
Case Study in ER Diagrams in the Context of
Development of Generic Visualization Methods

Boris P. Leontyev∗

Abstract—Purpose of this paper is development of
Generic Visualization methods (GVM) to enhance a
Periodic Table of Generic Visualization Methods (PT-
GVM) by examining a particular case of ER diagrams.
Work is based on the concept of the three-layer ar-
chitecture for an information visualization system,
including: (1) Periodic Table of GVM (PTGVM);
(2) middleware, translating conceptual visualizations
into classes, comprising processing logic in the spirit
of Generic Programming, and translating methods
of classes into instructions of a Graphic Program-
ming Language of Computer-Aided Publishing Sys-
tem; and (3) graphic package, realizing visualization
physically. Middleware can be developed exploiting
such methods as (a) inheritance; (b) polymorphism;
(c) parametrized templates (Boost C++ Graph Li-
brary). This paper relates to the case (a). Hierar-
chy of classes, representing nodes, was designed and
implemented, programs to draw ER diagrams were
developed, exemplary ER diagrams were generated.
Quantitative signature for this particular representa-
tive visualization was defined to position it precisely
inside a PTGVM. Fragments of implementation code
are given.

Keywords: generic programming, information visual-

ization methods, periodic table

1 Introduction

Scientific, engineering, educational materials existing
in different electronic and hard-copy publishable forms
(books, articles, reports, etc.) and formats (PDF,
HTML, etc.) may happen to contain hundreds of illus-
trations, or figures, or visualizations as an outcome of
some information visualization process. Language of vi-
sualization is quite common, unalienable in these as well
in many other fields.

Advantages of visualizations can be exploited to full
extent if pertinent sophisticated technologies and tools
are used. Required technologies can be specified as
industrial-strength, integrative, effective, efficient and
generic.

It can be expected, that these technologies should benefit,

∗16/Jun/2008, Department of Computer Science, National Uni-
versity of Rwanda, BP 347, Huye, Province du Sud, Rwanda,
Afrique Centrale, Tel: (250)03240730 Email: b.leontiev@tltsu.ru

if based on computer science methods (object-oriented
programming (OOP), software engineering, etc.).

There are two prerequisites, two prospective tools for fur-
ther research such as (1) Periodic Table of Generic Visu-
alization Methods (PTGVM) [1], [2], and (2) Boost C++
Graph Library (BGL) [3].

1.1 Periodic Table of Visualization Methods

At first, there is a publication [1], which introduced a con-
cept of Periodic Table of Visualization Methods (PTVM).

PTVM provides following: (1) descriptive overview of
the visualization domain; (2) repository, and a problem-
solving tool, relating specific visualizations to visualiza-
tion methods; (3) reduced complexity of visualization be-
cause of structuring domain of visualization; (4) research
tool, recognizing similarities and differences among dif-
ferent types of visualization, and revealing logic of their
development.

1.2 Periodic Table of Generic Visualization
Methods

[2] examined a problem of developing Generic Visualiza-
tion Methods (GVM) to enhance PTVM of [1] . Term
“Generic” here implies use of programming technologies
of highest degree of abstraction as a tool to develop in-
formation visualizations. [2] found [1] to be a suitable
prototypical generalization approach for further research.

One of the ideas of [2] was to propose programming tech-
niques to render a PTVM not mostly intuitive, but em-
powered with precise numerical evaluations.

It proposed to call a PTVM a PTGVM.

This proposal was based on a hypothesis, that there
should be some organizing principle of building-up a Peri-
odic Table, lying in the nature of things, and generic pro-
gramming techniques can be considered as a candidate to
reveal this organizing principle similar to the principle of
organizing electrons in atoms.

If such a suggestion could be proved to be true, if dis-
covered, use of such an organizing principle would have a
great impact on practice of implementing visualizations.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

[2] introduced a three-layer architecture of the informa-
tion visualization system and enhanced signature with
two extra dimensions to characterize visualizations quan-
titatively.

Three layer architecture includes: (1) PTGVM, char-
acterizing information visualization methods from con-
ceptual most abstract point of observation as a front-
end; (2) middleware, comprising a hierarchy of classes,
their methods, and logic of their processing. In other
words middleware: (a) translates conceptual visualiza-
tion methods of layer (1) into classes in terms of OOP,
(b) comprises processing logic in the spirit of generic pro-
gramming, and (c) translates methods of classes into in-
structions of a Graphic Programming Language (GPL) of
Computer-Aided Publishing System (CAPS); (3) CAPS
with graphical packages as a back-end.

Quantitative signatures for representative visualizations
characterize complexity of application area (stands for
groups), and complexity of content area for periods.

Use of signatures makes it possible to position visualiza-
tions precisely inside a PTGVM.

1.3 Boost C++ Graph Library

BGL [3] is a powerful problem-solution software tool, cre-
ating solutions to entire families of problems, it imple-
ments graph algorithms be broadly applicable. Idea of
this paper is to prepare grounds to exploit potential of
BGL for a search for solution of the problem of developing
generic visualization methods.

2 Statement of the Problem

Tools and techniques, developed in [2] have a potential of
putting each of the GVM into proper box in a PTGVM
indisputably, make the table more precise, correct and
enhance it as well as GVM themselves.

To make it fully operational and functional, more con-
crete, less declarative it is necessary to create a data
base of representative visualizations (examining particu-
lar case studies) and run all of them through the proposed
technology of developing visualizations:

1. properly attributing them;

2. debugging and improving constituents of technology:
(a) PTGVM; (b) library of ADT, classes with their
data members and member functions, etc.

Organizing principle of a PTGVM is use of ADT, classes
to discriminate groups, so, they have to be discovered for
concrete case study of this paper.

ER diagrams can be attributed to a graph visualization

type, and BGL should prospectively be utilized to gener-
ate this particular case of visualizations.

If to keep in mind, that the final accomplishment for ER
diagrams case study is development of a genuine generic
visualization method in the framework of a PTGVM, fol-
lowing stages of development can be discriminated in the
growing degree of complexity:

1. a stage of using imperative programming;

2. a stage of using generic programming:

(a) OOP with inheritance;

(b) OOP with polymorphism;

(c) OOP with parametrized templates (BGL), i.e.
a final genuine generic implementation.

Each of the stages, becoming more generic, could be con-
sidered to be a specific problem, solved separately in a
sequence. After preceding problem has been solved, so-
lution of the next is started.

This paper focuses on OOP with inheritance stage (2(a))
of using generic programming techniques.

3 Solution of the Problem

3.1 General Description of Approach

Source [4] (as a reference example) lets to distinguish
following objects, which should be used in drawing ER
diagrams:

1. Entities. They comprise a multiline string label,
single- or double-line (in a case of a weak entity)
rectangular frame;

2. Attributes of entities. They comprise a multiline
string label, which can be underlined, if an attribute
is a key attribute, and an elliptic frame;

3. Relations. They comprise again a multiline string
label, and a single or double line (if a weak entity is
involved) rhombic frame;

4. Links with cardinality as a one-character label. They
can be realized as single- or double- connection lines.
They connect entities and attributes, entities and
relations, relations and attributes.

Multiline string label (both for entities and relations) has
such characteristic dimensions as width and height, and
they have to be computed.

Distance from the frame (rectangular or rhombic) to the
label block can be set to \fboxsep, as it is done usually
in LATEX.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

PARAGRAPH

Paragraph Id

Body

SUBSEC

PAR PAR

SUBSECTION

Subsection Id

Caption

Epistemological

Group 1. . .3

SEC

SUBSEC

SUBSEC

SECTION

Section Id

Caption

Epistemological

Group 1. . .3

CHAP

SEC SEC

CHAPTER

Chapter Id

Caption

Epistemological

Group 1. . .3

PREF

CHAP

PREFACE

Preface Id

Caption

Hierarchical

Level 1. . .3

PREF

PAR

1 M

1

1 M

1

1 M

1

1

1

1

1

M

Figure 1: ER diagram for prototypical and target forms covering range of entities PARAGRAPH, CHAPTER,
PREFACE

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

To render ER diagrams more aesthetically appealing hor-
izontal characteristic dimensions of entities and relations
should be harmonized in some way, for example, they
should be the same. Labels of the objects should be op-
timized in such a way, that their forms should match
closely encompassing frames.

In principal, in order to draw an ER diagram, it is re-
quired to master following elementary actions:

1. to build-up elementary objects, and visualize them;

2. put objects into a plane, mutually orienting them;

3. interconnect objects with lines, using some charac-
teristic points of the objects.

It can be expected, that three classes have to be designed,
and implemented, namely Entity, Relation, Arrow.

Methods or member functions of these classes should gen-
erate XY-pic-code [5], corresponding to the objects of the
visualization.

Potential advantages of exploiting OOP become quite ev-
ident. Changes into design of objects are done once in
the class implementation code, and after that all the in-
stances of this class (which can be quite numerous) use
the same new features, properties (data and methods)
immediately, saving visualization development time.

Such a practice involves less errors, it becomes possible
to focus on more conceptual, than low-level design, there
is less typing in the process.

As for the inheritance, class Relation can be derived from
class Entity, and it should override method Draw(), be-
cause in the case of Entity a frame should be rectangular,
contrary to rhombic frame in a case of Relation.

Main organizing program should create (instantiate) ob-
jects, invoke their methods, generate XY-pic-code, and
write it into a tex-file for further processing by LATEX
and other utilities.

In the following subsection principal details of technical
implementation of the approach with corresponding frag-
ments of code are briefly given.

3.2 Details of Technical Implementation
with Fragments of Code

Declaration of the class Entity follows.

class Entity {

//

public:

Entity(int , string , string , string , int ,

string , string , string , std::vector <

struc_attrib > vector_attributes , int ,

int , int , int);

void Define_Dimensions_for_Label () const;

~Entity ();

string Get_Ident_Partial () ;

void Redefine_SizeX_Using_StandardWidth ()

const;

void Define_Offsets () const ;

void Draw() ;

string Get_Predecessor () ;

int Get_i_Object_Rel_Pos_u() ;

// etc. for l (left), d (down), r (right)

string Get_Label () ;

int Get_Number_of_the_Object () ;

void SizeXY_One_Quarters () ;

private:

int i_Number_of_the_Object ;

string str_Predecessor ;

string str_Ident_Partial ;

string str_Label ;

int i_Number_of_Lines ;

string str_Label_First_Line ;

string str_Label_Last_Line ;

string str_Max_Width_Label_Fragment ;

//

ofstream ofs_File_to_Write_to ;

string str_File_Name_to_Write_to ;

ofstream ofs_File_to_Draw_Object ;

//

std::vector < struc_attrib > vector_

Attributes ;

//

int i_Object_Rel_Pos_u, i_Object_Rel_Pos_

l, i_Object_Rel_Pos_d, i_Object_Rel_

Pos_r ;

}; // end class Entity

Following structure defines attributes of Entity.

struct struc_attrib {

string str_Label , str_Control_Width ;

bool bool_Key ;

int i_Attrib_Rel_Pos_u, i_Attrib_Rel_Pos_

l, i_Attrib_Rel_Pos_d, i_Attrib_Rel_

Pos_r ;

} ;

Declaration of the class Relation follows.

class Relation2 : public Entity {

public:

Relation2 (int , string , string , string ,

int , string , string , string , std::

vector < struc_attrib >, int , int , int ,

int) ;

void print(ofstream) const ;

void Define_Dimensions_for_Label () ;

void Define_Rhombic_Dimension () ;

void Redefine_StandardWidth_Using_Rhombic

_Size() ;

void Redefine_Rhombic_Size_Using_

StandardWidth () ;

void Define_Offsets () ;

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

void Define_Size_Rhombic_One_Quarter () ;

void Draw() ;

~Relation2 ();

private:

ofstream ofs_File_to_Draw_Object ;

};

An example of creating an object PARAGRAPH of class
Entity follows.

// 001 PARAGRAPH: 1-line entity

// "PARAGRAPH"

// Attribute #1

//

struc_attrib_Utile.str_Label = "Paragraph

_Id" ;

struc_attrib_Utile.str_Control_Width = "

Paragraph _Id" ;

struc_attrib_Utile.bool_Key = true ;

struc_attrib_Utile.i_Attrib_Rel_Pos_u = 2;

// etc. for l (left), d (down), r (right)

//

vector_Attributes.push_back(struc_attrib_

Utile) ;

//

// Attribute #2

//

struc_attrib_Utile.str_Label = "Body" ;

struc_attrib_Utile.str_Control_Width = "

Body" ;

struc_attrib_Utile.bool_Key = false ;

struc_attrib_Utile.i_Attrib_Rel_Pos_u = 0;

// etc. for l (left), d (down), r (right)

//

vector_Attributes.push_back(struc_attrib_

Utile) ;

str_predecessor = "" ;

Entity ent_Paragraph (1, str_predecessor ,

"Paragraph", "PARAGRAPH", 1, "

PARAGRAPH", "PARAGRAPH", "PARAGRAPH",

vector_Attributes ,

i_object_rel_pos_u, i_object_rel_pos_l, i_

object_rel_pos_d, i_object_rel_pos_r) ;

ent_Paragraph.Define_Dimensions_for_Label(

);

An example of creating an object SEC_SUBSEC_SUBSEC of
class Relation

//

// 004 SEC_SUBSEC_SUBSEC: 3-line relation

-> rhombus

//

// SEC_

// SUBSEC_

// SUBSEC

//

i_object_rel_pos_u = 6, i_object_rel_pos_l

= 0, i_object_rel_pos_d = 0, i_object_

rel_pos_r = 0 ;

vector_Attributes.erase(vector_Attributes

.begin(), vector_Attributes.end()) ;

str_predecessor = "Subsection" ;

// str_predecessor = "" ;

Relation2 rel_Sec_Subsec_Subsec (4, str_

predecessor , "SecSubsecSubsec", "SEC

_\\\\ SUBSEC _\\\\ SUBSEC", 3, "SEC

_", "SUBSEC", "SUBSEC _", vector_

Attributes , i_object_rel_pos_u, i_

object_rel_pos_l, i_object_rel_pos_d, i

_object_rel_pos_r) ;

rel_Sec_Subsec_Subsec.Define_Dimensions_

for_Label() ;

rel_Sec_Subsec_Subsec.Define_Rhombic_

Dimension () ;

rel_Sec_Subsec_Subsec.Redefine_

StandardWidth_Using_Rhombic_Size() ;

Implementation of the method Entity::Define_

Dimensions_for_Label() follows.

void Entity :: Define_Dimensions_for_Label ()

const

{

cout << "\\ newlength {\\" << str_Ident_

Partial << "SizeX}" << endl ;

cout << "\\ newlength {\\" << str_Ident_

Partial << "SizeY}" << endl ;

//

cout << "\\ setlength {\\" << str_Ident_

Partial << "SizeX }{\\ widthof {" << str_

Max_Width_Label_Fragment << "} + \\

fboxsep *\\ real {2.0}}" << endl;

//

cout << "\\ setlength {\\" << str_Ident_

Partial << "SizeY }{\\ heightof {" << str_

Label_First_Line << "} + \\ depthof {" <<

str_Label_Last_Line << "} + \\

baselineskip *\\ real{" << i_Number_of_

Lines - 1 << ".0} + \\ fboxsep *\\ real

{2.0}}" << endl ;

//

cout << "\\ setlength {\\ StandardWidth }{\\

maxof {\\ StandardWidth }{\\" << str_Ident_

Partial << "SizeX" << "}}" << endl ;

}

This function results in following XY-pic-code for Entity
PARAGRAPH.

\newlength {\ ParagraphSizeX}

\newlength {\ ParagraphSizeY}

\setlength {\ ParagraphSizeX }{\ widthof{

PARAGRAPH} + \fboxsep *\real {2.0}}

\setlength {\ ParagraphSizeY }{\ heightof{

PARAGRAPH} + \depthof{PARAGRAPH} + \

baselineskip *\real {0.0} + \fboxsep *\real

{2.0}}

\setlength {\ StandardWidth }{\ maxof{\

StandardWidth }{\ ParagraphSizeX }}

This function results in followingXY-pic-code for Relation
SEC_SUBSEC_SUBSEC.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

\newlength {\ SecSubsecSubsecSizeX}

\newlength {\ SecSubsecSubsecSizeY}

\setlength {\ SecSubsecSubsecSizeX }{\ widthof{

SUBSEC _} + \fboxsep *\real {2.0}}

\setlength {\ SecSubsecSubsecSizeY }{\ heightof

{SEC_} + \depthof{SUBSEC} + \

baselineskip *\real {2.0} + \fboxsep *\real

{2.0}}

\setlength {\ StandardWidth }{\ maxof{\

StandardWidth }{\ SecSubsecSubsecSizeX }}

\newlength {\ SecSubsecSubsecSizeRhombic}

\setlength {\ SecSubsecSubsecSizeRhombic }{\

maxof{\ SecSubsecSubsecSizeX }{\

SecSubsecSubsecSizeY }+\ minof {\

SecSubsecSubsecSizeX }{\

SecSubsecSubsecSizeY }}

\setlength {\ StandardWidth }{\ maxof{\

StandardWidth }{\

SecSubsecSubsecSizeRhombic }}

Because of the lack of space some pertinent fragments of
code such as implementation for Entity::Draw(), result-
ing XY-pic-code for invocation of Paragaraph.Draw(), etc.
were omitted.

3.3 Some Observations on Practical Use of
Developed Techniques

Techniques to draw ER diagrams, studied in this paper in
the context of development of GVM, were applied practi-
cally as a tool to generate figures for publications, related
to relational knowledge representation of publishable ma-
terials.

An example of visualizations, which can be developed,
using techniques of this paper, is shown in Fig.1.

Acquired experience demonstrated, that use of OOP
paradigm (C++ programming language) is more efficient
comparing to development techniques, based on impera-
tive programming paradigm (C programming language).

In the case of OOP visualizations are generated one or
two orders quicker, process at whole is less error prone,
resulting visualizations themselves are more aesthetically
appealing.

4 Conclusions and Recommendations

Purpose of this paper is development of GVM to elab-
orate further a PTGVM by examining a particular case
of ER diagrams and applying generic programming tech-
niques and tools.

This paper can be considered to be a step towards
building-up a generic library for information visualiza-
tion.

Fragments of software implementations are given for the

stage of development, exploiting OOP with inheritance.

Hierarchy of classes was designed and implemented, pro-
grams to draw ER diagrams were developed, and a set of
exemplary ER diagrams was generated.

In order to position a visualization inside a PTGVM
properly, at first a generic implementation of the visu-
alization should be completed. After that it is necessary
to analyze complexity of classes themselves, their combi-
nations, and complexity of commands of an underlying
graphic language, used for the methods of the classes.

Signature (classes Entity, Relation, Arrow, commands
\POS, \txt, \ar, \underline, \frm) for this particular rep-
resentative visualization was defined.

Examined case study corresponds to the cell for a group
5, period 5 of prototypical PTVM of [1], which is also ER
diagrams. According to classification scheme of [2] case
study falls into Graph Generic ADT.

Next step in research is to produce a genuine generic
implementation of this type of visualizations. Following
techniques are planned to be used:

1. OOP with polymorphism (to realize polymorphic
method Draw);

2. OOP with parametrized templates (using BGL) to
realize a graph data model for the visualization and
apply graph traversal generic algorithm to a visual-
ization graph invoking polymorphic method Draw.

References

[1] R. Lengler and M. J. Eppler, “Towards a periodic
table of visualization methods of management,” in
Proc. Int. IASTED Conf. on Graphics and Visual-
ization in Engineering, Clear Water, Florida, USA,
2007.

[2] B. P. Leontyev, “Enhancement of a periodic table
and generic visualization methods,” in Proc. 10th
IASTED International Conference Computers and
Advanced Technology in Education (CATE-2007),
Beijing, China, Oct. 2007, pp. 96–101.

[3] J. G. Siek, L.-Q. Lee, and A. Lumsdale, The Boost
Graph Library: user guide and reference manual,
Addison-Wesley, 2002.

[4] C. J. Date, An Introduction to Database Systems,
7th ed. Pearson Education Asia Pte Ltd, 2000.

[5] K. H. Rose, “How to typeset pretty diagram arrows
with TEX-design decisions used in XY-pic,” in Proc.
7th European TEX Conference, Prague, Czechoslo-
vakia, 1992, pp. 183–190.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

