
 
 

 

  
Abstract— The coupled computational procedure of the 
induction heating, the thermal conduction, the thermal 
elasto-viscoplastic damage and the phase transformation 
analysis has been developed for the induction hardening 
analysis of steel machine parts.  The validity of the proposed 
computational procedure has been illustrated by conducting the 
induction hardening analysis of a circular bar and a 
rectangular bar.   
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I. INTRODUCTION 
The induction hardening is one of the methods for heat 

treatment of steel machine parts, which can harden only the 
surface of the parts and has been applied to various machine 
parts such as automobile components and toothed gears.  In 
the induction hardening, the surface of the machine part is 
heated up to the hardening temperature by the induction 
heating and transformed to the austenite phase.  The heated 
machine part is then cooled down and the surface is 
transformed to the martensite phase and hardened.  The 
heating condition for the induction hardening can be 
determined experimentally or empirically for the machine 
parts of a simple shape such as circular bars.  However, it is 
difficult to determine the optimal heating condition for the 
machine parts of a complex shape.  Therefore the 
computational determination of the optimal heating condition 
is required. 

The commercial code SYSWELD and the researches by 
Miyachika et al. [1] have dealt with the analysis method 
considering the induction heating, the thermal stresses and 
the phase transformation.  However, there are no analytical 
methods which take account of the damage and conduct the 
three-dimensional calculations for all physical fields, 
considering the interactions of the fields. 

The computational method considering the coupling of the 
induction heating, the thermal conduction, the thermal 
elasto-viscoplasticity and the phase transformation is 
formulated in the present study.  The hexahedral 
isoparametric element is used in the three-dimensional finite 
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element analysis.  The validity of the present computational 
procedure is illustrated by analyzing the induction hardening 
process of the machine parts of a simple shape. 

 

II. COUPLED COMPUTATIONAL PROCEDURE 

A. Induction Heating 
In the induction hardening, the objects are heated by the 

eddy current which is generated by the electro-magnetic 
induction.  The distribution of the eddy current density is 
calculated by the electro-magnetic analysis.  The method of 
magnetic vector potential (the φ−A  method) is employed 
in the present analysis [2].  The governing equations for the 

φ−A  method, which are expressed in terms of the 
magnetic vector potential A  and the electric scalar potential 
φ , are given by the following equations: 
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where 0J , μ  and εσ  are the forced current, the magnetic 
permeability and the permittivity respectively [3].  The terms 
including the partial time derivative t∂∂  can be replaced 
with the complex variable expression ωj  when treating the 
alternating current problems.  The uniqueness of solutions for 
eq. (1) can be guaranteed by substituting Coulomb gauge 

0=⋅∇ A .  The consideration of these in Equations (1) and 
(2) leads to the following equations: 

( )φωσ
μ

∇++−=∇ AJA jc0
21

                               (3) 

( ) 0=∇+⋅∇ φωσ Ajc                                                  (4) 
The eddy current density is calculated by discretizing 
Equations (3) and (4) with the Galerkin finite element 
method [1].  The eddy current density eJ  is expressed in 

terms of the magnetic vector potential A  and the electric 
scalar potential φ  given by the electromagnetic analysis as 
shown in the following equation: 

( )φωσ ∇+= AJ jce                                                     (5) 
By using the obtained eddy current density, the thermal 
release eQ  is defined as follows: 
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which gives the boundary condition for the thermal 
conduction analysis in the heating process. 

B. Thermal Conduction 
In the thermal conduction analysis, the Galerkin finite 

element method is applied to the governing equations with 
the central difference time marching scheme.  The thermal 
conductivity of a solid is influenced by the microscopic 
damage such as microvoids and microcracks.  The thermal 
conductivity eqλ  considering the effect of damage [4] as 
given by the following equation is employed in the present 
analysis: 

( ) radeq dD λλλ ~10 +−=                                                  (7) 

where 0λ  and D  are the thermal conductivity of an 
undamaged solid and the damage variable, respectively.  The 
term raddλ~  indicates the effect of thermal radiation as given 
by the following equation: 
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where Bσ , 0ε  and T  are Boltzman constant, the 
emissivity and the temperature respectively.  The thermal 
conductivity of eq. (7) is introduced in the thermal 
conduction equation, in which 0λ  and the density ρ  are 
assumed as follows considering the effect of phase 
transformation: 
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where Iξ , Iλ  and Iρ  are respectively the volume fraction, 
the thermal conductivity and the density for each phase 
( 1=I ; austenite, 2=I ; pearlite, 3=I ; martensite). 

C. Thermal Elasto-Viscoplasticity 
The constitutive equations based on continuum damage 

mechanics and the creep-plasticity isotropic hardening theory 
are extended to take account of the effect of phase 
transformation and the temperature dependence in the 
present study. 

The elastic constitutive equation is given as follows [5]: 
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In eq. (11), ε , σ  and 1  are respectively the strain tensor, 
the stress tensor and the unit tensor.  E , ν , TΔ  and Iβ  
are Young’s modulus, Poisson’s ratio, the temperature 
increment and the volume expansion rate due to the phase 
transformation for each phase, respectively.  The thermal 
expansion coefficient α  is given by eq. (12), using the 

volume fractions and the thermal expansion coefficients for 
each phase.  
  The viscoplastic strain is given by the following equations, 
based on the creep-plasticity isotropic hardening theory 
[6-9], 
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where 
( )[ ]bpQpQR −−+= exp121                                   (14) 

In eqs. (13) and (14), the following notations are used: vpε ; 

the viscoplastic strain tensor, eqσ ; von Mises equivalent 

stress, R ; the isotropic hardening parameter, k ; the initial 
yield stress, σ′ ; the deviatoric stress tensor, p ; the 

accumulated equivalent plastic strain, K , N , 1Q , 2Q  and 
b ; the material constants.  The initial yield stress k  
considering the effect of the phase transformation is given by 
the following equation: 
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where Ik  is the initial yield stress for each phase. 
  The scalar damage evolution equation is given by the 
following equations [5]: 
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in which Y  and Hσ  are the strain energy density release 
rate and the hydrostatic pressure, respectively.  S  and s  are 
the material constants. 

D. Phase Transformation 
The austenite, pearlite and martensite phase are considered 

as the microstructure of steels in the present study.  The 
volume fractions for the austenite, pearlite and martensite 
phase are denoted by 1ξ , 2ξ  and 3ξ , respectively.  Their 
evolution equations are discussed below. 

The martensite transformation and the pearlite 
transformation mainly take place in the process of induction 
hardening.  Based on Magee [10], the evolution equation for 
the martensite phase is given as follows [11]: 

( )( ) ( ){ }[ ]TAr φξξ exp111 23 −−−=                         (18) 

where the temperature-dependent function ( )Tφ  is given by 
the following equation for S45C steel: 
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In eq. (19), sM (=380℃) is the critical starting temperature 

of martensite transformation.  2ξ  is the volume fraction of 
the pearlite phase which was generated before the starting of 
the martensite transformation.  rA  is the volume fraction of 
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the residual austenite phase which is only subjected to the 
martensite transformation. 

The evolution equation for the pearlite transformation is 
formulated by the following equation, based on the concept 
of Johnson-Mehl: 

( )eV−−= exp12ξ                                                        (20) 

where eV  is expressed as follows, using the 

temperature-dependent function ( )Tf : 
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In eq; (10), G  and N&  are the nuclear growth rate and the 
nuclear generation rate respectively.  The function ( )Tf  is 
experimentally determined for S45C as follows: 

( )
31.991.6

195
720

145
380071.0 ⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−=
TTTf           (22) 

The volume fraction of the austenite phase is calculated as 
( )321 1 ξξξ +−=                                                          (23) 

Figure 1 shows the coupled computational procedure for 
the induction heating, the thermal conduction, the 
elasto-viscoplastic damage and the phase transformation 
analysis.  The electromagnetic analysis, the thermal 
conduction analysis and the elasto-viscoplastic damage 
analysis are sequentially conducted in the heating process of 
the induction hardening, while the phase transformation 
analysis, the thermal conduction analysis and the 
elasto-viscoplastic damage analysis are sequentially carried 
out in the cooling process.  The above-mentioned sequential 
(or weakly coupled) approach is repeated with a small time 
increment from the initial to the final stage. 

 
 

 
 

Fig. 1  Sequential approach for coupled analysis 

III. ANALYSIS OF INDUCTION HARDENING 

A. Induction Hardening of a Circular Bar 
Figure 2 shows the analyzed circular steel bar with a radius of 
10mm and a length of 20mm.  The heating coil is made of 
copper.  Considering the symmetry, the part of 1/2 in the 
axial direction and 1/72 in the circumferential direction is 
subdivided into eight node, hexahedral isoparametric 
elements as shown in Fig. 3.  The surrounding air region of 
three times larger than the circular bar and the heating coil in 
the axial and the radial direction is assumed for the 
electromagnetic analysis.  The numbers of elements and 
nodes are 1188 and 1938 respectively. 

The circular bar is heated from the room temperature 
(20℃) to the hardening temperature (930℃) and cooled 
down in the water of 20℃.  The frequency and the electric 
power for the induction coil are 200kHz and 50kW 
respectively.  Table 1 shows the material constants for the 
analysis including the thermal conductivity, the density and 
the thermal expansion coefficient for each phase. 

Figure 4 shows the distribution of eddy current density in 
the circular bar calculated by the electromagnetic analysis.  It 
is seen from the figure that the large eddy current flows in the 
neighborhood of the surface of the bar.  Figure 5 shows the 
calculated time-histories of temperature ( d : the radial 
distance from the surface), which are compared with the 
numerical results given by Miyachika et al. [1] to illustrate 
the validity of the present computational procedure.  Figure 6 
shows the time-histories of the axial stress, from which it is 
seen that the large compressive stress takes place near the bar 
surface at the induction heating process and turns into the 
tensile stress at the cooling process, resulting in the large 
residual stress at the finishing of the hardening process. 

Figure 7 shows the contour of von Mises equivalent stress 
on the radial cross-section when the temperature becomes 
almost constant after cooling, from which it is seen that the 
large residual stress occurs near the bar surface.  Figure 8 
shows the distribution of the volume fraction of martensite 
phase (the hardening layer) at the same stage as Fig. 7.  The 
result in Fig. 8 can be considered to be qualitatively 
reasonable. 

 
Table 1.  Material constants 

 
 Austenie Parlite Martensite 

Heat 
Conductivity 
(W/mm℃) 

29.1 35.2 39.9 

Density (kg/m3) 8150.0 7850.0 7800.0 
Coefficient of 
thermal 
expansion (1/℃) 

2.083×10 - 5 1.521×10 - 5 0.688×10 - 5 

Young ‘s 
Modulus (GPa) 206.0 

Poisson’s Ratio 0.3 
Heat Transfer 
Rate (W/(m2･K)) 5814.0  

Thermal  
Emissivity 0.79 
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Fig. 2  Circular bar under induction hardening 
 

 
 

Fig. 3  Mesh subdivision 

 

Fig. 4  Distribution of eddy current density 
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Fig. 5  Time histories of temperature 
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Fig. 6  Time history of axial stress 
 

 

 
 

Fig. 7  Equivalent stress contour 
 
 

 
 

Fig. 8  Distribution of martensite phase 
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B. Induction Hardening of a Rectangular Bar 
The third example is the induction hardening analysis of 

rectangular bar.  Figure 9 shows the analyzed 1/4 model for 
the rectangular bar and the heating coil.  The numbers of 
elements and nodes are 1740 and 2184 respectively.  The 
analytical condition and the material constants are the same 
as those in the preceding subsections.  Figure 10 shows the 
distribution of the eddy current density.  The eddy current at 
the corners is relatively small probably because the 
rectangular bar is heated by the circular coil.  Figures 11 and 
12 show the temperature distribution at the cooling process 
and the distribution of the martensite volume fraction 
respectively, from which it is seen that the martensite volume 
fraction is high in the region near the surface where the 
temperature is lower than the starting temperature for the 
martensite transformation. 

X Y
Z

 

Fig. 9  Mesh Model 

 

Fig. 10  Distribution of Eddy Current Density 

 
 

Fig. 11  Distribution of Temperature 

 
 

Fig. 12  Distribution of Martensite Phase 
 

IV. CONCLUSION 
The coupled computational procedure of the induction 

heating, the thermal conduction, the thermal 
elasto-viscoplastic and the phase transformation analysis has 
been developed for the induction hardening analysis of 
machine parts.  The validity of the present computational 
procedure has been illustrated by conducting the induction 
hardening analysis of a circular bar and a rectangular bar.  
The developed computational program is also applicable to 
the thermal cracking analysis as well as the induction 
hardening analysis, as it considers the damage evolution, 
based on the concept of damage mechanics. 
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