
The Hybrid Approach to Teaching Graphics
by Incorporating Cg Shading Language

Ying Tang Jing Fan Xujia Qin

Abstract—It is regarded as a long-standing difficulty in

the computer graphics course that how to balance the
education of the fundamental theoretical concept with the
goal of motivating students by enabling them to produce
visually interesting projects. In this paper we propose the
hybrid approach to teaching graphics by incorporating
1 Cg shading language. By writing programs with Cg,
students are exposed to the underline functionality
obscured by the fixed-function graphics API. Our
teaching experience indicates that students have a
comprehensive understanding of the algorithms and
mathematical concepts of the low-level graphics pipeline.
The students’ feedbacks show that they are satisfactory
with the teaching effects and fully motivated and inspired
by the assigned projects.

Index Terms—CG Shading language, Computer
graphics, pedagogy.

I. INTRODUCTION
With the fast development of GPU (Graphics

Processing Unit) as the core components in computer
display systems, many computer graphics related fields
become flourishing these years. In order to meet the
increasing talents shortage posed by fast developing
media and game industry, the major of DM (Digital
Media) has been newly-opened and established in
many universities in China to train the qualified
students in latest years. The computer graphics course
has been recognized as the important compulsory
subject for the major of DM. By being taught computer
graphics, the students are expected to be equipped with
fundamental mathematical concepts of computer

Manuscript received July 21, 2008. This work was supported in
part by the Project of Zhejiang Provincial Education Department
(20070185), University Excellent Courses Program
(YX0706,JP0808), Graduate Teaching Project “The Research to
Strengthen The Evaluation of Degree Program” of Zhejiang
University of Technology.

Ying Tang is with the Software College, Zhejiang University of
Technology, Hangzhou, China (phone: 86-571-85290034; e-mail:
ytang@ zjut.edu.cn).

Jing Fan is with the Software College, Zhejiang University of
Technology, Hangzhou, China (e-mail:fanjing@zjut.edu.cn).

Xujia Qin is with the Software College, Zhejiang University of
Technology, Hangzhou, China (e-mail:qxj@zjut.edu.cn).

graphics as well as techniques to produce visually-
interesting images. This course aims to not only lay the
solid theoretical foundation for the succeeded
professional courses, but also inspire the career or
research interests of students to engage in computer
graphics related areas.

The traditional computer graphics course mainly
focuses on the detailed raster-level algorithms with the
emphasis on understanding bottom mathematical
concepts and theories [1]. This kind of teaching style
is categorized as bottom-up [9], in which students are
required to implement basic stages of rendering
pipeline, such as clipping, line/triangle conversion, etc.
By teaching computer graphics in bottom-up style, the
students are more familiar with low-level algorithms
and theories that underline modern rendering pipeline.
However, according to the author’s teaching
experience, for students with not so good mathematical
background, it is difficult for them to totally
understand these algorithms. Moreover, most students
are discouraged by the details and many special cases
needed to be handled in these algorithms. They have
difficulty to produce visually interesting images by
implementing all detailed functions by themselves.
Thus their interests in computer graphics are damaged.
This is particular harmful, since many students are
drawn to computer graphics by the desire to produce
visually appealing images. In contrast with the bottom-
up teaching style, the top-down teaching style becomes
popular for computer graphics courses in many
universities [2][4]. In this manner, students are taught
to use graphics API (e.g. OpenGL) to draw images on
the screen [3]. The low-level algorithms are enclosed
in these APIs, which hides the details to the users. It is
much easier for students to render attractive images in
this teaching manner compared with the above bottom-
up style. However, the students would get too involved
in the technical details of the chosen API and do not
have enough theoretical understanding of the low-level
algorithms behind the API [9].

In this paper, we describe the hybrid approach to
teaching graphics that has been adopted in our class.
This approach combines the merits of bottom-up and
top-down teaching styles by incorporating Cg shading
language developed by Nvidia Corporate [5]. The goal

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

of our teaching approach is to lay the solid theoretical
foundation as well as exciting and cultivating students’
interests for graphics. The students are expected to
produce visually interesting images without neglecting
underline theoretical details. To achieve this goal, we
remove the raster-level algorithms in our class and
adopt Cg shading language to write programs. The Cg
shading language provides us the flexible ability of
vertex and pixel programming, which are unavailable
for fixed rendering pipeline. Such ability exposes the
relevant low-level details of the graphics pipeline to
the programmers. By teaching students write programs
with Cg rather than calling ready functions provided in
graphics API (such as OpenGL), the students will have
better understanding of the underline graphics theories
compared with top-down teaching manner. The
students are more likely to produce appealing images
since they do not need to implement all low-level
algorithms from scratch. The feedbacks from the class
also verify the effectiveness of our approach.

II. CG SHADING LANGUAGE
For nearly the past ten years, graphics hardware has

been developing at a speed almost three times faster
than Moore’s Law predicts [7]. As a consequence of
this fact, the contents of the graphics courses should be
frequently updated to catch up the advances of the
technologies. The programmable rendering pipeline,
compared to the traditional fixed rendering pipeline,
boosts the technological advancements in graphics as
the main driving force. So it is necessary to include the
introduction to the programmable rendering pipeline in
the computer graphics course. However, despite the
fact that the shaders for programmable rendering
pipeline are ubiquitous in modern graphical
applications, it is common that these contents are not
contained in the introductory computer graphics course.
The Cg (C for Graphics) shading language is a high-

level shading language developed by Nvidia in close
collaboration with Microsoft for programming vertex
and pixel shaders. The shader programs are graphics
processing functions operating the programmable parts
of the rendering pipeline. The vertex and pixel shaders
were programmed at a very low level with assembly
language of the graphics processing unit before Cg
was created. The portable, high-level Cg language
makes shader development much easier.
Cg is very similar to Microsoft’s HLSL. CG is based

on the C programming language and they share the

same syntax. Some features of C were modified and
new data types were added to make Cg more suitable
for programming graphics processing units. It is very
easy for students to grasp the Cg language who are
already familiar with C or C++ syntax and flow control.
The Cg language is also very similar to Microsoft’s
High Level Shading Language (HLSL). So students
with experience to one shading language would rather
easily get familiar with the other. There are also many
Cg shading language reference materials on the web,
including reference texts, developing toolkits and
forums. The classical book of “Cg Tutorial” is suitable
for the class use since it contains a complete
specification as well as many useful example codes.

III. COURSES INCORPORATING CG
Traditional top-down approaches to teaching graphics
focus on the use of fixed-function OpenGL API. In
this course we transfer to the programmable graphics
pipeline by incorporating Cg in the OpenGL API. In
the following of this section, we will first introduce the
curriculum of the course, then explain the benefits of
using Cg.

A. Curriculum
The text book of [3] provides us a good reference on

how to organize and present the materials. This text
book includes rich contents which cover nearly all
topics in our courses. It introduces the fundamental
theories, concepts and algorithms of graphics in a top-
down manner based on OpenGL, the cross-platform
open graphics library. As for the parts in the text book
where the theoretical concepts are not introduced
thoroughly, we ask the students to refer to the book of
[9] which provides excellent description for low-level
algorithms. The students are also asked to read the
book of [10] to get familiar with OpenGL
programming interface and program writing.

In our course, we first give the overview of the
rendering pipeline. Then each stage of the pipeline is
introduced in detail by providing competent treatment
of low-level algorithms. As for the application stage of
the pipeline, the course about geometry and modeling
is given, where different 3D geometric representation
methods are introduced. For the geometry stage we
give three lectures, which are about transformations,
lighting and shading. For the rasterization stage, we
arrange two

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Figure 1: Some pictures generated by students. (a) 3D models enlarging and shrinking in
normal direction implemented by vertex shader in Cg. (b) Phong Shading results implemented
by pixel shader in Cg.

(a) (b)

lectures which are about rasterization and texturing,
and visibility and culling. The Cg shading language is
introduced by two lectures. The first is arranged at the
beginning of the semester, where simple syntax and
how to setup running environment are introduced. So
the students can finish the assignments by writing
programs with Cg. The second lecture is arranged at
the end of the semester, where we discuss advanced
rendering techniques and algorithms that are
implemented with Cg.

For the assignments of this course, the students are
asked to implement several stages of the pipeline by
using OpenGL API and Cg, like geometry
transformations and lighting, as well as a big project
where students are trained to implement complex
rendering results. In a semester-long course, we assign
four substantial programming problems. The first is a
short assignment where students are asked to write a
simple Cg program. Students would get familiar with
the syntax and running environment of Cg by this
project. The second is about manipulating the
geometry transformation matrixes with Cg. The
students are expected to understand the mathematical
theories underlying these transformations and learn to
set parameters for the transformation matrixes. The
third is about the lighting computation. Students are
expected to use Cg to simulate some classical lighting
effects (e.g. Phong Local Lighting Model) as well as
some special lighting effects (e.g. Gooch Shading).
The final project is open-ended. The students are asked
to implement the advanced effects achievable only
with Cg. They can choose any special effects that they
want to simulate, such as fire, smoke or bump-
mapping. To give student a starting point for their
assignment, we provide the example source codes in
both fixed-function and Cg form. All of the four
assignments can be incrementally added to a single
application program to get the final big one. The
students have a sense of achievement with the final

full-functioned program. Figure 1 shows some
assignment results implemented with Cg.

It is important to understand that the Cg shading
language is only used as a tool to extend and enhance
students’ understanding. It is of little value to teach the
Cg for its own sake here.

A. The Benefits of Using Cg
The programmable OpenGL API discloses the parts

operating on vertices and pixels to the developers
which were used to be enclosed in the fixed-function
API. Thus the responsibility of applying
transformations is shifted from the API to the
developers. By using Cg to write vertex and pixel
shaders, the students are forced to understand the
mathematical transformations and computations that
performed by the pipeline. Here we show a few
examples.
In Figure 2 we present a simple Cg vertex program

for computing the light for each vertex by Phone
lighting model. In the fixed-function graphics pipeline,
this computation procedure is transparent to the
developers. What they can do is limited to setting some
parameters. By writing this vertex program, the
programmers have to be familiar with the lighting
model. They should understand that an object’s surface
color is the sum of emissive, ambient, diffuse, and
specular lighting contributions. They also need to
know what each term is about and how to compute
these terms. Since Cg syntax is extremely
straightforward, students are easy to connect the
mathematical equations to the Cg functions. The
behavior of each stages of the pipeline is no longer
obscured by fixed-function OpenGL
API.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

For complicated cubic environment mapping, the
code with Cg is more elucidating. In Figure 3 we show
the fixed-function OpenGL API necessary to perform
the cube mapping. Here we just turn on this function
by invoking glEnable() function with the parameter of
GL_TEXTURE_CUBE_MAP. The programmer needs
not to know how this algorithm works to get the
texture color. The whole procedure is transparent to
the programmer. However, if the programmer writes
this algorithm in Cg as the sample code displayed in
Figure 4, he/she has to be clear about every step of this

void basicLight(float4 position : POSITION,
 float3 normal1 : NORMAL,
 out float4 oPosition:POSITION,
 out float4 color :COLOR,
 uniform float4x4 modelViewProj,
 uniform float3 globalAmbient,
 uniform float3 lightColor,
 uniform float3 lightPosition,
 uniform float3 eyePosition,
 uniform float3 Ke,
 uniform float3 Ka,
 uniform float3 Kd,
 uniform float3 Ks,
 uniform float shininess)
{

oPosition = mul(modelViewProj, position);

float3 P = position.xyz;
float3 N = normal;

float3 emissive = Ke;

float3 ambient = Ka * globalAmbient;

float3 L = normalize(lightPosition – P);
float diffuseLight = max(dot(N,L), 0);
float3 diffuse = Kd * lightColor * diffuseLight;

float3 V = normalize(eyePosition – P);
float3 H = normalize(L + V);
float specularLight = pow(max(dot(N,H),0),

shininess);
float3 specular = Ks * lightColor *

specularLight;

color.xyz = emissive + ambient + diffuse

 + specular;
color.w = 1;

}

void Reflection_V(float4 position : POSITION,
 float2texCoord : TEXCOORD0,
 float3 normal : NORMAL,
 out float4 oPosition : POSITION,
 out float2 oTexCoord : TEXCOORD0,
 out float3 R : TEXCOORD1,
 uniform float3 eyePositionW,
 uniform float4x4 modelViewProj,
 uniform float4x4 modelToWorld)
{
 oPosition = mul(modelViewProj, position);
 oTexCoord = texCoord;

 float3 positionW = mul(modelToWorld,
position).xyz;
 float3 N = mul((float3x3)modelToWorld,
normal);

N = Normalize(N);

float3 I = positionW- eyePositionW;
R = reflect(I, N);

}

Figure 4(a): The vertex program of Reflective
Environment Mapping.

void Reflection_F(

float2texCoord: TEXCOORD0,
 float3 R: TEXCOORD1,
 out float4 color : COLOR,
 uniform float reflectivity,
 uniform sampler2D decalMap,
 uniform samplerCUBE environmentMap)
{
 float4 reflectedColor = texCUBE(

environmentMap, R);
 color = reflectedColor;
}

Figure 4(b): The fragment program of

Reflective Environment Mapping.

glEnable(GL_TEXTURE_CUBE_MAP);

Figure 3: The fixed-function OpenGL API
to set cube mapping.

Figure 2: The Cg vertex program for
Phong lighting model.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

algorithm. Figure 4(a) and Figure 4(b) show the vertex
program and the fragment program respectively. The
vertex program computes R the reflected eye vector,
which is highlighted in the Figure 4(a). The fragment
program performs the corresponding texture lookup
according to R and set the output color for the
fragment. This example illustrates one of the
fundamental advantages of using Cg: shaders expose
functionality the traditional API obscures.

IV. CLASS FEEDBACKS

We have collected the students’ responses to this
course after the semester finishes and we find that
these course evaluations have some instructive value.

The students were asked to evaluate the qualities of
teaching materials, teaching methods and teaching
effects. We have conducted the surveys to two classes
of 60 students. Table 1 shows the survey results.

Table 1: Students’ rating of our computer
graphics course

 Poo
r

Fair Satisfactory Very
Goo
d

Excellent

Teaching
Materials

0% 0% 15% 23% 62%

Teaching
Methods

0% 0% 16% 23% 61%

Teaching
Effects

0% 0% 15% 22% 63%

From Table 1, we can see that nearly 85% of the class
rated the qualities of the teaching materials, methods
and effects as “Very Good” or “Excellent”.
 We also consulted students’ concrete opinions
towards this class. We find there is still room to
improve our teaching. For example, some students find
the Cg programming environment difficult to set up
and feel a little frustrated with it. So in the future class
we will try to build this programming environment for
the students and explain this procedure clear for them
in the class.

V. 5. CONCLUSIONS AND FUTURE WORK

In this paper we have described a hybrid approach
to teaching computer graphics by incorporating Cg
shading language. This approach successfully
combines the benefits of the top-down and bottom-up
teaching methods. By using Cg to write shaders, the

students are exposed to the underline functionality of
the graphics pipeline which is usually obscured by
fixed-function OpenGL API. So the students have
better understanding of the low-level algorithms.
Meanwhile it is also much easier for them to produce
visually interesting pictures with the help of Cg, which
is very exciting and motivating. As computer graphics
hardware continues the exponential advancements, we
believe that programming shaders will play an
increasingly important role in real-time applications [6]
[8]. It may come to this point that the students are
expected to use shading language as a common tool to
develop their applications. So students with no prior
experience with shading language will be at the
disadvantage.

In the future, we plan to introduce more special
effects that can only be achieved with Cg for this
course. By introducing these topics, students will get
more inspired to see the wonderful simulation results.
They will also become more familiar with Cg and be
good at applying it to many graphics problems.

REFERENCES
[1] Tang Rongxi, Wang Jiaye, Peng Qunsheng. Computer Graphics
Tutorial. Science Publisher, China, Revised Edition, 2001.

[2] K. Sung and P. Shirley. A top-down approach to teaching
introductory computer graphics. In SIGGRAPH ’03: Educators
program from the 30th annual conference on Computer graphics and
interactive techniques, pages 1–4, New York, NY, USA, 2003. ACM
Press.

[3] E. Angel. Interactive Computer Graphics: A Top-Down
Approach Using OpenGL. Addison-Wesley, fourth edition, 2005.

[4] S. Cunningham. Powers of 10: the case for changing the first
course in computer graphics. In SIGCSE ’00: Proceedings of the 31st
SIGCSE technical symposium on Computer science education, pages
46–49, New York, NY, USA, 2000. ACM Press.

[5] R. Fernando and M. Kilgard. The Cg Tutorial: The Definitive
Guide to Programmalbe Real-Time Grapics. Addison-Wesley, 2003.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, and P. Hanrahan. Brook for GPUs: stream computing on
graphics hardware. SIGGRAPH ’04: Proceedings of the 32nd annual
conference on Computer graphics and interactive techniques,
23(3):777–786, 2004.

[7] M. Kilgard. NVIDIA graphics, Cg, and transparency.
SIGGRAPH 2006 Course Notes, 2006.

[8] M. McCool, S. D. Toit, T. Popa, B. Chan, and K. Moule. Shader
algebra. SIGGRAPH ’04: Proceedings of the 32nd annual conference
on Computer graphics and interactive techniques, 23(3):787–795,
2004.

[9] P. Shirley. Fundamentals of Computer Graphics. A. K. Peters,
Ltd., second edition, 2005.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

[10] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL
Programming Guide: The Office Guide to Learning OpenGL Version
2. Addison-Wesley Professional, fifth edition, 2005.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

	I. Introduction
	II. Cg Shading Language
	III. Courses Incorporating Cg
	A. Curriculum
	A. The Benefits of Using Cg

	IV. Class Feedbacks
	V. 5. Conclusions and Future Work

