

Abstract—Needs for semi-structured Languages that use
user-defined tags like XML or other Markup languages are
extremely growing because of the explosive increase of
Internet usage, heterogeneous computing environments, and
ubiquitous computing technologies. Tree traversing schemes
for syntactic and semantic comparison of user-defined tags is
one of the key issues for success on the clustering, and Web
data clustering is important for management of huge amounts
of Web-based data. However, excessive tree traversing
causes expensive time and space consumption. With the
rapid growth of Web data usage and the importance of the
management, comparison techniques such as similarity
detection without tree traversing are more and more needed
for efficient information and database management. This
paper introduces a fast structural hierarchy extraction
technique without tree traversing on schema parse trees on
semi-structured language format data. This technique uses
Direct Invariant Encoding Scheme and manipulates tag
sequences same order as Depth First Search tree traversing
method. We use XML schema, DTD, extracted from XML
data to evaluate our fast structural hierarchy extraction
technique. We also use ontological similarity comparison
technologies, and those are based on WordNet. For
extraction of structural hierarchy, we apply LNS (Longest
Nesting common String) extraction method. With this
technique, semi-structured Web data management can be
easier and faster than any existing tree traversing methods.

Index Terms—Semi-Structured Languages, XML DTD,
Similarity Detection, User-defined tags

I. INTRODUCTION
 Semi-structured languages such as XML [1] need time

and efforts because of the use of their user-defined tags. As
the usage of semi-structured Web data increases, the need for
clustering and managing Web data also increases. However,
the comparison of semi-structured language format Web data
has difficulties because of the semi-structured characteristics,

Hyun-Joo Moon is an adjunct professor of the Department of Cultural

Contents, Hankuk University of Foreign Studies (HUFS), Seoul, 130-791,
Korea (phone: +82-11-9151-0335; fax: +82-2-824-3862; e-mail:
hyunjoomoon@gma il.com).

 Eun-Ser Lee is a professor of the Department of Computer Engineering,
Andong National University, Gyeongsangbuk-do, 760-749, Korea (e-mail:
eslee@andong.ac.kr).

Haeng-kon Kim is a professor of the Department of Computer
Information & Communication Engineering, Catholic University of Daegu,
Gyeongsangbuk-do, 712-702, Korea (e-mail: hangkon@cu.ac.kr).

in where user-defined tags cause semantic ambiguity,
different tag names may have same meanings on semantics,
or same tag names may have different meanings in different
structures. Some of these ambiguity problems in
semi-structured languages can be solved by ontological
techniques, and some can be solved by both syntactic and
semantic structural analysis. Our free-traversing technique
uses WordNet as its ontological solution for semantic
comparison, and also uses multi-tag sequences methods as its
time solution for syntactic comparison. This paper consists of
5 sections. Section 2 summaries related works, and Section 3
describes our system architectural layout and free-traversing
technique. In Section 4, we evaluate our technique by some
experiments. Finally, we conclude the result in Section 5.

II. RELATED WORKS
Related to the similarity detection algorithm, there are some
categories. One of the initial comparison methods is Tree
Edit Distance Algorithms. These algorithms can detect
changes in structured documents or semi-structured
documents and fix one of them with its graph edit operations.
Valiente's algorithm, Tai's tree-to-tree correction algorithm,
and Shasha and Zhang's algorithm are all based on atomic
edit operations on nodes, and can not consider subtree level
operations [4][8]. The second type is Structure-based
Document Differencing Algorithms. LaDiff and MH-Diff
included in the type use edit scripts based on the weighted
matching. These algorithms do not make good results in
semi-structured documents or in documents having node
duplications [2][5][7]. The third is Time Sequence-based
Algorithms [9] such as Time Warping methods or DFT-based
methods, deal with document comparison as frequencies.
They are totally different from other methods based on graph
matching or tree traversing algorithms that are generally
computationally expensive. These algorithms focus on the
computation of structural similarity for fast and effective
results of the management of Web data. They provide a
significant reduction of the required computation costs.
However, they do not have any solution for semantic problem
from ambiguity of semi-structured languages. The last one is
XClust [10] providing ontological semantic solution. XClust
uses a tree traverse algorithm including PCC (Path Context
Coefficient) concepts to capture the degree of similarity in
the paths of two elements. The ontological solution and tree
traversing causes a serious processing time delay, especially
in large-scale databases or dissimilar document groups. That
is, XClust is not a practical solution for semi-structured Web
data.

Clustering using Fast Structural Hierarchy
Extraction from User-Defined Tags for

Semi-Structural Languages
Hyun-Joo Moon, Haeng-kon Kim, Eun- Ser Lee, Member, IAENG

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

III. STRUCTURAL HIERARCHY EXTRACTION

A. System Architecture Layout
Our structural hierarchy extraction system, named XJune

[12, 13], is implemented to compare semi-structured Web
data without parse tree traversing. Therefore, we use DIES
(Direct Invariant Encoding Scheme) encoding method and it
generates same results as DFS (Depth First Search) of parse
tree traversing without tree traversing.

 Figure 1. Structural Hierarchy Extraction System

Figure 2 shows DIES encoding scheme used on XJune.
Each tag consists of a start tag and an end tag.

Figure 2. DIES Encoding Scheme

B. User-defined Tag Comparison
User-defined tag comparison including ontological

techniques needs very expensive time consumption.
However it can be a solution for ambiguity caused by
user-defined tags of semi-structured languages. XJune sends
each node name of trees to WordNet ontology system and
uses our additional functions to address this problem. The
similarity values between two tags are from 0 to 1. 0 means
they don't have any similarity, and 1 means they are exactly
same. We limit the steps calls of WordNet less than 3. Figure
3 describes the ontological comparison between trees as a
graphical view and a table view.

Figure 3. Matrix for User-defined Tag Comparison

TagNameSim algorithm in Figure 4 shows the algorithm
for the comparison of two XML DTDs. For this, TagSim,
the values in the table in Figure 2, should be calculated. We
assume that each tag is an element. Also, we will use tree
structure for easy understanding even though we use encoded
multi-tag sequences instead of parse tree. An element in
DTD1 is e1i∈d1 and an element in DTD2 is e2j∈d2, In here,
1≤i≤n and 1≤j≤m. The node number of DTD1, n, is
defined as NodeNumber(d1), and m is defined as
NodeNumber(d2). Tag name comparison for user-defined
tags is shown in Figure 3.

TagSim(t1, t2, threshold1, threshold2, map)

Input: t1 , t2 - two DTD trees to be compared with each other
 threshold1- The minimum ElementNameSim
 value to have the same tag index
 threshold2- The minimum ElementNameSim value
 to be included in LocalMatch
 map - the map that links each tag name to an index Number
Output: the degree of name similarity between the two DTD trees

Begin
 a1 ← TreeTraverse(t1)
 a2 ← TreeTraverse(t2)
 next ← 0
 matrix ← {}
 for each e1∈a1 do
 for each e2∈a2 do
 n1 ← e1.name
 n2 ← e2.name
 n = TagSim(n1, n2, 3)
 if n > threshold1 then
 if both names are not exists in map then
 put (n1, next) into map
 put (n2, next) into map
 next ← next + 1
 else if n1 is not exist in map then put (n1, index of n2) into map
 else if n2 is not exist in map then put (n2, index of n1) into map
 else
 if n1 is not exist in map then
 put (n1, next) into map
 next ← next + 1
 if n2 is not exist in map then
 put (n2, next) into map
 next ← next + 1
 matrix ← matrix ∪ (e1, e2, n)
 MatchList ← LocalMatch(matrix, |a1|, |a2|, threshold2)
 return ∑sim / Max(|a1|, |a2|)
 sim ∈ MatchList
End.
Function TreeTraverse(t)
Input: t - a DTD tree
Output: an element array using visitor pattern which traverse tree
 in depth-first mechanism
 TagNameSim(w1, w2, maxDepth) = OntologySim(w1,
w2, maxDepth)

Figure 4. User-defined Tag Comparison

C. Structural Hierarchy Extraction
For structural hierarchy, we use LCS (Longest Common

String) and LNS (Longest Nesting common String). LCS is
the same tags, which means the common nesting elements on

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

two DTDs. LCS occasionally includes some broken tags
generated by an end tag and a different start tag that have the
same encode. The problem occurs from the encoding scheme
using the same ending number for a start tag and its end tag.
To solve this problem we use LNS [12, 13] to filter the
broken tag pairs. Figure 5 shows the LCS and LNS
extraction process but in this case LCS is exactly same as
LNS, which means that there are no broken tags.

Figure 5. Structural Hierarchy Extraction Flow

By using each level of tags and their parent tag information,
LNS can detect broken tags. With LCS and LNS, we
successfully extract the same structural similarity from
semi-structured user-defined tags. Using ontological
techniques from WordNet and XJune, we could extract the
tag name similarity, and now we can extract the structural
hierarchy similarity. Using this syntactic and semantic
similarity detection method allows us to generate clear and
precise comparison of Web data. The whole structural
hierarchy comparison algorithm is shown in Figure 6. This
algorithm uses LCS and LNS from multi-level tag sequences
to compare two Web data.

Algorithm StructuralHierarchyExtraction(t1, t2, map)

Input: t1, t2 – two XML DTD trees
 map tag name to index map
Output: structural hierarchy similarity between two DTD trees

 Begin
 length ← 0
 x1 ← 0
 x2 ← 0
 seq1 ← TagSequence(t1)
 seq2 ← TagSequence(t2)
 for (match ← NextBestMatch(x1, x2)) ≠ nil do
 length ← match.length
 x1 ← match.i + match.length
 x2 ← match.j + match.length
 return length / ((|seq1|+ |seq2|)- length)
End.
 Function TagSequence(t) using visitor pattern
Function NextBestMatch(seq1, seq2, m1, m2)
Input:
 seq1, seq2: tag sequences for each DTD
 m1, m2: start index
Output:
 Next maximum-length match
 if there's no more match then nil
Begin
 if m1 >= |seq1| or m2 >= |seq2| then return nil
 if seq1[m1] = seq2[m2] then return (m1, m2, Length(seq1, seq2, m1, m2))
 else
 a ← Search(seq1, seq2, m1, m2)
 b ← Search(seq2, seq1, m2, m1)

 if a = nil and b = nil then return nil
 else if a = nil then return (b.j, b.i, b.length)
 else if b = nil then return (a.i, a.j, a.length)
 else if a.length >= b.length then return (a.i, a.j, a.length)
 else return (b.j, b.i, b.length)
End.
Function Search(seq1, seq2, m1, m2)
Begin
 for each pm1<=i<|seq1∈seq1 do
 for each qm2<=j<|seq2|∈seq2 do
 if pi = qjthen return (i, j, Length(seq1, seq2, i, j))
 return nil
End.
Function Length(seq1, seq2, m1, m2)
Input:
Output:
 The length matched from corresponding offset
 in each sequence

Figure 6. Structural Hierarchy Extraction

D. Comparison of Semi-structured Web Data using
Structural Hierarchy Extraction

In Figure 7, we can see the algorithm of the comparison of
two XML schema DTDs using structural hierarchy extraction.
The calculated comparison results are added with their
weights. We set the default weights of α and β as 0.4 and
0.6 for the simulation.

Algorithm SemiStructureComparison(t1, t2)

Input:
 t1, t2 - two XML DTD tree
Output:
 DTD similarity

Begin
 initialize map <as name to index>
 return α * TagSim(t1, t2, map)
 + β* StructuralHierarchyExtraction(t1, t2, map)
End.

Figure 7. Comparison for Semi-Structured Web Data

IV. EXPERIMENTS

A. Experimental Environment
XJune system is implemented by Java SE 6.0 on Windows

XP SP2 on Pentium M1.6 GHz RAM 1.56GB. We use JaxMe
2 DTD Parser to parse XML schema DTDs. XJune is running
with a user interface in Figure 8 for easy manipulation of the
thresholds and weights for XML schema DTD comparison.

Figure 8. User Interface for Web Data Comparison

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

B. Experimental Results
For the experiments, we use 4 DTDs in Figure 9; Book1,

Book2, Author1, and Article1. These four DTDs have some
similarities and some differences. For example, Book1 and
Book2 are almost same except some user-defined tag names
which have same meaning.

Figure 9. Sample DTDs for the Experiments

There are 6 possible combinations for the comparison, and

we show 3 cases of them in this paper. Figures 10, 11, and 12
show the results.

Figure 10. Comparison Result on Book1 and Article1

XClust system introduced ontological similarity detection
mechanism for semi-structured language XML. We use the
same DTDs on XClust system, and the results are shown in
Figure 13. XClust traverses the 2 DTD trees N+2 times for
each comparison for two elements in each DTD, when we
assume that the number of children of the element is N.

Figure 11. Comparison Result on Book2 and Author1

XClust has a good idea for extracting the semantic
similarity comparison, but the system has an important
disadvantage in an aspect of cost and time.

Figure 12. Comparison Result on Author1 and Article1

In the results, the processing time consumption is
extremely expensive. That is, extremely low speed when we
compare the results with XJune system. XJune uses
additional ontological techniques, but comparison speed is
very practical. When the numbers of nodes on DTD trees are
increased, XJune can have the fast processing speed but
XClust has serious processing time delay because of tree
traversing numbers. These experimental results show that
LNS extraction is one of the solutions for Web data
processing for the future.

We tested more than 200 DTDs for the evaluation of
XJune. As we have already mentioned, XClust is an excellent
approach to compute similarity using ontological techniques,
but it has problems such as low processing speed and
dependency on the number of elements or traversing. They
cause lack of generality and practicality. For example, if one
of the DTDs is a subset of the other, it should be different
from the case that two DTDs are different but have some
same elements. XClust also has a problem when it compares
one small document with one big document. The system has a
great comparison result when it compares similar sized

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

documents, but it is not good at comparison for totally
different sized documents.

Figure 13. Comparison Results on XClust

We know that the management of huge amount of Web
data is very important for the future, and semi-structured
Web data, such as XML, will be more and more increased.
With some metadata such as multi tag sequences of element
level average and deviation, semi-structured Web data can be
managed easily. Existing structural similarity detection
methods cannot deal with semantic similarities, especially for
semi-structured languages. However, free-traversing
technique can address these problems as you can see in
Figure 14.

 Tree-distance Structure-based XClust XJune

Analysis
Method Structure Structure Structure

&Semantic
Structure

&Semantic

Ontology N/A N/A Available Available

Additional
Ontology N/A N/A N/A Available

Processing
Speed Medium Fast Extremely

Slow Fast

1:M Mapping N/A N/A Available Available

of Tree
Traversing

N times
/each comp. None N+2 times

/each comp. None

Figure 14. Evaluation of Algorithms

V. CONCLUSIONS
User-defined tags are used in many markup languages and

have lots of advantages such as flexibility and scalability.
However they cause lots of ambiguities which are hard to
manipulate in way what we originally intend. Managing
semi-structured format data is one of the time-consuming
tasks and needs lots of time and effort. Structural hierarchy
extraction technique is useful for comparison for various
fields of semi-structured language format data processing.
Heterogeneous and dynamic environment and increase of
Internet usage make a need for fast and effective techniques
for the management of huge amount of Web data, and
additionally XML-based Web data has a serious problem of
ambiguity from its semi-structured user-defined tag

structures. The problem costs expensive time and space
consumption, and the cost is getting much growing more and
more with the explosive Web usage.

This paper proposes a structural hierarchy extraction
technique using LNS extraction scheme for a solution dealing
with semi-structured Web data. Using this comparison
technique gives many advantages on both flexible semantic
compatibility and practical processing time. When we
consider further extension of Internet and Web usages, this
technique can be one of good solutions for the future
management of semi-structured Web data. This comparison
technique provides fast processing time and reasonable cost
for dealing with semi-structured data for the future.

REFERENCES

[1] Extensible Markup Language (XML) 1.0, Available on
 http://www.w3c.org/TR/REC-xml, (1998)

[2] Andrzej Goscinski, Mirion Brearman, “Resource Managem-
 ent in Large Distributed Systems”, ACM SIGOPS,
 Operating Systems Review Vol. 24, 1990, pp. 7–25.
[3] W. Lian, D. W. Cheung, S. Yiu “An Efficient and Scalable
 Algorithm for Clustering XML Documents by Structure”,
 IEEE Transactions on Knowledge and Data Engineering, Vol.
 16, No. 1. Jan., (2004)
[4] G. Costa, G. Manco, R. Ortale, A. Tagarelli “A Tree- Based
 Approach to Clustering XML Documents by Structure”,
 PKDD'04, LNAI 3202 (2004) 137-148

[5] P. Klein, S. Tirthapura, D. Sharvit, B. Kimia “A Tree-edit
 -distance Algorithm for Comparing Simple, Closed Shapes”,
 Proceedings of the 11th Annual ACM SIAM Symposium of
 Discrete Algorithms (2000) 696-704

[6] T. Dalamagas, T. Cheng, K. J. Winkel, T. Sellis “Clustering
XML Documents Using Structural Summaries”, EDBT'04
Workshops, LNCS 3268 (2004) 547-556

[7] E. Borenstein, E. Sharon, S. Ullman “Combining Top-down and
Bottom-up Segmentation”, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Jun., (2004)

[8] R. A. Ekram, A. Adma, O. Baysal “diffX: An Algorithm to
Detect Changes in Multi-Version XML Documents”,
Proceedings of the 2005 Conference on the Centre for Advanced
Studies on Collaborative Research (2005)

[9] K. Zhang, J. T. Wang, D. Shasha “On the Editing Distance
between Undirected Acyclic Grahphs and Related Problems”,
Proceedings of the 6th Annual Symposium of Combinatorial
Pattern Matching (1995)

[10] D. Rafiei, A. Mendelzon “Similarity-Based Queries for Time
Series Data”, Proceedings of the ACM International Conference
on Management of Data, May, (1997) 13-24

[11] M. L. Lee, L. H. Yang, W. Hsu, X. Yang “XClust: Clustering
XML Schemas for Effective Integration”, Proceedings of the
11th ACM International Conference on Information and
Knowledge Management, (2002) 292-299

[12] H. J. Moon, K. J. Kim, G. C. Park, C. W. Yoo, “Effective
Similarity Discovery from Semi-structured Documents”,
International Journal of Multimedia and Ubiquitous
Engineering, Vol. 1, No. 4 (2006) pp12-18

[13] H. J. Moon, S. H. Kim, J. B. Moon, E. S. Lee, "An Effective
Data Processing Method for Fast Clustering", ICCSA'08, (2008)

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

