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Abstract— The importance of software quality is 

becoming a motivating force for the development of 

techniques like Artificial Neural Network (ANN), 

which are being used for the design of prediction 

models of quality attributes.  The purpose of this 

work is to examine the application of ANN for 

software quality prediction using Object-Oriented 

(OO) metrics. Testing effort has been predicted using 

ANN method and independent variables are OO 

metrics given by Chidamber and Kemerer. The public 

domain NASA data has been used to find the 

relationship between OO metrics and testing effort. 

The model has estimated testing effort within 35 

percent of the actual effort in more than 72.54 percent 

of the classes, and with a MARE of 0.25. The results 

are quite interesting, however, more similar types of 

studies are required to be carried out with large data 

sets in order to establish the acceptability of the model. 
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I. INTRODUCTION 

 

There are several metrics available in the 

literature to capture the quality of OO design and 

code, for example, (Aggarwal et al. [13]; Briand et 

al., [14, 15]; Bieman and Kang [7]; Cartwright and 

Shepperd [17]; Chidamber and Kemerer [21, 22]; 

Harrison et al. [20]; Henderson-sellers [3]; Hitz and 

Montazeri [18]; Lake and Cook [2]; Li and Henry 

[27]; Lee et al. [28] Lorenz and Kidd [19]; 

Tegarden et al [5]). 

These metrics provide ways to evaluate the 

quality of software and their use in earlier phases of 

software development that can help organizations 

in assessing large software development quickly, at 

a reasonable cost.  
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But how do we know which metrics are useful in 

capturing important quality attributes such as fault-

proneness, effort, productivity or amount of 

maintenance modifications? An empirical study of 

real systems may provide relevant answers. There 

have been empirical studies evaluating the impact 

of OO metrics on software quality and constructing 

models that utilize them in predicting quality 

attributes in the system, such as  (Basili et al. [26]; 

Binkley and Schach [1]; Briand et al [16]; 

Cartwright and Shepperd [17]; Chidamber and 

Kemerer [23]; El Emam et al. [9]; Gyimothy et al. 

[24]; Harrison et al. [20]; Li and Henry [27]; Ping 

et al. [29]).      

      Khoshgaftaar et al. [25] introduced the use of 

the neural networks as a tool for predicting 

software quality. In their study, they presented a 

large telecommunications system, classifying 

modules as fault prone or not fault prone. They 

compared the ANN model with a non-parametric 

discriminant model, and found that ANN model 

had better predictive accuracy. We conduct our 

study in the OO paradigm. However, since the OO 

paradigm is different from procedural paradigm, 

different software design metrics have to be defined 

and used. We explore the relationship between 

these design metrics and testing effort. Our ANN 

model aims to predict OO software quality by 

estimating the number of lines added or changed 

per class throughout the life cycle of the defect. 

Unlike regression approaches, which fit the data 

to a descriptive function, in ANN the input data is 

transformed on each layer, changing the 

dimensional space to define the rule to get to the 

decision region. Thus, the regression and ANN 

approaches are inherently different, raising the 

question to evaluate performance of ANN approach. 

To investigate this question, the performance of 

ANN method was analysed in the study for 

predicting testing effort. The public domain NASA 

data set is used in this study to empirically evaluate 

the relationship of OO software metrics with 

number of lines changed per class. 

    The paper is organized as follows: Section 2 

provides overview of existing studies. Section 3 
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summarizes the metrics studied and describes the 

sources from which data is collected. Section 4 

presents the research methodology followed in this 

paper. The results of the study are given in section 

5. Conclusions of the research are presented in 

section 6. 

 

II. RELATED WORK 

 

    Based on a study of eight medium-sized systems, 

developed by students Basili et al. [26] found that 

several of the Chidamber and Kemerer metrics 

were associated with fault proneness. Briand et al. 

[18] empirically explored the relationship between 

OO metrics and the probability of fault detection in 

system classes. Their results indicated that very 

accurate prediction models could be derived to 

predict faulty classes. 

    Yu et al. [29] chose eight metrics, and they 

examined the relationship between these metrics 

and the fault-proneness. The subject system was the 

client side of a large network service management 

system developed by three professional software 

engineers. It was written in Java consisting of 123 

classes and around 34,000 lines of code. First, they 

examined the correlation among the metrics and 

found four highly correlated subsets. Then, they 

used univariate analysis to find out which metrics 

could detect faults and which could not.  

Gyimothy et al. [24] empirically validated 

Chidamber and Kemerer [21] metrics on open 

source software for fault prediction. They employed 

regression (linear and logistic regression) and 

machine learning methods (neural network and 

decision tree) for model prediction. 

Most of these prediction models are built using 

statistical models. ANN has seen an explosion of 

interest over the years, and is being successfully 

applied across a range of problem domains such as 

finance, medicine, engineering, geology and 

physics. Indeed, neural networks are being 

introduced to solve the problems of prediction, 

classification, or control. ANN can be used as a 

predictive model because it is very sophisticated 

modeling technique and is capable of modeling 

complex functions.  

Khoshgoftaar et al. [25] presented a case study of 

real-time avionics software to predict the testability 

of each module from static measurements of source 

code. They found that ANN is a promising 

technique for building predictive models, because 

they can model nonlinear relationships.  

The ANN model built in our study aims to 

predict software quality by estimating the number 

of lines changed per class.  

 

III. RESEARCH BACKGROUND 

 

In this work, we empirically validate OO metrics 

given by Chidamber and Kemerer [21]. The 

dependent variable is testing effort measured in 

terms of lines of code added or changed during the 

life cycle of a defect. In this section, we present the 

summary of dependent and independent variables 

chosen in this paper (Section A) and the description 

about the empirical data collection is provided in 

Section B.  

 

A. Dependent and Independent Variables 

The continuous dependent variable in our study 

is testing effort. The goal of our study is to 

empirically explore the relationship between OO 

metrics and testing effort at the class level.  We use 

ANN to predict testing effort per class. Testing 

effort is defined as lines of code changed or added 

throughput the life cycle of the defect per class. The 

independent variables are OO metrics chosen for 

this study. The metrics selected in this study are 

summarized in Table 1. 

 

B. Empirical Data Collection 

This study makes use of public domain data set 

KC1 from the NASA Metrics Data Program [38]. 

The data in KC1 was collected from a storage 

management system for receiving/processing 

ground data, which was implemented in the C++ 

programming language. This system consists of 145 

classes that comprise of 2107 methods, with a total 

of 40K lines of code. KC1 provides both class-level 

and method-level static metrics. At the method 

level, 21 software product metrics based on 

product’s complexity, size and vocabulary are 

given. The testing effort is measured by using the 

number of lines changed per class. At the class 

level, values of 10 metrics are computed including 

seven metrics given by Chidamber and Kemerer 

[21]. These OO metrics are taken in our study (see 

Table 1) for analysis. In KC1 three files are of 

particular interest, one representing the association 

between classes and modules, second representing 

association between modules and defects and third 

representing association between defects and lines 

of code added or changed. 
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TABLE 1 

 METRICS STUDIED  

Metric Definition Sources 

Coupling between Objects 

(CBO) 

CBO for a class is count of the number of other classes to 

which it is coupled and vice versa. 

[21] 

Lack of Cohesion 

(LCOM) 

It counts number of null pairs of methods that do not have 

common attributes. 

[21][11] [12] 

Number of Children 

(NOC) 

The NOC is the number of immediate subclasses of a class 

in a hierarchy. 

[21][11] [12] 

Depth of Inheritance 

(DIT) 

The depth of a class within the inheritance hierarchy is the 

maximum number of steps from the class node to the root 

of the tree. 

[21][11] [12] 

Weighted Methods per 

Class (WMC) 

The WMC is a count of sum of complexities of all methods 

in a class.  

 

[21][11] [12] 

Response for a Class 

(RFC) 

The response set of a class (RFC) is defined as set of 

methods that can be potentially executed in response to a 

message received by an object of that class.  

[21][11] [12] 

Lines of Code (LOC) It counts number of methods defined in a class.  

 

  

IV. RESEARCH METHODOLOGY 

 

We used the following methodology in this study: 

1. The input metrics were normalized using min-

max normalization. Min-max normalization 

performs a linear transformation on the original 

data [8]. Suppose that minA and maxA are the 

minimum and maximum values of an attribute A. 

It maps value v of A to v’ in the range 0 to 1 

using the formula: 

AA

Av
v

minmax

min
'

−

−
=  

 

  (1) 

2. Perform principal components analysis on the 

OO metrics to determine whether these metrics 

are independent or are capturing the same 

underlying property of the object being measured. 

3. Perform univariate analysis to find the individual 

effect of each metrics on the lines of code added 

or changed. 

4. Develop ANN model based on training data sets. 

5. Apply the ANN model to validate data set in 

order to evaluate the accuracy of the model. In 

order to predict accuracy of a model it should be 

applied on different data sets. We therefore 

performed k-cross validation of models [16]. The 

data set is randomly divided into k subsets. Each 

time one of the k subsets is used as the test set 

and the other k-1 subsets are used to form a 

training set. Hence, we get the fault proneness for 

all the k classes. 

 

A. ANN Modeling 

 The network used in this work belongs to 

Multilayer Feed Forward networks and is referred 

to as M-H-Q network with M source nodes, H 

nodes in hidden layer and Q nodes in the output 

layer [10]. The input nodes are connected to every 

node of the hidden layer but are not directly 

connected to the output node. Thus, the network 

does not have any lateral or shortcut connection. 

The ANN was trained by standard error back 

propagation algorithm at a learning rate of 0.005, 

having the minimum square error as the training 

stopping criterion.  

The input layer has one unit for each input 

variable. Each input value in the data set is 

normalized within the interval [0, 1] using min-max 

normalization.  

 We use one hidden layer as what can be achieved 

in function approximation with more than one 

hidden layer can also be achieved by one hidden 

layer [25]. There is one unit in the output layer. The 

output unit with value greater than a threshold 

(cutoff point) indicates the class selected by the 

network is fault prone otherwise, it is not. The 

summary of ANN used in this study is shown in 

Table 2. 
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TABLE 2 

 ANN SUMMARY 

Architecture 

Layers      3 

Input Units  7 

Hidden Units 22 

Output Units 1 

Training  

Transfer Function Tansig 

Algorithm  Back Propagation 

Training Function TrainBR 

 

We performed univariate analysis to find out the 

metrics that are most important in predicted testing 

effort. Then we find the combined effect of OO 

metrics on testing effort using backward 

elimination method with metrics selected in 

principal component analysis and univariate 

analysis. The backward elimination method 

includes all the independent variables in the model. 

Variables are deleted one at a time from the model 

until stopping criteria is fulfilled.  

 

B. Performance Evaluation 

In this study, the main measure used for 

evaluating model performance is the Mean 

Absolute Relative Error (MARE). MARE is the 

preferred measure for calculating error and is 

calculated as follows [6]: 

n
actual

actualestimate
n

i

÷












 −
= ∑

=1

MARE  

                                                

(2) 

where: 

estimate is the  predicted output by the network for 

each observation. 

n are the number of observations.  

“To establish whether models are biased and tend 

to over or under estimate, the Mean Relative Error 

(MRE) is calculated as follows” [6]: 

n
actual

actualestimate
n

i

÷












 −
= ∑

=1

MRE  

                                                

(3) 

A large positive MRE would suggest that the 

model over estimates the number of lines changed 

per class, whereas a large negative value will 

indicate the reverse [6]. 

Mean Square Error (MSE) is calculated as follows: 

( ) nactualestimate

n

i

÷













−= ∑

=1

2
MSE  

                                              

(4) 

 

 

V. RESULTS 

In this section, we present the results of the 

analysis performed to find the relationship between 

OO metrics and testing effort of the classes. 

 

A. ANN Results  

In this section, we present the results of 

univariate and multivariate analysis using ANN 

method.  

 

Univariate Analysis Results 

The Table 3 provides the MSE, MARE, MRE, 

correlation coefficient (r) between actual and 

predicted testing effort measured in terms of lines 

of code added or changed per defect in a class 

during the software development life cycle, 

significance of r (p) for each measure. 

The predicted lines of code added or changed 

using SLOC metric are highly correlated with 

actual lines of code added or changed. Furthermore, 

the values of MARE (0.02) and MRE (0.31) are 

lowest for SLOC metric. Hence, it is the best 

predictor of testing effort. WMC and RFC also 

show less values of MARE. NOC metric predicted 

constant values of testing effort, hence value of 

correlation coefficient (r) could not be calculated. 

The values of MRE and MARE are very high for 

NOC and DIT metrics. Hence, these metrics will 

not be considered in model prediction using ANN 

method.  

 

TABLE 3 

RESULTS OF UNIVARIATE ANALYSIS 

Metric MSE MARE MRE r p 

CBO 1.284 0.23 0.57 0.796 0.000 

LCOM 1.923 0.27 0.61 0.672 0.000 

NOC 3.522 0.4 0.9 - - 

RFC 1.009 0.04 0.38 0.843 0.000 

WMC 0.904 0.03 0.35 0.861 0.000 

SLOC 0.737 0.02 0.31 0.888 0.000 

DIT 3.03 0.31 0.87 0.377 0.003 

 

Multivariate Analysis Results 

We used ANN technique to predict the testing 

effort of the classes. This method is rarely applied 

in this area. The inputs to the network were the 

independent metrics having less MARE values in 

univariate analysis. The network was trained using 

the back propagation algorithm. Table 2 shows the 

best architecture, which was experimentally 

determined. We used backward elimination method 

for metrics selection (see Section IV). The model is 

trained using training data sets and evaluated on 

validation data set using 10-cross validation method. 

Table 4 shows the MARE, MRE, r and p-value 
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results of ANN model evaluated using 10-cross 

validation. The correlation between the predicted 

lines of code changed and the actual lines of code 

changed is represented by the coefficient of 

correlation (r). The significant level of a validation 

is indicated by a p-value. A commonly accepted p-

value is 0.05. 

When model evaluation is performed using 10-

cross validation, the percentage error smaller than 

10 percent, 20 percent, and 35 percent is shown in 

Table 5. The value of MARE and MRE are 0.25 

and -0.06 respectively. 

 

TABLE 4 

VALIDATION RESULTS OF ANN MODEL  

MSE 0.011 

MARE 0.25 

MRE -0.06 

r 0.911 

p-value 0.000 

 

TABLE 5 

ANALYSIS OF MODEL EVALUATION 

ACCURACY 

 

 
The value of correlation coefficient (r) between 

the predicted lines of code added or changed and 

the actual lines of code added or changed is 0.911. 

This means the predicted testing effort and actual 

testing effort are highly correlated. Thus, the results 

show that the accuracy of the model predicted using 

ANN is good.  

Figure 1 shows the relationship between actual 

and predicted number of lines added or changed per 

class. Figure 2 shows the squared error (in percent) 

of model predicted, for each data point. From the 

result shown in Figure 1 and Figure 2 and Table 5, 

it is observed that the predicted values are in good 

agreement with actual values and the predicted 

error is less. Therefore, the proposed ANN model 

with the developed structure shown in Table 2 can 

perform good prediction with least error. We 

conclude that impact of prediction is valid for this 

data set. 

 

VI. CONCLUSIONS 

 

This empirical study presents the prediction of 

testing effort using ANN technique. We conducted 

an empirical analysis of the Chidamber and 

Kemerer OO metric suite. The main goal of our 

study was to examine ANN method in order to find 

individual and combined impact of OO metrics on 

testing effort. We used public domain NASA data 

set to find the relationship between OO metrics and 

testing effort measured in terms of number of lines 

changed or added per class. The results presented 

above shows that these independent variables 

appear to be useful in predicting testing effort. The 

ANN model demonstrated that they were able to 

estimate testing effort within 35 percent of the 

actual effort in more than 72.54 percent of the 

classes, and with a MARE of 0.25. Thus, ANNs 

have shown their ability to provide an adequate 

model for predicting testing effort. 

The performance of ANN model is to a large 

degree dependent on the data on which they are 

trained, and the availability of suitable system data 

will determine the extent to which testing effort 

models can be developed. However, these results 

provide guidance for future research on the use of 

ANN method to find the impact of OO metrics on 

fault proneness, further validations are necessary 

with different systems to draw stronger conclusions. 

     More similar type of studies must be carried out 

with large data sets to get an accurate measure of 

performance outside the development population. 

We further plan to replicate our study to predict 

models based on other artificial intelligence 

techniques. 
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Fig. 1: Comparison between Actual and 

Predicted values for Testing Effort 

ARE Range Percent 

0-10% 37.25 

11-20% 9.8 

21-35% 25.49 

>35% 27.45 
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Fig 2: Squared Error with respect to each Data 

Point 
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