eon 
gap 
gcc 
parser 
perlbmk 
twolf 
vortex 
vpr 

7.7 
2.3 
9.6 

43.8 
9.8 
7.5 
4.9 
15 
1.7 

71 
16 

366 
465 
63 

549 
41 
52 
10 

Table 4: Percentage of faults introduced into the branch predictor 
table are manifested as (unique) faults 

 
Results for this study are listed in Table 3. The model 

detects faults by comparing the stores that have been retired 
by the main and redundant thread. Columns 2 and 3 in Table 
3 list the percentage of committed stores in the redundant 
thread that lead and lag respectively with respect to the main 
thread. A committed store in the redundant thread leads, when 
it commits earlier than the main thread. This lead slack 
between the main thread and redundant thread was found to 
be negligible and hence not reported in the table. The lag 
slack is shown in column 3 of the table. The number of cycles 
varies drastically from 100 to 1 million cycles. The large 
slack is due to the following reasons: 

 
1. YAGS [15] branch predictor that we used in the 

simulator has a high prediction accuracy (around 95%) on 
SPEC2000 benchmarks. Hence, the flipped branch 
prediction decision introduced because of a fault misleads 
the redundant thread into executing wrong path 
instructions. The speculative execution of instructions 
waste cycles, and introduces slack between the two 
threads. The slack depends on how long it takes for the 
redundant thread to resolve the branch, squash wrong-
path instructions, fetch, execute and commit instructions 
from the right path. 

2. Fine-grained sharing of resource across multiple threads 
in a SMT processor. SMT processors are sensitive to 
resource usage, and accordingly direct the front-end to 
fetch from different threads based on fetch policy. This 
could severely penalize the poorly-performing redundant 
thread, leading to large slack between main and 
redundant thread. 

 
 Fault Manifestation: So far, we have been studying the 

effect of injecting faults by flipping the decision of the branch 
predictor. We conclude this section by studying the effect of 
injecting faults into the branch predictor table. Most modern 
branch predictors are very sophisticated. They store 
information about the branch’s direction in its previous 
instances, and also the path that lead to the branch. For this 
study, we randomly pick an entry in the branch predictor table 
and inject fault, by changing the confidence counters. The 
fault that has been introduced will be considered “manifested” 
only when the faulty entry is read for taking a decision. It is 
not “manifested” when a faulty entry is destroyed (i.e. if the 
entry is thrown out of the table, or if it is over-written). A 
faulty entry can be read multiple times, before it is destroyed. 
Table 4 lists the fault manifestation rate for various 
benchmarks. Column 2 of table 4 shows the percentage of 
unique fault manifestation. Column 3 of the table shows the 
percentage of “all” fault manifestations. For gcc, 43% of 
faults introduced in the branch predictor table, are read for 
taking a decision. However, a fault that is introduced is read 
more than 10 times (hence, 465% in column 3) before it is 
destroyed. An entry that was used for taking a decision for a 
branch (at fetch time), is updated (i.e. overwritten) when the 
branch commits. A faulty entry being read more than 10 times 
before being updated, leads us to the following observations: 
(a) there are many in-flight instructions and, (b) many 
instances of the same branch are in-flight before they are 
committed. More in-flight instructions is due to large 
instruction window (256 entries). More instances of the same 
branch is because of the characteristic of the benchmark. gcc 
has short loops, and the conditional branch that forms the loop 
is executed many times, before the first instance of it is 
committed. gap and perlbmk are pointer intensive 
benchmarks, looping on complex data structures. 
 

5. CONCLUSION 
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Redundant lock-stepped execution is a popular technique 
for designing fault-tolerant computing systems. In this paper, 
we studied the non-determinism in a branch predictor. We 
randomly introduced faults into branch predictor table, branch 
target buffer, and return address stack, and see how it impacts, 
(a) performance, (b) branch prediction accuracy, (c) slack (in 
cycles) between the main and redundant thread, and (d) fault 
manifestation. 

We conclude that, deep speculation in future processors 
will complicate the design of fault-tolerant systems 
significantly. Speculative techniques maintain large structures, 
most of which are on the critical path of the execution of the 
program. Hence, these structures cannot be protected by error 
correcting codes. Unfortunately, the probability of transient 
faults in these structures in submicron designs is very high. 
Deep speculation can improve performance; however, faults 
in these structures could also adversely affect performance. 
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