
Computing Aggregate Queries in Raster Image

Databases Using Pre-Aggregated Data

Angélica Garćıa Gutiérrez, Peter Baumann ∗

Abstract— Computing multidimensional aggregates

in raster image databases is a challenging task for geo-

raster applications. In this paper, we exploit the tech-

niques in OLAP to speed up aggregate query process-

ing in raster image databases. We focus on a special

case of the aggregation problem: computation of the

basic aggregation functions add, average, count, max-

imum, and minimum. Experimental evaluation shows

that the application of the pre-aggregation framework

and the resulting algorithms give much better perfor-

mance compared to straightforward methods.

Keywords: Aggregation, Query-Processing, Raster

Databases

1 Introduction

Remote sensing data has proved to be useful in describing
information about the Earth’s surface and atmosphere.
It is often collected by aircraft and satellites in form of
images. These images are taken at regular time inter-
vals and cover large areas of the globe, thus allowing a
practical tracking of developments such as deforestation,
desertification, environmental contamination, and natu-
ral hazards. Moreover, comparisons of satellite images
from different times make these phenomena easier to un-
derstand. Hence, the nature of raster image data is often
multidimensional: it can include 3-D image time series
(x/y/t), 3-D exploration data (x/y/z), and 4-D climate
models (x/y/z/t), to name few examples. Notably, the
long-term availability of remote sensing data is indispens-
able to many types of analysis in Geo-applications, e.g.,
to study water, energy, and mineral resource problems;
therefore, archives of raster image data may surpass the
Petabyte size.

Typically, raster image data is stored in the database by
following a so called tiling process. That is, the image is
decomposed into a set of tiles that are efficiently indexed
and stored in the database. This allows that only the
tiles affected by a query are retrieved from disk during

∗The work of Angélica Garćıa is supported by a grant of El Con-
sejo Nacional de Ciencia y Technologia (CONACYT), scholarship
175628, by the German Academic Exchange Service (DAAD) and
by Jacobs University Bremen.
Jacobs University Bremen, School of Electric Engineering and Com-
puter Science, College Ring 1, 28759 Bremen, Germany. Email:
a.garciagutierrez@jacobs-university.de

query execution. In raster image databases, aggregation
is a very important statistical concept used to represent
a set of items by a single value, or to classify them into
groups while determining a value for each group. The
most widely used aggregations are add, average, mini-
mum and maximum. Notably, performing aggregate op-
erations on large volumes of multidimensional raster data
pose several challenges to existing raster database tech-
nology. That is, while delivering small-sized results, large
data portions have to be touched during query evaluation.
In application domains such as Geographic Information
Systems (GIS), the computation of many fundamental
operations requires the usage of aggregate functions [3]
but to the best of our knowledge, pre-aggregation support
has been provided for one single operation, namely, scal-
ing(zooming). In a different application domain, most
On-Line Analytical Processing (OLAP) systems adopt a
pre-aggregation approach for ensuring adequate response
time during data analysis. Based on the observation that
data structures and operations in both application do-
mains share similarities, our approach for speeding up ag-
gregate operations consists in taking existing knowledge
of OLAP pre-aggregation as a basis for defining an intel-
ligent pre-aggregation scheme in raster image databases.
OLAP pre-aggregation addresses three main problems:
View Selection, Query Rewriting and View Maintenance.
Despite the high maturity of these technologies [4], it has
never been attempted, to the best of our knowledge, to
adapt them to the field of raster image databases.

In this paper, we focus on the problem of answering a
query in the presence of pre-aggregated data. We present
a pre-aggregation framework along with a cost model to
study the effect of using pre-aggregation in the computa-
tion of aggregate queries in multidimensional raster image
databases.

The remainder of the paper is organized as follows. In
Section 2 we present the pre-aggregation framework. Sec-
tion 3 presents the cost-model used to estimate the cost
of using pre-aggregated data for computing aggregate
queries. Section 4 describes the implementation of the
framework in a raster database management system. In
Section 5 we present experimental results on real-life
raster image datasets. Finally, Section 6 presents the
conclusions and a brief description of our current and fu-
ture work.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

2 Framework

Hereby we describe the general framework used in our
study on computing aggregate queries in multidimen-
sional raster image databases.

2.1 Aggregation

2.1.1 Aggregate Functions

The queries that we consider can contain arbitrary ag-
gregation functions. An aggregation function is formally
defined as follows.

Definition 2.1 An aggregation function maps a multiset
of cell values in a dataset D to a single scalar value.

We consider the aggregation functions count which for a
multiset returns the number of cells; add, and avg, which
return the sum and average, respectively, of the cell values
of a multiset; max, which returns the maximum value
among the cells of a multiset; and min which returns the
minimum value among the cells of a multiset.

2.1.2 Aggregate Queries

An aggregate query Q is an aggregate operation whose
query predicate may contain a multidimensional spatial
component, namely spatial domain (sdom). We use the
following notation to express a spatial domain:

sdom = [l1 : h1, . . . , ld : hd] (1)

where the functions l (low) and h (high) deliver lower and
upper bound vectors respectively. We consider queries
following the select-from-where paradigm without nested
statements. In our implementation, we are using ras-
daman as a raster database management system that of-
fers a declarative interface, rasql. rasql is an SQL-based
query language for multidimensional raster databases
based on Array Algebra [2].

2.2 Pre-Aggregation

The term pre-aggregation refers to the process of pre-
computing and storing the results of aggregate queries
for subsequent use in the same or similar requests.

Definition 2.2 The pre-aggregated relation P is
a relation with schema P(pid,aggregateOperation,
subOperation, result, spatialDomain), whose tuples
(pre-aggregates) consist of a set of pre-aggregated queries
p1, p2, . . . , pn.

The pid attribute of P joins the child relations
selection, and intervals. The relation selection has the
schema selections(pid, sel conditions), whereas the rela-
tion intervals has the schema intervals(pid, sdom).

2.3 Query and Pre-Aggregate Equivalence

Definition 2.3 An aggregate query Q and a pre-
aggregate pi are equivalent if and only if all the following
conditions hold true.

1. The aggregate operation of the query Q is the
same as the aggregate operation defined for the pre-
aggregate pi.

2. The aggregate operation of the query Q and the pre-
aggregate pi must be applied over the same raster
objects.

3. The same logical and boolean conditions, if any, ap-
ply for both the query and the pre-aggreate.

4. In aggregate operations over a specific spatial do-
main of an object, the extent of the spatial domain
for both the query Q and the pre-aggregate pi is
identical.

The decision of whether to use a pre-aggregate or not in
answering a query is influenced by the structural char-
acteristics of the query and the pre-aggregate. That is,
by comparing the query tree structures between the pre-
aggregate and the input query, one can determine if the
pre-aggregated result contributes fully or partially to the
answer of the query. In the case of partial-matching, mul-
tiple pre-aggregates could be considered for answering a
query and further analysis should be carried out to de-
termine which of all candidate pre-aggregates compensate
the increased overhead. To this end, we distinguish the
following types of pre-aggregates: inner, overlapped, and
dominant.

2.3.1 Inner Pre-Aggregates (IPAS)

Definition 2.4 A set of pre-aggregates is called inner if
the spatial domain of Q contains the spatial domain (sd)
of the pre-aggregates. For simplicity, we assume the pre-
aggregates do not intersect with each other.

IPAS = {p1, . . . , pn | pi.sd ⊆ Q.sd, pi.sd ∩ pj.sd = ∅} .

(2)

2.3.2 Overlapped Pre-Aggregates (OPAS)

Definition 2.5 A set of pre-aggregates is called over-
lapped if there exist an intersection between the spatial
domain (sd) of Q and those of the pre-aggregates.

OPAS = {p1, p2, . . . , pn | pi.sd ∩Q.sd 6= ∅} . (3)

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

2.3.3 Dominant Pre-Aggregates (DPAS)

Definition 2.6 A set of pre-aggregates is called domi-
nant if the spatial domain (sd) of Q is contained in the
spatial component of the pre-aggregates.

DPAS = {p1, p2, . . . , pn | Q.sd ⊆ pi.sd} . (4)

Moreover, given an ascendant-ordered DPAS

DPASasc = {p1, p2, . . . , pn | Q.sd ⊆ p1.sd ⊆ . . . ⊆ pn.sd} ,

(5)
the closest dominant pre-aggregate (pcd) to Q is given by
p1, i.e., pcd = p1. Note that dominant pre-aggregates are
only considered for answering queries using the aggregate
functions: add, count, and average.

3 Cost Model

In this section, we introduce a cost model that allows to
estimate the cost (in terms of execution time) of comput-
ing a query considering the presence of pre-aggregates as
well as from raw data. The cost is driven by the number
of disk I/Os required and memory accesses. These pa-
rameters are influenced by the number of tiles that are
required to answer the query as well as by the number
and size of the cells in the datasets. We assume that it
takes the same time to retrieve a tile from disk as it will
take to retrieve any other tile.Similarly, we consider the
time taken to access a given cell (pixel) on main memory
to be the same as for any other cell.

3.1 Computing a Query from Raw Data

The cost of computing an aggregate query Q (or sub-
partitions of pre-aggregates) from raw data, (Cr), is given
by

Cr =

Ntiles∑

i=1

Cacc(tilei) +

Ncells∑

i=1

Cagg(celli) (6)

where Cacc is the cost of retrieving a tile required to an-
swer Q, and Cagg is the cost of accessing and aggregating
the cells corresponding to the spatial domain of the query.

3.2 Computing a Query using Inner
Pre-aggregates

The cost of answering an aggregate query considering the
use of inner pre-aggregated results is given by

CIPAS = Cfin(Q, P) +

|IPAS|∑

i=1

Cacc(pi) + CSP , (7)

where Cfin is the cost of finding the pre-aggregates ∈
IPAS in the pre-aggregated relation P , Cacc is the
accumulated cost of retrieving the results of the pre-
aggregates, and CSP is the cost of decomposing the query
Q into a set of sub-partitions and aggregating each from
raw data.

3.3 Computing a Query using Overlapped
Pre-aggregates

The cost of answering an aggregate query by using over-
lapped pre-aggregated results is given by

COPAS = Cfin(Q, P)+

|OPAS|∑

i=1

Cdec(pi)+

|S|∑

i=1

Cr(si)+CSP ,

(8)
where Cfin is the cost of finding the pre-aggregates ∈
OPAS in the pre-aggregated relation P , Cdec is the cost
of decomposing the spatial domain of each pre-aggregate
into a set of sub-partitions S such that the spatial domain
of the partitioned pre-aggregate corresponds to pi.sdom −
(pi.sdom ∩Q), Cr is the cost of aggregating each resulting
sub-partition si ∈ S from raw data, and CSP is the cost
of decomposing the query Q into a set of sub-partitions
and aggregating each from raw data.

3.4 Computing a Query using Inner and
Overlapped Pre-aggregates

The cost of answering an aggregate query considering
the use of inner and overlapped pre-aggregated results
is given by

CIOPAS = CIPAS + COPAS + CSP , (9)

where CIPAS and COPAS are the costs of retrieving the
results of inner and overlapped pre-aggregates, respec-
tively, and CSP is the cost of decomposing the query Q
into a set of sub-partitions and aggregating each from raw
data.

3.4.1 Cost of inner pre-aggregates

The cost of retrieving the results of inner pre-aggregates
(CIPAS) is given by

CIPAS = Cfin(Q, P) +

|IPAS|∑

i=1

Cacc(pi) (10)

where Cfin is the cost of finding the pre-aggregates ∈
IPAS in the pre-aggregated relation P , and Cacc is the
accumulated cost of retrieving the results of the pre-
aggregates.

3.4.2 Cost of overlapped pre-aggregates

The cost of retrieving the results of overlapped pre-
aggregates (COPAS) is given by

COPAS = Cfin(Q, P)+

|OPAS|∑

i=1

Cdec(pi)+

|S|∑

i=1

Cr(si) (11)

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

where Cfin is the cost of finding the pre-aggregates
∈ OPAS in the pre-aggregated relation P , Cdec is the
cost of decomposing the spatial domain of each pre-
aggregate into a set of sub-partitions S such that the spa-
tial domain of the partitioned pre-aggregate corresponds
to pi.sdom−(pi.sdom∩Q), and Cr is the cost of aggregating
each resulting sub-partition si ∈ S from raw data.

3.4.3 Cost of aggregating sub-partitions of the
query

The cost of aggregating each sub-partition in SP is given
by

CSP = Cdec(Q) +

|SP |∑

i=1

Cr(si), (12)

where Cdec stands for the cost of decomposing Q into a
set SP of sub-partitions, and Cr is the cost of aggregating
each resulting sub-partition s ∈ SP from raw data. Note
that Cdec is influenced by the costs of accessing the tiles
required to aggregate each of the sub-partitions, and by
the cost of accessing the spatial properties of the pre-
aggregates in IPAS and OPAS.

3.5 Computing a Query using a Dominant
Pre-aggregate

The cost of computing an aggregate query Q by using a
dominant pre-aggregate is given by

CDPAS = CDP (Q, P) + Cagg(pcd), (13)

where CDP is the cost of finding the pre-aggregates ∈
DPAS in the pre-aggregated relation P and the cost of
finding the closest dominant pre-aggregate pcd, whereas
Cagg is the cost of computing the aggregate difference of
pcd corresponding to pcd.sdom −Q.sdom.

3.5.1 Cost of the closest-dominant pre-aggregate

The cost of aggregating sub-partitions of the closest dom-
inant pre-aggregate, Cagg, can be calculated as follows

Cagg(pcd) = Cdec(pcd) +

|SP |∑

i=1

Cr(si), (14)

where Cdec is the cost of decomposing pcd into a set SP
of sub-partitions, and Cr is the cost of aggregating each
resulting sub-partition s ∈ SP from raw data.

4 Implementation

This section describes the application of the pre-
aggregation framework in a raster-database management
system, namely, rasdaman. The query processing mod-
ule of rasdaman was extended with the pre-aggregation

framework, and it has been implemented as part of the
optimization and evaluation phases.

The QueryComputation procedure returns either the
result R or an execution plan for a given query Q. The
input of the algorithm is the query tree Qt correspond-
ing to a given aggregate query. The algorithm first ver-
ifies if there is a perfect-matching between the input
query and the pre-aggregated queries. If it finds a per-
fect matching then it returns the result retrieved from
the pre-aggregated relation. Otherwisse, the algorithm
searches for a partialMatching between the query and
the pre-aggregates allowing only to differ in the values for
the spatial domain. If a partial-matching is found, then
the decision of whether to answer the query from pre-
aggregated results or from raw data will be driven by
the plan that results with minimum cost. The algorithm
makes use of the following auxiliary procedures.

• decomposeQuery(Qt) examine the nodes of the
query tree Qt and generates a standardized represen-
tation Sqt that can be treated via SQL statements.

• perfectMatching(Sqt) compares a standardized
representation of the query tree Sqt against exist-
ing pre-aggregates saved in a relation P . The out-
put of this procedure is the corresponding key of the
matched pre-aggregate, if found.

• fetchResult(key) retrieves the result R of the pre-
aggregate identified with key.

Algorithm 1 QueryComputation

Require: A query tree Qt and a relation P with k num-
ber of pre-aggregated queries.

1: initialize R = 0, i = 0, f lag = false

2: Sqt = decomposeQuery(Qt)
3: while i ≤ k ∧ !flag do
4: key = perfectMatching(Sqt, pi)
5: if key then
6: R = fetchResult(key)
7: return R;
8: end if
9: i + +

10: end while
11: if !flag then
12: plan = partialMatching(Sqt)
13: return plan;
14: end if

The algorithm PartialMatching identifies aggregate
nodes in a query tree Qt that may be substituted by pre-
aggregated nodes. It first identifies an aggregate sub-
expression in the given query tree and then it searches
for pre-aggregates that fulfill conditions 1, 2 and 3 but
not condition 4 for query equivalence. That is, it con-
siders the usage of pre-aggregates that may only con-
tribute partially to the answer of a query sub-expression.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Upon evaluating the cost of using the different candidate
pre-aggregates, the algorithm returns the plan with the
cheapest cost for the computation of the query.

Algorithm 2 PartialMatching

Require: A standardized query tree Qt with n number
of nodes.

1: initialize IPAS,OPAS,DPAS = {} , plan = ”raw”
2: for each node n of Qt do
3: if aggregateOp(node[n]) then
4: Q′ = getSubtree(Qt, node[n])
5: op = getOperation(Q′)
6: ro = getRasterObject(Q′)
7: sd = getSpatialDomain(Q′)
8: result = findPreaggregate(op, ro, sd)
9: if result = Φ then

10: IPAS = findIpasPreaggregates(op, ro, sd)
11: OPAS = findOpasPreaggregates(op, ro, sd)
12: DPAS = findDpasPreaggregates(op, ro, sd)
13: end if
14: plan = selectP lan(Q′, IPAS,OPAS,DPAS)
15: end if
16: end for
17: return plan;

The aggregateOp() procedure compares a node n of a
given query tree Qt against a list of pre-defined aggre-
gate operations, e.g, add cells, count cells, avg cells,
max cells, and min cells. If the node matches any of
the aggregate operations then it returns a true value.

The getSubtree() procedure receives as parameter a
query tree Qt and a pointer to an aggregate node. If the
aggregate node has children, then it creates a subtree Q′

where the root node corresponds to the aggregate node.

The findPreaggregate() procedure receives as parame-
ters an aggregate operation op, a raster object identifica-
tion ro, and a spatial domain sd. Then it submits an SQL
query with these parameters against the pre-aggregated
relation P to search for a pre-aggregate that matches such
parameters. If found, it returns the result of the matched
pre-aggregate.

The findIpasPreaggregates() procedure receives as a
parameter a subtree Q′ and verifies if there are pre-
aggregates that satisfy conditions 1, 2 and 3 of equiv-
alence among a query and pre-aggregates. For these pre-
aggregates, it identifies those whose spatial domain are
contained in the spatial domain of the query (inner pre-
aggregates). The output of this procedure is the set of
the identified pre-aggregates.

The findOpasPreaggregates() procedure receives as a
parameter a subtree Q′ and verifies if there are pre-
aggregates that satisfy conditions 1, 2 and 3 of equiv-
alence among a query and pre-aggregates. For these pre-
aggregates, it identifies those whose spatial domain inter-

sects with the spatial domain of the query (overlapped
pre-aggregates). The output of this procedure is the set
of the identified pre-aggregates.

The findDpasPreaggregates() procedure receives as a
parameter a subtree Q′ and verifies if there are pre-
aggregates that satisfy conditions 1, 2 and 3 of equiv-
alence among a query and pre-aggregates. For these
pre-aggregates, it identifies those whose spatial domain
dominate the spatial domain of the query (dominant pre-
aggregates). The output of this procedure is the set of
the identified pre-aggregates.

The selectP lan() procedure receives as parameters a sub-
query tree Q′, a set of inner pre-aggregates IPAS, a set
of overlapped pre-aggregates OPAS and a set of domi-
nant pre-aggregates DPAS. It calculates the costs of an-
swering the query considering the different types of pre-
aggregates as well as from raw data. The output of this
procedure is an indicator of the best plan for executing
the query.

4.1 Query Evaluation

The task of the query optimizer module is completed by
providing an optimized query tree along with the plan
suggested for the computation of the query to the final
phase, evaluation. Typically, the evaluation phase will
identify the tiles affected by an aggregate query and then
it will proceed to execute the aggregate operation on each
tile, and finally it will combine the results accordingly to
generate the answer of the query. With the extension of
pre-aggregation in the optimizer, the traditional process
differs in such a way that the selected plan is considered
before proceeding to execution. If the plan corresponds
to raw, then the computation of the query will be en-
tirely done from raw data. Otherwise, it will execute the
aggregated operation only on those tiles for which there
are not pre-aggregated results.

5 Experimental Results

In this section, we present the performance of our al-
gorithms on real-life raster image datasets. These ex-
periments were performed on a Intel Pentium 4 -CPU
3.00 Ghz PC running SuSe Linux 9.1. The workstation
had a total physical memory of 512 MB. The datasets
were stored in a raster database management system, ras-
daman.

The experiments consisted of a set of queries run 200
times against the database, shown in Table 1. Note
that the formulation is according to rasql, the declarative
query interface provided by rasdaman. We performed a
warm test, that is, the queries were run sequentially. The
dataset consist of several raster objects each distinguished
with and object identifier (oid). We performed the ex-
periments on a dataset called blacksea, a two-dimensional

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

raster object of 260 Mb size that represents a portion of
the Black Sea. The object consists of 100 indexed (B-
tree) tiles. We created 24 pre-aggregates that could be
used for answering the queries in our experiment. They
are stored in a relation that contains a total of 5000 pre-
aggregates.

Note that the values of the spatial domain in the queries
were purposely chosen such that we could measure the
impact of using pre-aggregation in the following scenar-
ios.

• The computation of some of the tiles needed to an-
swer queries Q1, Q2 and Q3 could be omitted by
rather using the result of existing pre-aggregates.

• The computation of all tiles needed to answer queries
Q4, Q5 and Q6 could be omitted by rather combin-
ing the result of two or more pre-aggregates.

• The computation of all the tiles needed to answer
queries Q7, Q8 and Q9 could be omitted by rather
using the result of one pre-aggregate. That is, there
exists a perfect-matching between the query and one
of the pre-aggregates.

Table 1: Database and queries of the experiment.

Q id Description
Q1 select add cells(y[6000:10000, 29000:32000])

from blacksea as y where oid(y) = 49153
Q2 select add cells(y[7000:10000, 29000:31000])

from blacksea as y where oid(y) = 49153
Q3 select add cells(y[6700:10000, 28000:30000])

from blacksea as y where oid(y) = 49153
Q4 select add cells(y[7680:8191, 29000:31000])

from blacksea as y where oid(y) = 49153
Q5 select add cells(y[8704:9215, 29000:31000])

from blacksea as y where oid(y) = 49153
Q6 select add cells(y[9728:10000, 29000:31000])

from blacksea as y where oid(y) = 49153
Q7 select add cells(y[7680:8191, 29696:30207])

from blacksea as y where oid(y) = 49153
Q8 select add cells(y[8704:9215, 30720:31000])

from blacksea as y where oid(y) = 49153
Q9 select add cells(y[9216:9727, 30208:30719])

from blacksea as y where oid(y) = 49153

Table 2: Comparing query evaluation costs using pre-
aggreated data and purely raw data.

Q id #aff. tiles #preagg. tiles t pre t ex ratio
Q1 63 24 15.6 17.8 87%
Q2 35 24 6.9 9.3 74%
Q3 35 8 9.4 10 94%
Q4 5 5 1.02 1.55 65%
Q5 5 5 1.1 1.63 67%
Q6 5 5 0.74 1.01 73%
Q7 2 1 0.04 0.41 9%
Q8 2 1 0.04 0.45 8%
Q9 2 1 0.04 0.41 9%

Table 2 compares the CPU cost required for the com-
putation of the queries by using pre-aggregated data and
purely raw data. The CPU cost was obtained by us-
ing the time library of C++. The column #aff. tiles
shows the number of tiles that would need to be consid-
ered for computing the given query, whereas # preagg.
tiles represents the number of pre-aggregates that can be
used to compute the query. The column t pre shows the
total CPU cost of computing the query considering pre-
aggregated data. Finally, the column t ex shows the time
taken to execute the query entirely from raw data. The
ratio column shows that the CPU time is always bet-
ter when the computation of the queries considers pre-
aggregated data.

6 Conclusions and Future Work

We have presented a framework for computing aggregate
queries in raster image databases using pre-aggregated
data. We distinguished among different types of pre-
aggregates: inner, overlapped, and dominant. We showed
that such a distinction is useful to identify those pre-
aggregates, from all potential candidates, that can re-
duce the CPU cost required for the computation of the
query. We proposed a cost-model to estimate the cost of
using different pre-aggregates and thus select the best
plan for evaluating the query in the presence of pre-
aggregated data. The measurements on a real-life raster
image dataset showed that the computation of the queries
is always faster with our algorithms over straightforward
methods. We focused on queries using the basic aggre-
gate functions. This covers a large number of operations
in Geo-raster applications but it remains the challenge to
support more complex aggregate operations, e.g., scaling
and edge-detection, which are under current investigation
within our group.

References

[1] E. Adelson, C. Anderson, J. Bergen, P. Burt, and
J. Odgen. Pyramid methods in image processing.
RCA Engineer, (29-6):9, November/December 1984.

[2] P. Baumann. A database array algebra for spatio-
temporal data and beyond,. The Fourth Interna-
tional Workshop on Next Generation Information
Technologies and Systems (NGITS), (Lecture Notes
on Computer Science 1649, Springer Verlag):76–93,
July 5-7 1999.

[3] A. Garcia-Gutierrez and P. Baumann. Modeling geo-
raster operations with array algebra. In Seventh In-
ternational Conference on Data Mining Workshops
Proceedings, pages 607–612. ICDMW, 2007.

[4] A. Gupta and I. S. Mumick. Materialized Views -
Techniques, Implementations, and Applications. The
MIT Press, Cambridge, Massachusetts, 2001.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

