
 
  Abstract-The effect of iron on the uniformity of the field 
produced by an axisymmetric thick solenoid is considered. 
Using a power series expansion of the vector potential in 
the radial and axial coordinates the potential is found and 
from this the magnetic induction B is derived. The solution 
to the vector potential and field components is also 
obtained using a Maclaurin series expansion in terms of 
the radial coordinate, ρ with numerical results using both 
methods of solution computed 
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I. Introduction. 
 
In this paper magnetostatic field calculations 
associated with an axisymmetric conductor of 
rectangular cross section situated equidistant from 
two semi-infinite regions of iron of finite 
permeability are computed. The magnetostatic field 
associated with iron-free axisymmetric systems has 
been considered by Boom and Livingstone [1], 
Garrett [2] and many others. Caldwell [3], 
Caldwell and Zisserman [4] and [5] have carried 
out work which takes account of the effects of the 
presence of iron on such systems. The main 
advantages of introducing iron are: 
i. Higher fields are provided for the same current, 
producing substantial power savings over 
conventional conductors. 
ii. The field uniformity is improved even for 
superconducting solenoids by placing the iron in a 
suitable position. The geometry considered is 
shown in figure 1, a toroidal conductor V’ of 
rectangular cross section having inner radius A, 
outer radius B and length L-2ε, is located 
equidistant between two semi-infinite regions of 
iron of finite permeability a distance L apart, the 
axis of the torus being perpendicular to the iron 
boundaries. The region V between the conductor 
and the iron is assumed insulating. Cylindrical 
polar coordinates ( , , )zρ ϕ are used, where ρ and  
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z are normalized in terms of L.  
  Prior to Caldwell [3] the presence of iron in 
axisymmetric systems had been largely ignored see 
Loney [6] and Garrett [2] et al. In cylindrical 
coordinates Maxwell’s equations give: 
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where eφ is a unit vector in the direction of 
increasing ϕ  and C is a constant with   
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Equation (1) suggests the introduction of a 
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0Aφ →  as ρ → ∞  
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Using the integral representation of the vector 
potential this gives:  
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, known as the image factor. 

Noting that ( , )A zφ ρ is an odd function in ρ  and 

an even function in z then Aφ  can be expanded as a 
power series about the z axis giving:  
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where equation (2) gives 
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with w=z’-z-n and α2 = x2+w2. Substituting 
expression (3) into equation (2) gives 
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To relate this to the work of Garrett [2] let  
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The first five terms will be quoted, the remainder 
can be obtained from the recurrence relations 
equations (4), (5) and (6). So that  
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II. The solution to the Magnetic 
Vector Potential using a 
Maclaurin Series in ρ . 

 In order to compare and validate the results of the 
previous section an independent solution for the 
magnetic vector potential and hence field 
components ( , )B zρ ρ and ( , )zB zρ must be 
derived. Using equation (2) the integral 
representation of the vector potential gives:    
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expanding ( , )A zφ ρ in a Maclaurin series in r it 
follows that:   
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III. Calculating the Higher 

order terms. 
 
For a coil of rectangular cross section situated 
equidistant from two semi-infinite regions of iron 
the magnetic vector potential A carrying a current 
density j is given by expression (7), thus expanding 
the vector potential in a Maclaurin series in r gives 
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where 2 2w xα = + , thus in order to improve the 
accuracy of the vector potential and the field 
components these higher order terms must be 
considered. Performing the integrations with 
respect to x and z’ gives 
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  IV. Deriving Two Integral 

Recurrence relations used to obtain 
the terms of the Maclaurin Series. 
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which is the required expression. The other 
recurrence relation that reduces the amount of 
manipulation of the terms arising is now derived. 
Consider 
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which is the required expression. Results for 

( , ), ( , )A z B zφ ρρ ρ  and ( , )zB zρ  using the Maclaurin 
series with a=0.9,  b=1.1, ε = 0.05 and μ0j = 100 
were found to be in good agreement with the 
solution using the Power series expansion as 
shown in tables I, II, III, IV and V.   
 

V. Conclusions 
 
The two methods of solution were found to be in 
good agreement. The summations were performed 
from -200 to 200 with a change only in the fourth 
decimal place occurring when the number of terms 
in the summation was doubled. The effect of the 
permeability of the iron is shown in figures 2, 3, 4 
and 5.   
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VII. Tables 
 
Table I. Values of ( , )A zφ ρ using the Power  

Series Expansion accurate 4( )O ρ .  
ρ  Z μ=103 μ=102 μ=10 μ=1 
   0 0.1 0 0 0 0 
0.1 0.1 0.8957 0.8807 0.7590 0.3495
0.2 0.1 1.7911 1.7613 1.5177 0.7021
0.3 0.1 2.6852 2.6414 2.2797 1.0607
0.4 0.1 3.5812 3.5232 3.0396 1.4285
0.5 0.1 4.4730 4.4001 3.8051 1.8094
      
0.1 0.2 0.8976 0.8835 0.7655 0.3743
0.1 0.3 0.8985 0.8836 0.7710 0.3952
0.1 0.4 0.8992 0.8859 0.7735 0.4070
0.1 0.5 0.8992 0.8860 0.7747 0.4123
 
Table II. Values of ( , )B zρ ρ using the Power 

Series Expansion accurate 5( )O ρ .  
ρ  Z μ=103 μ=102 μ=10 μ=1 
0.1 0.1 5.584-3 0.0127 0.0718 0.2815
0.2 0.1 1.131-2 0.0272 0.1472 0.5776
0.3 0.1 2.350E-2 0.0451 0.2297 0.9026
0.4 0.1 3.826-2 0.0680 0.3226 1.2710
0.5 0.1 5.896-2 0.0976 0.4297 1.6972
      
0.1 0.2 8.727-3 0.0141 0.0607 0.2316
0.1 0.3 8.493-3 0.0122 0.0443 0.1647
0.1 0.4 5.153-3 0.0070 0.0234 0.0855
0.1 0.5 0 0 0 0 
 
Table III. Values of ( , )zB zρ using the Power 
Series Expansion accurate 4( )O ρ .  
ρ  Z μ=103 μ=102 μ=1 
   0 0.1 17.9169 17.6163 6.9821
0.1 0.1 17.0149 17.6150 7.0022
0.2 0.1 17.9090 17.6111 7.0627
0.3 0.1 17.8990 17.6046 7.1634
0.4 0.1 17.8851 17.5964 7.3045
0.5 0.1 17.8672 17.5838 7.4860
     
0.1 0.2 17.9731 17.6545 7.5232
0.1 0.3 17.9722 17.6770 7.9258
0.1 0.4 17.9860 17.6995 8.1802
0.1 0.5 17.9866 17.7014 8.2672
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Table IV. Values of ( , )A zφ ρ using the Elliptic 
Integrals of the 1st and 2nd kind, accurate 

8( )O δ .  
ρ  Z μ=103 μ=102 μ=10 μ=1 
   0 0.1 0 0 0 0 
0.1 0.1 0.89171 0.881237 0.7575 0.3480
0.2 0.1 1.79492 1.762866 1.5140 0.6901
0.3 0.1 2.69390 2.645276 2.2679 1.0200
0.4 0.1 3.59465 3.528857 3.0178 1.3318
0.5 0.1 4.49779 4.414001 3.7624 1.6195
      
0.1 0.2 0.89781 0.882507 0.7641 0.3732
0.1 0.3 0.89595 0.883736 0.7692 0.3925
0.1 0.4 0.89919 0.884628 0.7725 0.4048
0.1 0.5 0.89942 0.884954 0.7737 0.4090
 
Table V. Values of ( , )B zρ ρ using the Elliptic 
Integrals of the 1st and 2nd kind, accurate 

8( )O δ .  
ρ  Z μ=103 μ=102 μ=10 μ=1 
0.1 0.1 5.831E-3 0.0162 0.1041 0.0361
0.2 0.1 1.314E-2 0.0342 0.2119 0.0775
0.3 0.1 2.343E-2 0.0555 0.3673 0.1425
0.4 0.1 3.818E-2 0.0819 0.4520 0.1598
0.5 0.1 5.886E-2 0.1150 0.5913 2.0971
      
0.1 0.2 8.425E-3 0.0165 0.0851 0.2936
0.1 0.3 8.082E-3 0.0135 0.0606 0.2071
0.1 0.4 4.897E-3 0.0070 0.0315 0.0106
0.1 0.5 0 0 0 0 
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VIII. Figures 
 

 
Fig 1. A toroidal conductor V’ of rectangular cross section located midway between two semi 
infinite regions of iron of finite permeability. The region V is assumed to be insulating.  
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Fig 2. The variation of Bz( ρ ,z) with ρ  and z for two semi-infinite regions of iron of unit 
permeability. +: ρ =0.3, ™ ρ r=0.2, •: ρ =0.1 
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Fig 3. The variation of Bz( ρ ,z) with ρ  and z for two semi-infinite regions of iron of infinite 
permeability. +: ρ =0.1, ™: ρ =0.2, •: ρ =0.3 
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Fig 4. The variation of B ρ ( ρ ,z) with ρ  and z for two semi-infinite regions of iron of unit 
permeability. +: ρ =0.1, ™: ρ =0.2, •: ρ =0.3 
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Fig 5. The variation of Br( ρ ,z) with ρ  and z for two semi-infinite regions of iron of infinite  
permeability. +: ρ =0.1, ™: ρ =0.2, •: ρ =0.3 
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