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Magnetostatic Field Calculations Associated
with Thick Solenoids in the Presence of Iron

Vasos Pavlika

Abstract-The effect of iron on the uniformity of the field
produced by an axisymmetric thick solenoid is considered.
Using a power series expansion of the vector potential in
the radial and axial coordinates the potential is found and
from this the magnetic induction B is derived. The solution
to the vector potential and field components is also
obtained using a Maclaurin series expansion in terms of
the radial coordinate, p with numerical results using both
methods of solution computed

Key Words: Time independent field, Maclaurin Series
and Power Series expansion.

l. Introduction.

In this paper magnetostatic field calculations
associated with an axisymmetric conductor of
rectangular cross section situated equidistant from
two semi-infinite regions of iron of finite
permeability are computed. The magnetostatic field
associated with iron-free axisymmetric systems has
been considered by Boom and Livingstone [1],
Garrett [2] and many others. Caldwell [3],
Caldwell and Zisserman [4] and [5] have carried
out work which takes account of the effects of the
presence of iron on such systems. The main
advantages of introducing iron are:

i. Higher fields are provided for the same current,
producing substantial power savings over
conventional conductors.

ii. The field uniformity is improved even for
superconducting solenoids by placing the iron in a
suitable position. The geometry considered is
shown in figure 1, a toroidal conductor V' of
rectangular cross section having inner radius A,
outer radius B and length L-2¢, is located
equidistant between two semi-infinite regions of
iron of finite permeability a distance L apart, the
axis of the torus being perpendicular to the iron
boundaries. The region V between the conductor
and the iron is assumed insulating. Cylindrical
polar coordinates (o, @, z) are used, where p and
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z are normalized in terms of L.

Prior to Caldwell [3] the presence of iron in
axisymmetric systems had been largely ignored see
Loney [6] and Garrett [2] et al. In cylindrical
coordinates Maxwell’s equations give:

VAR OinV
AB= —Ce, in V'

where e, is a unit vector in the direction of
increasing ¢ and C is a constant with

VB=0inVandV’ 1)

Equation (1) suggests the introduction of a
potential A such that B=V A A, where A
denotes the usual cross product of vectors, axial

o oA,
symmetry implies Bp :—a—; Bw(p,z) =0; and
z

_10(pA)
p Op

B

z

By Maxwell’s equation:

0inV

2A5=2A(ZAA)={C6 -
¢

thus with axial symmetry such that 9 =0 =

o
e, e e,
1| 0 0 0 0inV
p|op 09 6z | |-Ce,inV’
A, LAA)
0z p Op
VIA - 0inV
ROt Ce,inV"

2 2
where V? =a—2+£i—i2-|ra—2
op- pop p° Oz
with boundary conditions for A,
A,=0on p=0
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Ao0wpoe and A, = J[la, (x W)L ©
oA, 2
> =0 onz=0and z=1 so that
A (,0, 2) = u Z Klnlz( D™ (2m)! A2m+1,02m+l
Using the integral representation of the vector ° = 2’™mi(m+1)!
potential this %iv)es B z K'”'z( " 2m-1!A, o™
Alp) = j JP)_ 4y, hence for finite , “tho (2m+2)!
p L | where (2m-1)!= 1.3.5...(2m 1), and
n (P27 ple 2m+2)!1=2.4.6...(2m+2),
A7) =L 5 kT ez 4., m)
4 “= ado Je 1 0"a
o 2  with A, = ©)
X c0s Jdxd 9dz' m oz"
(z—2'—n)2+ p? + X* — 2XpCOS l9)1/2} so for the field componen(ts P 07
© , 0 _ m m_ | . Z m
where K =#“~1 known as the image factor. B,(p.2) =, ) K" A;Z nop
y+1 n=—x m=0 (Zm)
Noting that A, (p,z) is an odd function in o and and . -
0 o m+ 1 m-+
an even function in z then A, can be expanded as a B,(0,2) =t > K|n|z( 1) (2m+1).Azn;+2(z)P
power series about the z axis giving: f=e (2m+2)!
o o Hence
A(p,2) = K" M (2 3 - 3 5
where equation (2) gives n=—o
1o(2) = > [[wlog, | x+ar[1:* s k[ A2 p 32
0 _4 ge alz=¢ Bz(p,Z):ﬂOZK A1—7A3+TA§+ .....
with w=z"-z-n and a? = x*+w?. Substituting and nf_m
expression (3) into equation (2) gives . s 5
In| 2m+1 B (p Z):—Iu ZKlnl £A2_3LA4+SLAE+
_z K (Z4m(m +1)p | (Z) p NI On:_w 2 8 16
) P The first five terms will be quoted, the remainder
+ z pzm*l mz(z)) =0 can be obtained from the recurrence relations
=) oz equations (4), (5) and (6). So that
equating coefficients of 1_(z X e
Auating coefficients of 1,(2) = A= [[W—loge(xﬂwz PR
m(m+1)|m(z)+a|am—§(z):0, m=0,12,... j —x
z A=l LI
I ( ) (_1)m|02m(z) 2 (W +X )1/2 (W + X )3/2
s (D)=——=
M M (1) N /S S
and 127 (W +x2)¥2 (WP +x?)*"?
_ |n| ( 1)m I = (Z) 2m+1 _|_—
A¢(p,z)_yonZ;O Z“22mm|(m+1)'p (W +X )3/2] oL
6XW
To relate this to the work of Garrett [2] let A= 48 [[(W X )5/2 * (W? + x?)%?
a, (W) =wlog, | x+a = I, =3 (WL 1w x
Ai(z) (WZ +X2)7/2 (WZ + X2)3/2
T 3xw
2 +—5,2]
_ J bql-¢ (W +X )
where al(x’ W) - E[[Wlog | X+a |]a]z:g (4) and
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] 9xw
A = 240 [[(W +X )5’2 (W2 +x%)3?
15xw? Xw® .,
(W2 +)(2)7/2 - (WZ +)(2)7/2 —105XW4]2]1ZZ£

Il.  The solution to the Magnetic
Vector Potential using a
Maclaurin Series in p.

In order to compare and validate the results of the

previous section an independent solution for the
magnetic vector potential and hence field

components B (p,z)and B, (p,z) must be

derived. Using equation (2) the
representation of the vector potential gives:

integral

J (p)

o dv', hence for finite p,

A >—Z SN

X c0s Jdxd gdz"
((z=2'-n)* + p* + x> = 2xpC0s 9)

1/2

(7)

p-1 , known as the image factor. By

u+1
expanding A, (0, ) in a Maclaurin series in r it
follows that:

where K =

0A,(0.2) p? 0*A,(0,2)
A (p,2)=A(0,2)+ # + £ -9
(P, 2)=A,0,2)+p o T

+0(p’)
letting 1 :Lj”%dlg, ®)
where
R={(z-z'-n)’+x* + p° —2xpcos G}
A(p2)= ﬂ°Jp‘”+O(p) )
where

z K"[[wlog, (X + (W + X* )" ), 1w

n=—o0

and Wl=¢+n-2z,w2=1-¢+n-2z, which can

be written as A, (p,2) = A, (p,2)+0(p?),
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where A, (p,z)is given by expression (9),
Similarly, it can be shown that:
In
ﬂoJP K™[[wlog, (x+a
B,(p,2) = Z s

4 2 o
w=wl
where =W +X and w=z—zn, and

B, (p,2) = ”“ZK'“'[[wlog (x+ )1

n=—o0

+0(p?)

1/2)

I11. Calculating the Higher
order terms.

For a coil of rectangular cross section situated
equidistant from two semi-infinite regions of iron
the magnetic vector potential A carrying a current
density j is given by expression (7), thus expanding
the vector potential in a Maclaurin series in r gives

+ %l +p_2ﬂ
Pop 0" o1 pp e
where |, is defined be equation (8)

al, B X
= 0and —— 8,0 |p 0 (W2 +X2)3/2 '
where w=z-z’-n. Considering the higher order
terms, it can be shown (see Pavlika [7]) that

, +0(p*)}dz’

Now I |,_

o°l Oxzr 45X°7r

n | — +
=07 2 712
ap3 P 5/ /

o o
it follows that

o°l, 225xr  3150x°7w  44725X°x
6_,05 p=0"" o + 40°" 82
o'l N 11025xz  297675x°7
8,07 p=0" " pRE 42
1091475x°r  472925x' 7«
- 8132 - JSEIE
%l N 893025x7 9823275x°r
2 pg p=0" PEETE - o2
31925644x° 7z 3990755’ 7z
JSLE - JRXIE
16960498x°
+ PEUE
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where o =W? +x?, thus in order to improve the
accuracy of the vector potential and the field
components these higher order terms must be
considered. Performing the integrations with
respect to x and z’ gives

A, (p.7) = ”01” ZK'”'[[ 3,2]]

N=—o0

:% z K3, (x,w) , say

= 5 0
Ao 212 5

nN=—o0

X(2x% +5W x* +4wx* (W* +3) + WP (W* + 27))

bqw
[[ 192W30(7/2 ]a]WZ
= 5 o
:% > K" 3, (x,w), say
H 7 L
Asilp )= H0P 5 K IS, (o WL I
Where
S4()(’W) =

—2W0x + 274w x3 + 22wex® + 97w’ X’
3072w tt?
44w?x° + 8wx*

3072W5 11/2
and

_H Jp n *
¢5(p1 Z) =2 z I | [[ AbW7X7 15/2

i n
As(p2)=— Lt L p Z KH[[W*

412406589178224x%
+823457958700680x°x*°
+406568751666210w*x'®
—11011159703115w°x™
—611389980218160wx*
~1765875128297280wW" x*
—2661849239841792w*x™°
—3217305707890560wW" x®
—2859827295902720wW*¢ x°
—1559905797765120wW* x*
—479971014696960W*x*
—63996135292928w%

LI
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where A =355687429096000

H 9 o0
_ _% > KIS, (WL,

sothat B, ,(p,2) = :Uojpz z KlnlSZ(X'W)

n=—o

B,,(p.2) = ‘;0 P4 S KIS, (x, W)

N=-

B,.(p,2)= Zﬂojpe Z KlnlS4(XvW)

B,s(p2) =—222L p° 37 KIS, (x,w)

and

3 0
B,.(p2)=H07= 3 K[~

£ 5 o
SRARRATE Y

N=—o0

X2 (X* +4W)
8W2a5/2 ]a]Wz

x(2w® +9x°w? +12w*x* +145w°x? —140W°) ., -,
[[ 64W4a9/2 ]a]w2
B, .(p,2) = ”3 p Z K2 ~ (3 xw)

=—00

j OO n a o~
and B, (p,2) =%Jp9 D K '%(ds(x,w»

n=—w

IV. Deriving Two Integral
Recurrence relations used to obtain
the terms of the Maclaurin Series.

Here two integral recurrence formulae frequently
used in obtaining the mathematical details of the
Maclaurin series expansion will be derived. Let

= J.bcosm 49d 9
b m-2 b me2 qein2
:L cos ,9d,9—L cos™ ™ 9sin- 9d 9
, —J':cosm’2 gsin® 9d 9
Now dd—lg(cosm‘1 ) = (1-m)sin $cos™ 2 9

Thus
b M2 gein?
L cos"° 3sin“ 9d 3

1 b . d 0
=——| sind—(cos" " 9)d g
_mL dlg( )

and hence

; _m-1
m

m m-2

10
+E[cos 1195”']19}:
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which is the required expression. The other [8] Pavlika, V., Vector Field Methods and the Hydrodynamic Design
. of Annular Ducts, Ph.D thesis, University of North London, Chapter
recurrence relation that reduces the amount of 111, 1995,
manipulation of the terms arising is now derived.
Consider VIl. Tables
Wm—2 X2Wm—2
(W2 + x?)" 2 B (W2 + x?)"/2 Table 1. Values of A, (p, 2) using the Power
_ w™ x2w™ Series Expansion accurate O(p*).
- W2 (W2 + X2)h—1/2 W2 (W2 + XZ)I’HI/Z P Z u=103 H,=102 leo Hzl
wW" W ax:  x 0/01|0 0 0 0
= { 5 ——2} 0.1]0.10.8957 | 0.8807 | 0.7590 | 0.3495
(W +x7) woooow 0.2]0.1]1.7911 | 1.7613 | 1.5177 | 0.7021
w" 0.3]0.1|2.6852|2.6414 |2.2797 | 1.0607
- (W2 + X2)"172 0.4 (0.1 3.5812 | 3.5232 | 3.0396 | 1.4285

so that 0.5]10.1]4.4730 | 4.4001 | 3.8051 | 1.8094

m

0.1 0.2]0.8976 | 0.8835 | 0.7655 | 0.3743
0.1)0.3]0.8985 | 0.8836 | 0.7710 | 0.3952

-
J-(WZ +X2)n+1/2 W

J- w2 3 x*wm? dw 0.1 0.4 |0.8992 | 0.8859 | 0.7735 | 0.4070
(W2 +xH)"Y2 (WP + x2)™2 0.1]0.5]0.8992 | 0.8860 | 0.7747 | 0.4123
which is the required expression. Results for Table 11. VValues of B, (p,z) using the Power
A(p2)B(n2) and B(n2) using the Maclaurin Series Expansion accurate O(p°) .

series with a=0.9, b=1.1, £ = 0.05 and poj = 100 r | Z |p=10° u=10% | p=10 | p=1
were found to be in good agreement with the 0.110115584-3 |0.0127 | 0.0718 | 0.2815

solution using the Power series expansion as

shown in tables I, I1, I, 1V and V. 02/01)1.131-2 |0.02720.1472]0.5776

0.3]0.1 | 2.350E-2 | 0.0451 | 0.2297 | 0.9026
04]0.1]3.826-2 |0.0680 | 0.3226 | 1.2710
0.5]10.1]5.896-2 |0.0976 | 0.4297 | 1.6972

V. Conclusions

The two methods of solution were found to be in
good agreement. The summations were performed 0.1]0.2]8.727-3 |0.0141 | 0.0607 | 0.2316
from -200 to 200 with a change only in the fourth 0.1]0.3|8.493-3 |0.0122 | 0.0443 | 0.1647

decimal place occurring when the number of terms 0.110.41|5.153-3 | 0.0070 | 0.0234 | 0.0855

in the summation was doubled. The effect of the 01lo0510 0 0 0
permeability of the iron is shown in figures 2, 3, 4
and 5. .
Table I11. Values of B, (p, z) using the Power
V1. References Series Expansion accurate O(p*).
[1] Boom, R.W., and Livingstone. R.S., Proc. IRE, 274 (1962). 1% 7 u=103 u=102 Hzl
[2] Garrett, M.W., Axially symmetric systems for generating and
measuring magnetic fields. J. Appl. Phys., 22, 1091 (1951). 010.1]17.9169 | 17.6163 | 6.9821

[3] Caldwell. J., Magnetostatic field calculations associated with 0.110.1117.0149 | 17.6150 | 7.0022

superconducting coils in the presence of magnetic material, IEEE,

Transactions on Magnetics, Vol. MAG-18, 2, 397 (1982). 0.2]10.1|17.9090 | 17.6111 | 7.0627
[4] Caldwell, J and Zisserman A., Magnetostatic field calculations in 03101117.8990 | 17.6046 | 7.1634

the presence of iron using a Green’s Function approach. J.Appl.

Phys.D 54, 2, (1983a). 0.4]0.1]17.8851 | 17.5964 | 7.3045
[5] Caldwell, J and Zisserman A., A Fourier Series approach to 051 0.1117.8672 | 17.5838 | 7.4860

magnetostatic field calculations involving magnetic material accepted
for publication in J.Appl. Phys (1983b).

[6] Loney, S.T., The Design of Compound Solenoids to Produce
Highly Homogeneous Magnetic Fields. J.Inst. Maths Applics (1966) 0.1)0.2|17.9731 | 17.6545 | 7.5232

f?y]lé;/llizki, V., Vector Field Methods and the Hydrodynamic Design 01103 17.9722 | 17.6770 | 7.9258
of Annular Ducts, Ph.D thesis, University of North London, Chapter 0.1]0.4|17.9860 | 17.6995 | 8.1802

11, 1995. 0.1)05]17.9866 | 17.7014 | 8.2672
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Table IV. Values of A,(p,z) using the Elliptic

Integrals of the 1% and 2" kind, accurate

0(5%).

0

Y4

u=10°

n=10°

u=10

p=1

0

0.1

0

0

0

0

0.1

0.1

0.89171

0.881237

0.7575

0.3480

0.2

0.1

1.79492

1.762866

1.5140

0.6901

0.3

0.1

2.69390

2.645276

2.2679

1.0200

0.4

0.1

3.59465

3.528857

3.0178

1.3318

0.5

0.1

4.49779

4.414001

3.7624

1.6195

0.1

0.2

0.89781

0.882507

0.7641

0.3732

0.1

0.3

0.89595

0.883736

0.7692

0.3925

0.1

0.4

0.89919

0.884628

0.7725

0.4048

0.1

0.5

0.89942

0.884954

0.7737

0.4090

Table V. Values of B (p,z) using the Elliptic

Integrals of the 1% and 2" kind, accurate

0(5%).

0

Y4

u=10°

n=10°

u=10

p=1

0.1

0.1

5.831E-3

0.0162

0.1041

0.0361

0.2

0.1

1.314E-2

0.0342

0.2119

0.0775

0.3

0.1

2.343E-2

0.0555

0.3673

0.1425

0.4

0.1

3.818E-2

0.0819

0.4520

0.1598

0.5

0.1

5.886E-2

0.1150

0.5913

2.0971

0.1

0.2

8.425E-3

0.0165

0.0851

0.2936

0.1

0.3

8.082E-3

0.0135

0.0606

0.2071

0.1

0.4

4.897E-3

0.0070

0.0315

0.0106

0.1

0.5

0

0

0

0
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VIII. Figures

iron iron

0 1 z

Fig 1. A toroidal conductor V’ of rectangular cross section located midway between two semi
infinite regions of iron of finite permeability. The region V is assumed to be insulating.

Fig 2. The variation of B,( p ,z) with p and z for two semi-infinite regions of iron of unit
permeability. + p=0.3, ™pr=0.2,+: p=0.1
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le',zl—

18.04

18.02

17.98

17.%

7.4
Fig 3. The variation of B,( p ,z) with p and z for two semi-infinite regions of iron of infinite
permeability. + p =0.1, ™ p =0.2, *: p =0.3

Br I,z Hemm

-1
Fig 4. The variation of B p (o ,2) with p and z for two semi-infinite regions of iron of unit
permeability. + p=0.1, ™ p=0.2, *: p =0.3

Brl',zl—

Fig 5. The variation of B,( p ,z) with p and z for two semi-infinite regions of iron of infinite
permeability. + p=0.1, ™ p=0.2, *: p=0.3
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