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Abstract—Functional radiosurgery is a noninvasive
stereotactic technique that requires magnetic reso-
nance image (MRI) sets with high spatial resolution.
Gradient nonlinearities introduce geometric distor-
tions that compromise the accuracy of MRI-based
stereotactic localization. We present a gradient non-
linearity correction method based on a cubic phantom
MRI data set. The approach utilizes a sum of spher-
ical harmonics to model the geometrically warped
planes of the cube and applies the model to correct
arbitrary image sets acquired with the same scanner.
In this paper, we give a detailed description of the
Matlab distortion correction program, report on its
performance in stereotactic localization of phantom
markers, and discuss the possibility to accelerate the
code using General-Purpose Computing on Graphics
Processing Units (GPGPU) techniques.

Keywords: Magnetic Resonance Imaging, Distortion
Correction Algorithm, Matlab, and Functional Radio-

surgery.

1 Introduction

We describe the implementation of a software-based
method to correct gradient nonlinearity distortion in
Magnetic Resonance Imaging (MRI), to provide submil-
limeter accuracy in localization of anatomical regions
for functional radiosurgery. Although current methods
are successful in handling gradient nonlinearity distor-
tion [1, 2, 3], none of them have been proven to provide
the high level of geometric accuracy required to confi-
dently perform high-precision functional radiosurgery on
brain targets. We have developed a software package for
a phantom-based distortion method originally suggested
by Langlois, et al. [4]. This report describes the structure
and implementation of the code, as well as first results of
its performance in stereotactic localization.
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2 Materials and Methods

2.1 Phantoms and Stereotactic Equipment

(b) Lucy® phantom.

Figure 1: Phantoms in Siemens Sonata MRI scanner.

MRI data sets of two different phantoms were acquired in
this work: the first phantom was used for characterizing
the scanner distortion, and the second for testing and ver-
ification of the distortion correction method. The phan-
tom utilized for distortion characterization is a Plexiglas
cube filled with oil, Figure 1(a). The images obtained
represent the signal response of the oil, corresponding
to the interior dimensions of the phantom (159.50mm
X 159.70mm x 158.11mm). The second phantom, the
Lucy® quality assurance phantom (Fluke Biomedical),
was placed inside a Leksell Coordinate Frame Model G
and MR Indicator (Elekta, Sweden) to perform localiza-
tion of 20 MRI-compatible target markers, Figure 1(b).
A certified metrology laboratory inspected the marker lo-
cations. All MRI images were acquired on a 1.5 T whole
body scanner (Magnetom Vision, Siemens) with a stan-
dard head coil.

The cube phantom was centered on the isocenter of the
scanner with respect to its lateral and longitudinal posi-
tion to within lmm. Due to space limitations within the
head coil, the cube center had to be placed approximately
10 mm above the scanner isocenter. The Lucy® phantom
was placed at approximately the center of the head coil
and at three discrete longitudinal positions: at isocenter,
50mm superior to isocenter, and 50mm inferior to isocen-
ter in order to test the accuracy of distortion-corrected
localization both in the center and toward the periphery
of the magnetic gradient field.
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The automated 3D calibration of the shim coils was per-
formed to correct for By field inhomogeneities prior to
scanning. Two sets of sequences were performed: one
with and one without internal correction for gradient
nonlinearity, to compare the effectiveness of the internal
scanner correction to that of the software-based MRI gra-
dient nonlinearity distortion correction. Scan parameters
for the cube phantom were as follows: 512 x 512 matrix,
0.391mm pixel size, 200mm field of view, 104 slices of
2.0mm thickness. Axial, coronal, and sagittal sequences
were acquired. Scan parameters for the Lucy® phantom
were as follows: 512 x 512 matrix, 0.586mm pixel size,
300mm field of view, 112 slices of 2.0mm thickness. Axial
and coronal sequences were acquired. Figure 2 shows rep-
resentative axial and coronal images of the Lucy® phan-
tom, while Figure 3 shows representative axial, coronal,
and sagittal images of the cube phantom.

(b) Coronal scan.

(a) Axial scan.

Figure 2: Example scans of Lucy® phantom, showing
fiducial points (edges) used for stereotactic localization
of MRI markers (center).

2.2 Computational Algorithm

The gradient nonlinearity distortion correction was writ-
ten in Matlab version 7.0.4. Details of the code have been
described elsewhere [5]. Matlab provides strong support
for DICOM data types, as well as robust image processing
functions and data visualization tools.

Data Quality Assurance

Prior to calculating the distortion model, the data un-
derwent a series of image processing and quality checks.
These checks had three goals: (1) eliminate as much
image noise as possible, (2) remove extraneous and un-
wanted features in each MR image, and (3) ensure the
data is accurate for future calculations.

Selection of Useful Slices

The distortion correction was only based on slices that
contained a full view of the phantom. To select useful
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(b) Coronal.

(c) Sagittal.

Figure 3: Examples of useful slices of oil-filled phantom,
with distortion clearly visible in the outer regions.

slices such as those in Figure 3, the algorithm analyzed
the distribution of pixel intensities of a slice near the cen-
ter of the slab, which always contained a full view of the
phantom. Using this reference slice, the algorithm com-
pared the pixel intensities of each slice to determine the
range of the study that contained the phantom. This ef-
fectively eliminated slices that did not contain the phan-
tom, or contained a partial view of the phantom. The
indexes of the first and last useful slices were reported,
and slices outside this range were excluded from analysis.

Edge Detection

Figure 4: Representative examples of edge images.

Edge detection was performed to provide the representa-
tion of the distorted physical edges of the phantom for the
gradient nonlinearity distortion correction. The Canny
edge detector provided by Matlab was chosen because it
was least sensitive to noise, and the edge images produced
were sharper and more accurate, thus delivering the most
consistent results from study to study when compared to
other edge detection methods implemented in Matlab.
Matlab’s Canny edge detector automatically calculates a
threshold for edge detection; however, this threshold con-
siders every single intensity shift within the image, and in
doing so, finds fictitious edges within the phantom. We
implemented a threshold algorithm that converged on the
optimal threshold value in an iterative series of edge de-
tection trials. The threshold algorithm used the reference
slice chosen in the previous step, and automatically con-
figured its settings (threshold increment and stop condi-
tion) based on the strength of the image gradient across
the edges. Starting with Matlab’s automatically calcu-
lated threshold, the threshold algorithm incremented the
threshold in small successive steps (0.5 - 0.75). As the
threshold was increased, the number of fictitious edges
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decreased, leaving only the strong image features behind.
The optimal threshold was assumed when the number of
edge points did not change by more than 1% over sev-
eral successive iterations (5-10, depending on the stop
condition). This optimized threshold was then used with
Matlab’s Canny edge detector on the entire set of useful
slices. In an exhaustive series of tests, it was found that
Canny preserved the physical edges of the phantom in
the edge images, see Figure 4. The remaining unwanted
image features were dealt with separately, as described
below.

Removing Extraneous Features

The edge detection threshold did not remove all extra-
neous or noisy features from the edge images. The cube
phantom featured a drain plug, which corrupted the edge
images. A specially-designed drain plug removal algo-
rithm erased the plug and drew a straight-line approx-
imation of the affected regions. Edge images were ana-
lyzed for air bubbles within the oil adhering to the edges
of the phantom creating rounded defects in the detected
edges. A bubble remowval algorithm erased these bubbles
and drew a straight-line approximation to correct the af-
fected region. Remaining minute holes in the edges were
corrected with a hole repair algorithm that analyzed the
four edges in all edge images for discontinuities, filling
any gaps. With these quality checks and repair algo-
rithms, the data were ensured to be free of practically
all defects, providing an accurate representation of the
distorted phantom surfaces.

2.3 Plane Calculation

Midplanes

The correction method was based on a set of calculated
“ideal” planes. These planes represented the appearance
of the phantom faces without distortion. Each pair of
opposite edge points in the edge images was used to cal-
culate a midpoint. Midpoint calculation along an entire
edge produced a midline, see Figure 5. Edge lengths
could vary depending on the characteristics of the dis-
tortion in each image, so observing opposite edges of
slightly different lengths was acceptable; the algorithm
removed unpaired points to obtain edges of equal length.
Two midlines were calculated for each edge image: one
horizontal, one vertical. Due to the symmetry of gra-
dient nonlinearity distortion, these midlines were nearly
straight, providing a suitable representation of the orien-
tation of the undistorted edges in each image, disregard-
ing the positioning of the edges.

Studies typically contained around 30,000 midpoints for
each of the three pairs of phantom surfaces. The mid-
plane, representing the ideal shape, size, and orienta-
tion of the particular surface of the phantom, was found
by calculating the plane that resulted in the best fit of
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Figure 5: Calculated midlines (center horizontal and ver-
tical straight lines) in a typical edge image.

the midplane data set in the least squares sense. The
Hessian normal form of a plane is: NTp = d, where
N=[N, N, N, |Tisthenormal vector to the plane
with ||N|| = 1, d is distance of the plane from the origin,
and p is the set of vectors satisfying the plane equation.
For example, fitting a plane to the top and bottom edges
of the phantom in an axial study results in a plane ori-
ented in xz. The component N, is close to 1 in this case,
so one may divide both sides of the equation by it to
produce a component normalized form:

T d
[ -C, 1 —-C, ] [ Ty z ]T = NTp:Cc(l)

The introduction of minus signs on the coefficients, C,
and C,, allows the equation to be easily written as
y = Cpx + C,z + C.. With this form, one needs to
store only three components rather than four. Based on
the determined orientation, the algorithm organized the
data into a large m x 3 matrix and a large n-element ar-
ray, with n being the number of midpoints. The n x 3
matrix with row vectors of the form [ x z 1 ] was the
design matriz, denoted by A, and the n-element array of
y values was the observation vector, denoted by b. The
resulting linear least squares problem was of the form
Ax =bwhere x =] C, C, C. 7 is the vector of the
plane coefficients. Solving this equation for x yielded the
midplane coefficients.

Ideal Planes

The midplanes described the correct orientation of the
ideal phantom planes, but needed to be shifted along the
corresponding normal vector by one-half the physical di-
mensions of the phantom to their correct location in 3-
dimensional space. The three phantom dimensions were
derived from dimensional inspection and stored prior to
algorithm execution. Shifting the midplane only involved
calculating a new offset term as the other coefficients
must remain the same to maintain the midplane’s original
orientation. To calculate the offset, consider the Hessian
normal form of a plane in terms of the coefficients de-
fined in Eq. 1 and a point, po = [ 0 C. 0 ]7 that lies
on the midplane in our example. It is possible to deter-
mine the position of the corresponding point ps on the
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shifted plane as follows:

Ps = [xs Ys Zs]T =po £ SN (2)
where ¢ is one half the phantom dimension, and the “4”
determines positive or negative shift needed to specify
both ideal planes resulting from the midplane. Note that
we have to use the unit vector N = ﬁ and not N
in order to maintain the correct distance. Inputting ps
into the component normalized plane expression, Eq. 1,
makes it possible to solve for the offset term for the shifted
planes.

Cs NTps

NT(p(] + 5N)
NTpy+6NTN
C.+ (SNTi
‘ V]|
Ce £ 0|V (3)

Therefore, the offset term to obtain the ideal planes from
the midplane is equal to §4/C2+ 1+ C2. The same
method was followed for the other planes. The result was
a set of six ideal planes, one for each of the six square faces
of the phantom. These ideal planes represented the faces
of the phantom in the absence of gradient nonlinearity
distortion.

2.4 Distortion Modeling

The final stage involved performing the actual gradient
nonlinearity distortion correction. In MRI, the spatial
distribution of nuclear spin density is encoded in fre-
quency (k) space using three orthogonal gradient fields.
A Fourier transform of the radiofrequency signal obtained
by exciting the nuclear spins in the presence of the gra-
dient fields yields a reconstruction of spin density in the
spatial domain. Because the spatial dependence of the
gradient components is nonlinear, the assumption of lin-
earity during reconstruction results in distorted images.

The distortion model, describing the spatial dependence
of the three gradient fields, was based on a finite sum of
sum of spherical harmonics (when expressed in spheri-
cal coordinates) [2], or a sum of homogeneous polynomi-
als (when expressed in Cartesian coordinates) [4]. Using
the ideal planes obtained previously, theoretical “undis-
torted” data points were calculated using the ideal plane
equations and acquired data points. The undistorted
data points were then used to calculate the coefficients
of the distortion model. Three sets of coefficients were
necessary, one for each dimension. Once the model was
known it was applicable to all studies performed on the
particular scanner.

Let x;, v;, and z; be the distorted coordinates of a point 4
measured by an MRI scanner. Further, let &;, y;, and Z;
be the undistorted coordinates that correspond to x;, v,
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and z; , that is, (£;, i, Z;) is the point on the ideal plane
that produced the point (z;,¥;, 2;) in the image. Includ-
ing spherical harmonics up to second order, the correction
model, expressed in Cartesian coordinates, becomes [4]:
i = @ (1+ Ko, (2% +3°) + Ko, 2%+

Ko, %2 (@'2 + ?JiQ) + Ko, (@'2 + §¢2)2

—I—K(M Zi4) (4)
where oo = (z,y, z). Note that all the terms in these equa-
tions are known except the K, K, and K, terms—the
desired distortion parameters. Solving for the K, re-
quires using the ideal planes whose normal is in the x
direction, i.e., the yz planes, and similarly for the K,,
and K, terms. Since the original example was for the
top and bottom edges of the images in an axial study
results, i.e., a plane oriented in zz, the solution for this
example will follow that case. Note that g; can be calcu-
lated using the ideal plane. Since with proper orientation
of the cube the distortion for this face is essentially all in
the y direction, the ideal x and z coordinates (&; and %)
are assumed to be the same as the distorted (z; and z;).

Co 0N = NTpigea
X
2
Ce £0|IN||+ Cowi + Cozi = 4

Knowing the ideal point (&;,¥:, %;) and the distorted
points (z;,y;, z;), substitute into the spherical harmon-
ics expansion, noting the linearity in the K terms. Using
all n points of both planes oriented in xzz yields:

TK, = AY (6)
where,

K, = [Kyo Ky4]T

AY = [(y — %) (Y2n—1 — 3727;,—1)]T
To,0 To,4

T = : :
Ton—1,0 Ton—1,4

Tio =i (2° + 5:°)
Ti1 =i (%°)
T2 =gi (T° + 5:%) #°
T3 =i (:° + ZJiQ)Q
Tia=1i (?4)

Solving for K, was accomplished using linear least
squares by QR factorization (Matlab “\” operator). This
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process was repeated for the other distortion parameters

K, and K,. Once the distortion parameters were ob- '*

tained, they were applied to MR images of the perfor-
mance study, described below.

3 Results and Discussion
3.1 Performance Study

The performance of the distortion correction code was
tested by localizing the 20 markers in the Lucy® phan-
tom, which had known stereotactic coordinates derived
from precision dimensional inspection. The corrected
locations of the markers were compared to the mea-
sured physical locations. This step required performing
a stereotactic transformation, to convert the coordinates
in the images to a stereotactic coordinate system cre-
ated by the fiducial points on the attached stereotactic
frame. Target localization was performed in two ways:
The first method obtained the coordinates of the MRI
fiducial points and marker points (Figure 2) from the
distorted images and their corrected positions were cal-
culated by iteratively solving Eq. 4 using the minerr func-
tion of Mathcad version 13. The corrected fiducial marker
coordinates were then processed by a custom stereotactic
localization program written in Mathcad and the param-
eters of a 3D stereotactic transformation (rotation matrix
and translation vector) were obtained according to the al-
gorithm described in [6]. The second method processed
the entire MR image set in the following way. Starting
with an empty voxel grid of identical size to the original
study, the location of each voxel in the distorted space
was calculated according to Eq. 4 and the mean MRI sig-
nal intensity from nearest voxel neighbors to the distorted
voxel location was calculated and assigned to the undis-
torted voxel location. This way, the entire undistorted
image space was rebuilt. The distortion-corrected MRI
set was then read into Odyssey® (PerMedics, Inc.), a
commercially-available radiation treatment planning sys-
tem, and the built-in stereotactic localization feature of
Odyssey® was used to determine the stereotactic marker
coordinates. Both methods gave similar results within
voxel accuracy.

The localization error, defined as the x, y, and z com-
ponents of the vector between the MRI-determined and
the metrology-lab measured marker locations was deter-
mined for three scenarios: (1) error associated with our
phantom-based MRI gradient nonlinearity distortion cor-
rection, (2) error when no correction was performed, and
(3) error associated with a built-in internal scanner cor-
rection method for gradient field non-linearities. The lat-
ter feature was turned off for the first two scenarios.

3.2 Numerical Results

Figure 6 demonstrates the mean and standard deviation
of the localization error of the 20 MRI markers. Local-
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Figure 6: Stereotactic localization error of 20 markers
with respect to each coordinate axis, with and without
distortion correction.

izing the markers without any distortion correction re-
sulted in stereotactic localization errors typically between
1.0mm and 2.0mm. This accuracy decreased greatly with
increasing Z-offset from gradient isocenter, with errors
reaching nearly 3.0mm. At gradient isocenter, the inter-
nal correction yielded accuracies better than 1.0mm, but
was insufficient in providing this quality at £50mm Z off-
set. In contrast, the phantom-based MRI gradient non-
linearity distortion correction provided consistent submil-
limeter accuracy in all test cases, even for +50mm Z off-
set. Considering the worst case, the correction method
yielded accuracies of approximately 0.6 + 0.3mm. In the
best case, the phantom-based MRI gradient nonlinearity
distortion correction reduced localization error to nearly
0.0 £ 0.3mm. Considering each scan image, these values
correlated to approximately one pixel in the worst case,
and to % pixel in the best case.

4 Conclusions

Our results confirm that correcting gradient nonlinear-
ity distortion — a primary source of distortion in MRI
— brings the accuracy in MRI-based stereotactic local-
ization into the submillimeter domain. Without any cor-
rection the error typically exceeds 1.0mm and can reach
up to 3.0mm. Our correction method provided consis-
tent submillimeter accuracy in localizing the targeting
markers even when the object was 50 mm off isocenter,
while the internal correction method did not consistently
provide submillimeter accuracy.

5 Current and Future Work
5.1 Scanner and Phantom

Up to this point, we have only tested our method with one
scanner model (Magnetom Vision, Siemens). Several new
3T MRI scanner models (GE and Siemens) will be uti-
lized for further testing, to confirm the correction model
is valid for both the different scanner and the stronger
magnetic field. Since the existing cube phantom is rela-
tively limited in size and the fiducial points of the MR
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indicator are up to =10 cm beyond the cube surfaces, we
are contemplating the use of a larger cube phantom (30
cm side length) for more accurate distortion modeling.

In this work, we have assumed that the gradient isocenter
coincides with the origin of the MRI-based coordinate
system as specified by the DICOM header, which may
not always be the case. In discussions with the vendor
of the tested scanner, we were informed that the exact
location of the gradient isocenter is not known. Assuming
the gradient isocenter at the wrong location compromises
the accuracy of the distortion correction model. In the
future, it is planned to include the unknown location of
the gradient isocenter in the distortion model and to find
its position using a least square fitting routine.

5.2 GPGPU

Although the gradient nonlinearity distortion correction

has demonstrated its effectiveness,

the speed at which
the calculations are performed is quite slow. On average,
this Matlab program requires 20-30 minutes to execute
on a typical PC. While this is not a ridiculous amount of
time, reducing the computation time to minutes or even
seconds will greatly increase the effectiveness and feasi-

bility of utilizing the software in a clinical environment.

To significantly reduce the computation time of the
MRI gradient nonlinearity distortion correction method,
specific portions of the software will be converted to
use General-Purpose Computing on Graphics Processing
Units (GPGPU) techniques. Current GPU hardware is
specialized for compute-intensive, highly parallel compu-
tation, thereby allowing the GPU to attain nearly 500
GFLOPS, compared to 40 GFLOPS for current high-end
desktop CPUs [7]. Typical achieved speedup with mod-
ern GPU hardware is 100x or more on typical compiled
programs [8]. With an increasing number of scientists
and engineers utilizing GPU hardware for medical appli-
cations, especially CT [9, 10, 11], we believe that the same
techniques can also be applied to our MRI distortion cor-
rection method. We are currently evaluating NVIDIA
GPU hardware and NVIDIA’s CUDA (Compute Unified
Device Architecture) SDK. Accelerating this distortion
correction method with GPU hardware will yield great
performance gains. Since Matlab is a scripting language,
computational performance is quite limited. Merely con-
verting from Matlab to a compiled language such as C
will yield 50x speedup [5]. According to other litera-
ture, accelerating the compiled C code using GPGPU
techniques can yield an additional 100x speedup or more
[7]. Combining the two together — converting the Matlab
code to C with portions accelerated on GPUs — can yield
nearly 500 speedup, or more. Rather than waiting 20-
30 minutes, the GPU-accelerated implementation could
yield results in as little as 2.4-3.6 seconds. Even though
these performance values are estimated, obtaining this
level of performance is not unreasonable, when consider-
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ing the results shown in our past research [5], as well as
currently published GPGPU applications [7, 8, 9, 10, 11].
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