
Predicting Testing Effort Using Artificial

Neural Network

 Yogesh Singh, Arvinder Kaur, Ruchika Malhotra

Abstract— The importance of software quality is

becoming a motivating force for the development of

techniques like Artificial Neural Network (ANN),

which are being used for the design of prediction

models of quality attributes. The purpose of this

work is to examine the application of ANN for

software quality prediction using Object-Oriented

(OO) metrics. Testing effort has been predicted using

ANN method and independent variables are OO

metrics given by Chidamber and Kemerer. The public

domain NASA data has been used to find the

relationship between OO metrics and testing effort.

The model has estimated testing effort within 35

percent of the actual effort in more than 72.54 percent

of the classes, and with a MARE of 0.25. The results

are quite interesting, however, more similar types of

studies are required to be carried out with large data

sets in order to establish the acceptability of the model.

 Keywords— Software quality, Measurement,

Metrics, Artificial neural network, Coupling,

Cohesion, Inheritance, Principal component analysis

I. INTRODUCTION

There are several metrics available in the

literature to capture the quality of OO design and

code, for example, (Aggarwal et al. [13]; Briand et

al., [14, 15]; Bieman and Kang [7]; Cartwright and

Shepperd [17]; Chidamber and Kemerer [21, 22];

Harrison et al. [20]; Henderson-sellers [3]; Hitz and

Montazeri [18]; Lake and Cook [2]; Li and Henry

[27]; Lee et al. [28] Lorenz and Kidd [19];

Tegarden et al [5]).

These metrics provide ways to evaluate the

quality of software and their use in earlier phases of

software development that can help organizations

in assessing large software development quickly, at

a reasonable cost.

Manuscript received June 16, 2008..

Prof. Yogesh Singh is with GGS Indraprastha University, Delhi,

India (email: ys66@rediffmail.com)

Dr. Arvinder Kaur is with GGS Indraprastha University, Delhi,

India (e-mail: arvinderkaurtakkar@yahoo.com.)

Ruchika Malhotra (Corresponding Author phone: 91-011-

26431421) is with GGS Indraprastha University, Delhi, India

(email: ruchikamalhotra2004@yahoo.com)

But how do we know which metrics are useful in

capturing important quality attributes such as fault-

proneness, effort, productivity or amount of

maintenance modifications? An empirical study of

real systems may provide relevant answers. There

have been empirical studies evaluating the impact

of OO metrics on software quality and constructing

models that utilize them in predicting quality

attributes in the system, such as (Basili et al. [26];

Binkley and Schach [1]; Briand et al [16];

Cartwright and Shepperd [17]; Chidamber and

Kemerer [23]; El Emam et al. [9]; Gyimothy et al.

[24]; Harrison et al. [20]; Li and Henry [27]; Ping

et al. [29]).

 Khoshgaftaar et al. [25] introduced the use of

the neural networks as a tool for predicting

software quality. In their study, they presented a

large telecommunications system, classifying

modules as fault prone or not fault prone. They

compared the ANN model with a non-parametric

discriminant model, and found that ANN model

had better predictive accuracy. We conduct our

study in the OO paradigm. However, since the OO

paradigm is different from procedural paradigm,

different software design metrics have to be defined

and used. We explore the relationship between

these design metrics and testing effort. Our ANN

model aims to predict OO software quality by

estimating the number of lines added or changed

per class throughout the life cycle of the defect.

Unlike regression approaches, which fit the data

to a descriptive function, in ANN the input data is

transformed on each layer, changing the

dimensional space to define the rule to get to the

decision region. Thus, the regression and ANN

approaches are inherently different, raising the

question to evaluate performance of ANN approach.

To investigate this question, the performance of

ANN method was analysed in the study for

predicting testing effort. The public domain NASA

data set is used in this study to empirically evaluate

the relationship of OO software metrics with

number of lines changed per class.

 The paper is organized as follows: Section 2

provides overview of existing studies. Section 3

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

summarizes the metrics studied and describes the

sources from which data is collected. Section 4

presents the research methodology followed in this

paper. The results of the study are given in section

5. Conclusions of the research are presented in

section 6.

II. RELATED WORK

 Based on a study of eight medium-sized systems,

developed by students Basili et al. [26] found that

several of the Chidamber and Kemerer metrics

were associated with fault proneness. Briand et al.

[18] empirically explored the relationship between

OO metrics and the probability of fault detection in

system classes. Their results indicated that very

accurate prediction models could be derived to

predict faulty classes.

 Yu et al. [29] chose eight metrics, and they

examined the relationship between these metrics

and the fault-proneness. The subject system was the

client side of a large network service management

system developed by three professional software

engineers. It was written in Java consisting of 123

classes and around 34,000 lines of code. First, they

examined the correlation among the metrics and

found four highly correlated subsets. Then, they

used univariate analysis to find out which metrics

could detect faults and which could not.

Gyimothy et al. [24] empirically validated

Chidamber and Kemerer [21] metrics on open

source software for fault prediction. They employed

regression (linear and logistic regression) and

machine learning methods (neural network and

decision tree) for model prediction.

Most of these prediction models are built using

statistical models. ANN has seen an explosion of

interest over the years, and is being successfully

applied across a range of problem domains such as

finance, medicine, engineering, geology and

physics. Indeed, neural networks are being

introduced to solve the problems of prediction,

classification, or control. ANN can be used as a

predictive model because it is very sophisticated

modeling technique and is capable of modeling

complex functions.

Khoshgoftaar et al. [25] presented a case study of

real-time avionics software to predict the testability

of each module from static measurements of source

code. They found that ANN is a promising

technique for building predictive models, because

they can model nonlinear relationships.

The ANN model built in our study aims to

predict software quality by estimating the number

of lines changed per class.

III. RESEARCH BACKGROUND

In this work, we empirically validate OO metrics

given by Chidamber and Kemerer [21]. The

dependent variable is testing effort measured in

terms of lines of code added or changed during the

life cycle of a defect. In this section, we present the

summary of dependent and independent variables

chosen in this paper (Section A) and the description

about the empirical data collection is provided in

Section B.

A. Dependent and Independent Variables

The continuous dependent variable in our study

is testing effort. The goal of our study is to

empirically explore the relationship between OO

metrics and testing effort at the class level. We use

ANN to predict testing effort per class. Testing

effort is defined as lines of code changed or added

throughput the life cycle of the defect per class. The

independent variables are OO metrics chosen for

this study. The metrics selected in this study are

summarized in Table 1.

B. Empirical Data Collection

This study makes use of public domain data set

KC1 from the NASA Metrics Data Program [38].

The data in KC1 was collected from a storage

management system for receiving/processing

ground data, which was implemented in the C++

programming language. This system consists of 145

classes that comprise of 2107 methods, with a total

of 40K lines of code. KC1 provides both class-level

and method-level static metrics. At the method

level, 21 software product metrics based on

product’s complexity, size and vocabulary are

given. The testing effort is measured by using the

number of lines changed per class. At the class

level, values of 10 metrics are computed including

seven metrics given by Chidamber and Kemerer

[21]. These OO metrics are taken in our study (see

Table 1) for analysis. In KC1 three files are of

particular interest, one representing the association

between classes and modules, second representing

association between modules and defects and third

representing association between defects and lines

of code added or changed.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

TABLE 1

 METRICS STUDIED

Metric Definition Sources

Coupling between Objects

(CBO)

CBO for a class is count of the number of other classes to

which it is coupled and vice versa.

[21]

Lack of Cohesion

(LCOM)

It counts number of null pairs of methods that do not have

common attributes.

[21][11] [12]

Number of Children

(NOC)

The NOC is the number of immediate subclasses of a class

in a hierarchy.

[21][11] [12]

Depth of Inheritance

(DIT)

The depth of a class within the inheritance hierarchy is the

maximum number of steps from the class node to the root

of the tree.

[21][11] [12]

Weighted Methods per

Class (WMC)

The WMC is a count of sum of complexities of all methods

in a class.

[21][11] [12]

Response for a Class

(RFC)

The response set of a class (RFC) is defined as set of

methods that can be potentially executed in response to a

message received by an object of that class.

[21][11] [12]

Lines of Code (LOC) It counts number of methods defined in a class.

IV. RESEARCH METHODOLOGY

We used the following methodology in this study:

1. The input metrics were normalized using min-

max normalization. Min-max normalization

performs a linear transformation on the original

data [8]. Suppose that minA and maxA are the

minimum and maximum values of an attribute A.

It maps value v of A to v’ in the range 0 to 1

using the formula:

AA

Av
v

minmax

min
'

−

−
=

 (1)

2. Perform principal components analysis on the

OO metrics to determine whether these metrics

are independent or are capturing the same

underlying property of the object being measured.

3. Perform univariate analysis to find the individual

effect of each metrics on the lines of code added

or changed.

4. Develop ANN model based on training data sets.

5. Apply the ANN model to validate data set in

order to evaluate the accuracy of the model. In

order to predict accuracy of a model it should be

applied on different data sets. We therefore

performed k-cross validation of models [16]. The

data set is randomly divided into k subsets. Each

time one of the k subsets is used as the test set

and the other k-1 subsets are used to form a

training set. Hence, we get the fault proneness for

all the k classes.

A. ANN Modeling

 The network used in this work belongs to

Multilayer Feed Forward networks and is referred

to as M-H-Q network with M source nodes, H

nodes in hidden layer and Q nodes in the output

layer [10]. The input nodes are connected to every

node of the hidden layer but are not directly

connected to the output node. Thus, the network

does not have any lateral or shortcut connection.

The ANN was trained by standard error back

propagation algorithm at a learning rate of 0.005,

having the minimum square error as the training

stopping criterion.

The input layer has one unit for each input

variable. Each input value in the data set is

normalized within the interval [0, 1] using min-max

normalization.

 We use one hidden layer as what can be achieved

in function approximation with more than one

hidden layer can also be achieved by one hidden

layer [25]. There is one unit in the output layer. The

output unit with value greater than a threshold

(cutoff point) indicates the class selected by the

network is fault prone otherwise, it is not. The

summary of ANN used in this study is shown in

Table 2.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

TABLE 2

 ANN SUMMARY

Architecture

Layers 3

Input Units 7

Hidden Units 22

Output Units 1

Training

Transfer Function Tansig

Algorithm Back Propagation

Training Function TrainBR

We performed univariate analysis to find out the

metrics that are most important in predicted testing

effort. Then we find the combined effect of OO

metrics on testing effort using backward

elimination method with metrics selected in

principal component analysis and univariate

analysis. The backward elimination method

includes all the independent variables in the model.

Variables are deleted one at a time from the model

until stopping criteria is fulfilled.

B. Performance Evaluation

In this study, the main measure used for

evaluating model performance is the Mean

Absolute Relative Error (MARE). MARE is the

preferred measure for calculating error and is

calculated as follows [6]:

n
actual

actualestimate
n

i

÷

 −
= ∑

=1

MARE

(2)

where:

estimate is the predicted output by the network for

each observation.

n are the number of observations.

“To establish whether models are biased and tend

to over or under estimate, the Mean Relative Error

(MRE) is calculated as follows” [6]:

n
actual

actualestimate
n

i

÷

 −
= ∑

=1

MRE

(3)

A large positive MRE would suggest that the

model over estimates the number of lines changed

per class, whereas a large negative value will

indicate the reverse [6].

Mean Square Error (MSE) is calculated as follows:

() nactualestimate

n

i

÷

−= ∑

=1

2
MSE

(4)

V. RESULTS

In this section, we present the results of the

analysis performed to find the relationship between

OO metrics and testing effort of the classes.

A. ANN Results

In this section, we present the results of

univariate and multivariate analysis using ANN

method.

Univariate Analysis Results

The Table 3 provides the MSE, MARE, MRE,

correlation coefficient (r) between actual and

predicted testing effort measured in terms of lines

of code added or changed per defect in a class

during the software development life cycle,

significance of r (p) for each measure.

The predicted lines of code added or changed

using SLOC metric are highly correlated with

actual lines of code added or changed. Furthermore,

the values of MARE (0.02) and MRE (0.31) are

lowest for SLOC metric. Hence, it is the best

predictor of testing effort. WMC and RFC also

show less values of MARE. NOC metric predicted

constant values of testing effort, hence value of

correlation coefficient (r) could not be calculated.

The values of MRE and MARE are very high for

NOC and DIT metrics. Hence, these metrics will

not be considered in model prediction using ANN

method.

TABLE 3

RESULTS OF UNIVARIATE ANALYSIS

Metric MSE MARE MRE r p

CBO 1.284 0.23 0.57 0.796 0.000

LCOM 1.923 0.27 0.61 0.672 0.000

NOC 3.522 0.4 0.9 - -

RFC 1.009 0.04 0.38 0.843 0.000

WMC 0.904 0.03 0.35 0.861 0.000

SLOC 0.737 0.02 0.31 0.888 0.000

DIT 3.03 0.31 0.87 0.377 0.003

Multivariate Analysis Results

We used ANN technique to predict the testing

effort of the classes. This method is rarely applied

in this area. The inputs to the network were the

independent metrics having less MARE values in

univariate analysis. The network was trained using

the back propagation algorithm. Table 2 shows the

best architecture, which was experimentally

determined. We used backward elimination method

for metrics selection (see Section IV). The model is

trained using training data sets and evaluated on

validation data set using 10-cross validation method.

Table 4 shows the MARE, MRE, r and p-value

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

results of ANN model evaluated using 10-cross

validation. The correlation between the predicted

lines of code changed and the actual lines of code

changed is represented by the coefficient of

correlation (r). The significant level of a validation

is indicated by a p-value. A commonly accepted p-

value is 0.05.

When model evaluation is performed using 10-

cross validation, the percentage error smaller than

10 percent, 20 percent, and 35 percent is shown in

Table 5. The value of MARE and MRE are 0.25

and -0.06 respectively.

TABLE 4

VALIDATION RESULTS OF ANN MODEL

MSE 0.011

MARE 0.25

MRE -0.06

r 0.911

p-value 0.000

TABLE 5

ANALYSIS OF MODEL EVALUATION

ACCURACY

The value of correlation coefficient (r) between

the predicted lines of code added or changed and

the actual lines of code added or changed is 0.911.

This means the predicted testing effort and actual

testing effort are highly correlated. Thus, the results

show that the accuracy of the model predicted using

ANN is good.

Figure 1 shows the relationship between actual

and predicted number of lines added or changed per

class. Figure 2 shows the squared error (in percent)

of model predicted, for each data point. From the

result shown in Figure 1 and Figure 2 and Table 5,

it is observed that the predicted values are in good

agreement with actual values and the predicted

error is less. Therefore, the proposed ANN model

with the developed structure shown in Table 2 can

perform good prediction with least error. We

conclude that impact of prediction is valid for this

data set.

VI. CONCLUSIONS

This empirical study presents the prediction of

testing effort using ANN technique. We conducted

an empirical analysis of the Chidamber and

Kemerer OO metric suite. The main goal of our

study was to examine ANN method in order to find

individual and combined impact of OO metrics on

testing effort. We used public domain NASA data

set to find the relationship between OO metrics and

testing effort measured in terms of number of lines

changed or added per class. The results presented

above shows that these independent variables

appear to be useful in predicting testing effort. The

ANN model demonstrated that they were able to

estimate testing effort within 35 percent of the

actual effort in more than 72.54 percent of the

classes, and with a MARE of 0.25. Thus, ANNs

have shown their ability to provide an adequate

model for predicting testing effort.

The performance of ANN model is to a large

degree dependent on the data on which they are

trained, and the availability of suitable system data

will determine the extent to which testing effort

models can be developed. However, these results

provide guidance for future research on the use of

ANN method to find the impact of OO metrics on

fault proneness, further validations are necessary

with different systems to draw stronger conclusions.

 More similar type of studies must be carried out

with large data sets to get an accurate measure of

performance outside the development population.

We further plan to replicate our study to predict

models based on other artificial intelligence

techniques.

0

500

1000

1500

2000

2500

5 74 97 12
0

12
0

14
3

23
5

28
1

30
4

32
7

32
7

39
6

41
9

44
2

44
2

48
8

48
8

55
7

64
9

74
1

76
4

85
6

99
4

16
84

22
36

23
06

Number of Lines Added or Changed (Actual)

N
u

m
b

e
r

o
f

L
in

e
s

 A
d

d
e

d
 o

r
C

h
a

n
g

e
d

 (
P

re
d

ic
te

d
l)

Fig. 1: Comparison between Actual and

Predicted values for Testing Effort

ARE Range Percent

0-10% 37.25

11-20% 9.8

21-35% 25.49

>35% 27.45

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
6

5
8

6
0

Data Points

S
q

u
a

re
d

 E
rr

o
r

(%
)

Fig 2: Squared Error with respect to each Data

Point

REFERENCES

[1] A.Binkley and S.Schach, “Validation of the Coupling

Dependency Metric as a risk Predictor”, Proceedings in

ICSE 98, 452-455, 1998.

[2] A.Lake, C.Cook, “Use of factor analysis to develop

OOP software complexity metrics”. Proc. 6th Annual

Oregon Workshop on Software Metrics, Silver Falls,

Oregon, 1994.

[3] B.Henderson-sellers, “Object-Oriented Metrics,

Measures of Complexity”, Prentice Hall, 1996.

[4] C.R.Kothari. “Research Methodology. Methods and

Techniques”, New Age International Limited.

[5] D.Tegarden, S. Sheetz, D.Monarchi, “A Software

Complexity Model of Object-Oriented Systems.

Decision Support Systems”, vol. 13, pp.241-262.

[6] G.Finnie and G. Witting, “AI Tools for Software

Development Effort Estimation”, International

Conference on Software Engineering: Education and

practice, 1996.

[7] J.Bieman, B.Kang, “Cohesion and Reuse in an Object-

Oriented System”, Proc. ACM Symp. Software

Reusability (SSR’94), pp.259-262, 1995.

[8] J.Han, M. Kamber, “Data Mining: Concepts and

Techniques”, Harchort India Private Limited, 2001.

[9] K.El Emam , S.Benlarbi , N.Goel , Rai, “A Validation

of Object-Oriented Metrics”, Technical Report ERB-

1063, NRC, 1999.

[10] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, “A

Neural Net Based Approach to Test Oracle”, ACM

SIGSOFT, vol. 29, issue 3, 2004.

[11] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra, “Analysis of Object-Oriented Metrics”,

International Workshop on Software Measurement

(IWSM), 2005.

[12] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra, “Empirical Study of Object-Oriented Metrics”,

Accepted to be published in Journal of Object-

Technology.

[13] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra, “Software Reuse Metrics for Object-Oriented

Systems”, Third ACIS Int'l Conference on Software

Engineering Research, Management and Applications

(SERA'05), IEEE Computer Society, pp. 48-55, 2005.

[14] L.Briand , W.Daly and J. Wust, “Unified Framework for

Cohesion Measurement in Object-Oriented Systems”,

Empirical Software Engineering, vol. 3, pp.65-117,

1998.

[15] L.Briand , W.Daly and J. Wust, “A Unified Framework

for Coupling Measurement in Object-Oriented Systems.

IEEE Transactions on software Engineering”, Vol. 25,

pp.91-121, 1999.

[16] L.Briand , W.Daly and J. Wust, “Exploring the

relationships between design measures and software

quality”, Journal of Systems and Software, Vol. 5,

pp.245-273, 2000.

[17] M.Cartwright, M.Shepperd, “An Empirical

Investigation of an Object-Oriented Software System”,

IEEE Transactions of Software Engineering, 1999.

[18] M.Hitz, B. Montazeri, “Measuring Coupling and

Cohesion in Object-Oriented Systems”, Proc. Int.

Symposium on Applied Corporate Computing,

Monterrey, Mexico, 1995.

[19] M.Lorenz, and J.Kidd, “Object-Oriented Software

Metrics”, Prentice-Hall, 1994.

[20] R.Harrison, S.J.Counsell, and R.V.Nithi, “An

Evaluation of MOOD set of Object-Oriented Software

Metrics”, IEEE Trans. Software Engineering, vol. SE-24,

no.6, pp. 491-496, June 1998.

[21] S.Chidamber and C.F.Kemerer, “A metrics Suite for

Object-Oriented Design”, IEEE Trans. Software

Engineering, vol. SE-20, no.6, 476-493, 1994.

[22] S.Chidamber, C. Kemerer, “Towards a Metrics Suite for

Object Oriented design”. Proc. Conference on Object-

Oriented Programming: Systems, Languages and

Applications (OOPSLA’91). Published in SIGPLAN

Notices, vol 26 no. 11, pp.197-211, 1991.

[23] S.Chidamber, D. Darcy, C. Kemerer, “Managerial use

of Metrics for Object-Oriented Software: An

Exploratory Analysis”, IEEE Transactions on Software

Engineering, vol.24 no.8, 629-639, 1998.

[24] T.Gyimothy , R.Ferenc , I.Siket , “Empirical validation

of object-oriented metrics on open source software for

fault prediction”, IEEE Trans. Software Engineering,

vol. 31, Issue 10, pp.897 – 910, Oct. 2005.

[25] T.M.Khoshgaftaar, E.D.Allen, J.P Hudepohl, S.J Aud,.,

"Application of neural networks to software quality

modeling of a very large telecommunications system,"

IEEE Transactions on Neural Networks, Vol. 8, No. 4,

pp. 902--909, 1997.

[26] V.Basili, L.Briand, W.Melo, “A Validation of Object-

Oriented Design Metrics as Quality Indicators”, IEEE

Transactions on Software Engineering, vol. 22 no.10, pp.

751-761, 1996.

[27] W.Li, S.Henry, “Object-Oriented Metrics that Predict

Maintainability”, Journal of Systems and Software, vol

23 no.2, pp.111-122, 1993.

[28] Y.Lee, B.Liang, S.Wu and F.Wang, “Measuring the

Coupling and Cohesion of an Object-Oriented program

based on Information flow”, 1995.

[29] Yu Ping, Ma Xiaoxing, Lu Jian , “Predicting Fault-

Proneness using OO Metrics: An Industrial Case Study”,

CSMR 2002, Budapest, Hungary, pp.99-107, 2002.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

