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Abstract—Substitution matrices are among the
most widely used scoring techniques : BLAST, Mus-
cle and other alignment packages, all use them. How-
ever these matrices are general; they ignore organ-
ism specific properties and do not provide customized
scoring schemes. We present a Φhage-specific scoring
matrix based on the abundances of aligned substitu-
tions. These matrices use information from approx-
imately five and a half million similar protein align-
ments from over five hundred Φhage genomes. Our
scoring matrix is different from the existing PAM and
BLOSUM matrices. This indicates the need for simi-
lar treatments for other groups of organisms.
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1 Introduction

Substitution Matrices specify a score for aligning each
pair of amino acids and these scores are subsequently
used for aligning protein sequences.These matrices are
uniquely tailored for amino acid pairs with a specific
probability distribution. Given a model of protein evo-
lution from which such distributions may be derived, a
substitution matrix adapted to detecting relationships at
any chosen evolutionary distance can be constructed [13].
The goal is to select a ”substitution matrix” best able to
distinguish biologically meaningful from chance similari-
ties.
In most cases, the type and nature of the scoring system
influence the construction of the alignment. For example,
optimal strategies for detecting similarities between DNA
protein coding regions differ from those for non-coding
regions [17]. These constraints are problem specific and
must sometimes be treated in a custom manner.
Among other things the substitution matrix is affected by
the alignment quality of the training data and the substi-
tutions generated by the training set. Does one scoring
scheme adequately represent all the substitutions in the
training data ? Alternate alignment methodologies are
well described in the literature [6].
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Figure 1: Images of the Φhage and the BLOSUM62 Scor-
ing Matrix

2 Methodology

Many mature scoring systems such as the Blosum and
PAM matrices have successfully solved the problem of
scoring alignments that only pays attention to the match-
ing database similarities, but none of them need have any
biological significance [15].
The BLOSUM approach was introduced by Henikoff and
Henikoff [10]. We apply a Blosum approach to a set
of Φhage protein sequences from public databases. Un-
like most previous work, the protein sequences are not
grouped into related families or percent identities. In-
stead pairwise aligned sequences were generated accord-
ing to the BLOSUM62 scoring matrix [14]. To capture all
possible substitution patterns of the training data, pro-
teins with very low sequence similarity were also included
in the training set. These alignments provide the data for
building the Φhage Blosum Scoring Matrix.

2.1 What is Φhage Blosum Score

A brief description of the mathematical analysis of the
formula is as follows. Assuming a random protein model
in which the amino acids occur independently with back-
ground probabilities ~p, the equation for calculating the
score sij for aligning two residues i and j can be written
uniquely in the form

sij =
1
λ

ln

(
qij

pipj

)

The numerator qij is the likelihood of the hypothesis we
want to test, that the two residues i and j are correlated
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Figure 2: Φhage Blosum Scoring Matrix

because they are homologous [9]. Hence qij are positive
numbers that sum to 1 and are known as the target fre-
quencies. pipj is the likelihood of the null hypothesis,
that the two residues i and j are uncorrelated and unre-
lated, occurring independently. λ is a scaling factor that
lets us round off all the terms in the Φhage Blosum Scor-
ing Matrix to sensible integers.
The Φhage Blosum Score is positive when qij > pipj that
is the residues i and j aligned together in homologous
sequences more often than we expect them to occur by
chance. Careful curatorial work yields the training data
representing true biological relationships from which the
qij are obtained by counting the frequency at which each
residue pair occurs. Rearrangement of the log-odds equa-
tion gives

qij = pipje
λsij =⇒

∑

ij

pipje
λsij = 1

The background and the target frequencies are tied by
the equality pi =

∑20
j=1 qij so that the background prob-

ability distribution is the marginal of the joint target fre-
quencies [18].

Gaps and Observed Patterns

An important consideration regarding our calculation is
that it does not formally take gaps into account. This
may be acceptable from a biological perspective, since a
gap is not a real component of a sequence. Nevertheless
the Φhage Blosum Scoring Matrix can be extended, by
treating the gap as equivalent to a 21st amino acid. Then
pairs of the form (i,−) or (−, j) where the symbol “−“
represents the gap are also included. Moreover, the cor-
rect positioning of a gap in any given alignment is never
certain, as it is introduced a posteriori as the product
of an alignment algorithm that takes the two sequences
X and Y and tries to minimize the deletions, insertions
or number of changes that allow to transform X into Y
or vice versa. The minimization may involve a heuris-
tic approach or an exact procedure [2]. The consequence
of assuming independence is that q−j = q−qj leads to a
null contribution of the corresponding score, so that for
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Figure 3: Singular Value Spectra

gapped sequences we simply assign a score equal to zero
whenever an amino acid is paired with a gap.

3 Performance of the Φhage Blosum
Scoring Matrix

To rate the performance of the custom matrix, an
independent set of Φhage protein sequences were aligned
[8], referred to as the test set. BLAST [4] was used with
the Φhage and BLOSUM62 matrices respectively. This
was done to collect all possible types of similar Φhage
proteins. Both scoring schemes yielded identical results,
thus establishing the ability of the Φhage Blosum Matrix
to be at par with published data.

3.1 Comparing Φhage and BLOSUM62

To escape from any existing bias an idea from [7]
was adapted to specifically compare the Φhage and
BLOSUM62 matrices. Figure 1 indicates that the
BLOSUM62 matrix is much more diagonally dominant.
The output of the Singular Value Decomposition adheres
to this observation which is evinced in Figure 3. This
reflects the cease of dominance of amino acids’ mutabil-
ities in the respective substitution matrices, and in the
mode of sequence conservation in the underlying popula-
tions. Although qualitative consistency is preserved, the
different modes of sequence conservation imply selective
evolutionary pressures are in effect.

3.2 Φhage Blosum and Alignment Tools

The Φhage Blosum Scoring Matrix can be used as a plug-
in for sequence alignment tools like ClustalW and Muscle
[8]. This was implemented with Muscle to assess the qual-
ity of the alignments. The current approach uses linear
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Figure 4: Example of a Φhage distinguished protein pair

Figure 5: Same protein pair using BLOSUM

gap penalties so that the alignment with fewer gaps is
favored over the alignment with more gaps.

The reduced number of gaps point to the existence of
dissimilar substitution patterns between the Φhage pro-
teins and the BLOCKS database [14]. This may be taken
into consideration during the process of protein sequence
design. Also computation time may be reduced by ex-
ploiting data specific attributes.

3.3 Intepreting the Test Data

Alignments of the type displayed in Figure4 and Figure
5 were further processed to corroborate any underlying
biological correlation and to test whether the matrices
being used were the most appropriate ones for measuring
it. This was achieved by applying a standard tool from
Information Theory [19] known as Mutual Information.
The Mutual Information I(X, Y ) between two random
variables X and Y

I(X, Y ) =
∑

ij

pij ln

(
pij

pipj

)

where pij , pi, pj are, respectively the joint probabilty dis-
tribution and the marginals associated to the random
variables X and Y [2]. Hence in the context of protein
sequences, we interpret pij as the relative frequency of
finding amino acids i and j paired in X and Y . Analo-
gously pi (pj) is the relative frequency of finding amino
acid i (j) in sequence X (Y ). Therefore mutual informa-
tion may be used to measure the stochastic correlation
between two sequences.
I(X, Y ) was computed for both groups of alignments.
The output is displayed in Figure 6. The disparate re-
sults clearly indicates that the Φhage protein model is
different from the protein model over which the Blosum
matrices was computed. Also it may be safe to state that

Figure 6: Scoring Sequence Convergence

the average information available for each position, in or-
der to distinguish the alignment from chance is not same
in the two groups of alignments. Another reason for the
observed difference may be that the selected Blosum ma-
trix is incorrectly matched to the evolutionary distance
of the Φhage protein sequences. One other possibility is
that some of the Φhage protein sequences may have di-
verged under a nonstandard evolutionary process. This
weak correlation was well captured by the Φhage ma-
trix in that it obtained large values for some alignments
for which it’s Blosum counterpart was much less. The
analysis may be different for gapped alignments, as the
choice of gap values exercise an essential influence on the
I(X, Y ).

4 Conclusions and Future Work

Our goal was to construct and evaluate the Φhage Blosum
Scoring Matrix with respect to differentiating the amino
acid substitution patterns of Φhage proteins from that of
non Φhage proteins and whether an optimal alignment of
sequences in the twilight zone could be obtained.
It was found that in most cases the performance of the
Φhage Matrix was better than that of the Blosum series
in providing added biological information for Φhage pro-
teins. This was evident from the fact that the BLAST
output using the Φhage matrix, with the same gap pa-
rameter contained a larger number of similar sequences.
A topic for future work will be to analyze the statistical
behavior of the Φhage scoring scheme as a function of gap
penalties. To this end, a database homology search pro-
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gram will be implemented using the in house scoring ma-
trix and a variety of other available scoring systems. One
possibility may be to evaluate the remote homology de-
tection ability and alignment quality of generalized affine
gap costs [5]. Alternatively one may extend and apply
the theory introduced in [12].
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