
Intelligent Tutor Generator for Intelligent
Tutoring System

M.Siddappa1, Dr. A.S.Manjunath2

Abstract: The emergence of Intelligent Tutoring System (ITS)

has opened up new avenues for the use of computers in the

field of education. ITSs are able to tackle difficult instructional

problems and extend the usefulness of the computer as an

instructional tool. Intelligent Tutoring Systems have proved

useful in various domains, but are highly resource intensive

to build , the “tutor generators” for assisting users in

building ITSs conforming to two prominent intelligent tutoring

paradigms: model-tracing and constraint-based. This paper

presents design of a software tool called Intelligent Tutor

Generators (ITG) for ITS. It is observed that it was easier to

build a generic ITS generator based on the constraint-based

paradigm, but the tutor generator based on the model-

tracing paradigm is more feature rich. It can generate

applications with rich user interaction and powerful theory-

based remediation capabilities.

Index Terms: ITG, ITS, Paradigm,

1. INTRODUCTION

Educational system in general and the learning
process in particular are heading for a rapid change in the
next millennium. Computers and computer networks are
becoming major sources of information for the present and
future generations.

Computers have made impressive strides in the
field of education. As personal computers are becoming
cost-effective with rapidly increasing capabilities, their
application in education is becoming more and more
prominent. Computers can provide individualized and
interactive education for everyone. According to Skinner’s
theory of learning Skinner [1], education is nothing but the
transmission of knowledge and can be done by breaking
down any subject into a well-organized succession of
modules and a question-answer process. A computer, being
able not only to display matters, but also can interactively
ask questions and grade answers. It can simulate and
complement the teacher and allow each student to learn a
subject and progress at ones own pace Hebenstreit, [2].

Intelligent tutoring is a knowledge-intensive
activity. ITS have shown themselves to be effective in
practice Anderson et al., [3] Mitrovic et al., [4]. They are,
however, extremely resource intensive to build, requiring
detailed knowledge about instructional technology in
general, the paradigm in use in particular, and a high-level
of software development expertise. In an attempt to make
development of ITS easier, tutor authoring tools or shells
have been developed Murray [5].
Manuscript received 31st July 2008; accepted 8th August 2008. This work
is supported by All India Council for Technical Education, New Delhi
under Faculty Development Programme Travel Grant.
1. Professor, Dept. of Computer Science & Engg., Sri Siddhartha

Institute of Technology, Tumkur – 572 105, Karnataka, India,
E-mail:msiddu_ssit@rediffmail.com, Phone No.: +91 9448077405.

2. Professor, Dept. of Computer Science & Engg., Siddaganga Institute
 Of Technology, Tumkur – 572 102. Karnataka, India.
 E-mail:asmanju@gmail.com, Phone No.: +91 9845141040

This paper describes software tools - “Intelligent
Tutor Generators” (ITGs) for assisting users in building
intelligent tutoring systems.

• ITG focuses on

o Constraint based paradigm.

o Model tracing paradigm.

ITG for constraint-based tutors, entirely new tutors
can be created quickly without any new software
development since the constraints can be stated
declaratively. ITG for model-tracing tutors requires the
rules to be specified in JESS code Friedman-Hill et al.,
[6]. Both the ITGs are capable of generating problem-
specific user interfaces based on declarative
descriptions stored in a database.

 Intelligent Tutor Generator’s are used to build
constraint-based and Model-Tracing Tutors for the
statistical. hypothesis testing problem Kodaganallur et
al., [7]. Currently MTTs are being built primarily by the
Pittsburg Advanced Cognitive Tutor Center at Carnegie
Mellon University and Constraint-Based Model Tutors
(CBMT) at the Intelligent Computer Tutoring Group at
the University of Canterbury, New Zealand. These groups
have developed tools for generating tutors, Koedinger et
al.,[8] and Martin et al.,[9], but we have found that these
tools either use platforms that are not commonly
available or are difficult to use without specific training.
The constraint checker for our constraint based tutor is
generic and can be used for several domains; it is also
easily extensible.

The following sections cover theory-based
approaches to intelligent tutoring, the two main
paradigms of intelligent tutoring, the functionality of our
tutor generators and their architectures.

2. INTELLIGENT TUTORING SYSTEMS

The necessary components of an ITS are the expert
module, the student model module, the diagnostic module,
the tutorial module and the user-interface module Siddappa
et al.,[10]. The expert module in an ITS consists of domain
knowledge that the system intends to teach the student. The
expert module provides the necessary skill to the tutor to
solve problems posed by the student and determines correct
answers for the questions asked by students. The student
model is that part of an ITS which represents the current
knowledge state of the student. This information helps the
tutor to adapt the instruction in accordance with
competence, abilities and needs. The tutor can accordingly
choose a suitable level and method of presentation of the
subject based on the student’s learning abilities and other
factors such as those represented in the student model. The
main objective of diagnostic module is to maintain the

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

student model and it does the evaluation of the student
before, during and after the tutorial process. The information
provided by the diagnostic module is to be used by the
tutorial module to decide about what to teach and how to
teach. The tutorial module contains instructional strategies
like choosing an effective presentation method, determining
what to present next and when to interrupt the instruction
process. The instructional strategies are based on the
information provided by the diagnostic module and the
student module. The user-interface module provides
communication between the student and the tutor which
includes the actual presentation of text and graphics as well
as acceptance of student input. A functional model of an ITS
is given in figure 1

Fig. 1 Functional Model of ITS

The constraint based paradigm is feasible only
when the solution itself consists of sufficient information
based on which the tutor can provide remediation. The
model tracing paradigm is more effective in problem
domains where there is a strong element of goal
decomposition. Thus information content of the solution
and the extent of goal decomposition are the two important
dimensions which determine the suitable paradigm. Model
tracing tutors have an added advantage in that they can
provide guidance when a student is stuck with a blockade.

2.1. Constraint-Based Model Tutors (CBMT)

CBMT are rooted in theory; this theory stipulates
that intelligent tutoring can be achieved by examining
the problem state that a student arrived at and that
the process the student used to reach that state is
unimportant for remediation. The problem state is
characterized by a-priori problem data and by
variables for which the student supplies values while
interacting with the tutor. At its core, this paradigm
relies on the notion of constraint Mitrovic et al., [4], which
can either be satisfied or violated. A problem state that
violates one or more constraints is erroneous, and the
violated constraints determine the remediation to be
provided. A constraint is an ordered pair (Cr, Cs) of
conditions with Cr being the relevance condition and Cs
being the satisfaction condition. Relevance and
satisfaction conditions are Boolean expressions based on
the problem state. A simple example is given below:

Cr: problem-type is “time and distance”
Cs: speed supplied by the student, equals distance divided by
time.

An example from Ohlsson et al., [11] in the domain of
algebra is:

Cr (x+y)/d is given as the answer to x/d1 + y/d2

Cs d = d1 = d2

The relevance condition is used to determine
whether a particular constraint is relevant to a
problem state. The satisfaction condition of a
constraint is evaluated if and only if the problem state
meets its relevance condition. If the satisfaction
condition is met, then the constraint as a whole is said
to be satisfied. A constraint whose satisfaction
condition is not met is said to be violated, and suitable
remediation may then be provided.

In the above example, the relevance condition is
written in terms of the a-priori variable problem-type.
The satisfaction condition is written in terms of both
a-priori variables (distance and time) and a student-
calculated value (speed). Evaluating a student’s work
involves checking the resultant problem state against
every constraint, to determine all the constraints
satisfied and violated. The corpus of violated
constraints is used to determine the remediation.
Fig 2 shows the basic components of a constraint-
based tutor and charts the interactions between these
components in response to a student submission.
Typical implementations would use highly
specialized versions of each of the components
suitable for the domain in question. Thus, for
example, the SQL Tutor Mitrovic [12] provides a
customized user interface, has a constraint engine with
specific string processing capabilities needed for the
domain and implements the constraint-base in LISP code.
The need to build customized versions of each of the
components for each application domain makes the
creation of ITSs labor intensive.

2.2. Model-Tracing Tutors (MTT)

MTTs have been fielded in a variety of domains
including college-level physics Gertner et al.,[13], Shelby
etal., [14], high school algebra Koedinger et al.,[3],
Heffernan etal.,[15], Heffernan et al.,[16], geometry
Anderson et al.,[17], Wertheimer et al.,[18] and computer
programming Corbett et al.,[19], Corbett et al., [20], Corbett
et al., [21].

This paradigm can be seen as taking a “process
centric” view since it aims to understand the process that a
student employs in arriving at a solution and to provide
remediation based on this. An MTT is composed of
expert rules, buggy rules, a model tracer and a user interface.
Expert model rule is the step that a proficient individual
might take to solve the problem in question. These
include rules for decomposing a problem into sub
problems (or “planning” rules) and rules those address the
solution of atomic sub problems (“operator” or “execution”
rules). Planning rules embody procedural domain
knowledge and operator rules embody declarative domain
knowledge.

STUDENT
USER

INTERFACE
MODULE

DIAGNOSTIC
METHODS

TUTORIAL
MODULE

STUDENT
MODEL

EXPERT
MODULE

0

Student

1

User interface Constraint
Engine

2

3

Constraint
base

0. Constraint engine loads constraints
from constraint base

1. Student submits partial or full solution
2. UI sends solution to engine to check

constraints
3. Engine returns results
4. UI presents remediation to student

4

Fig. 2. Constraint Based Tutor components and

Interactions

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

In an MTT, the components are similar to those
in figure 2, except that the constraint base is replaced
with a rule base, and the process of constraint
checking will be replaced by a process of model-
tracing.

The following is the example expert rule
hypothesis testing domain. Hypothesis testing is a
fundamental topic in inferential statistics Martin et al., [9].
A later section provides more details on this problem
domain.

IF The goal is to solve the problem

 THEN Set sub goals to determine:
 The critical value, and
 The sample statistic value.

IF The goal is to determine the critical value

 THEN Set sub goals to determine:
 The value of alpha, and
 test statistic to use.

IF The appropriate test statistic to be used is the z

statistic, and the population standard deviation is
unknown.

THEN The value of the test statistic is

x − µ
z = s x , where sx=sn

Here, the first two are planning rules and the third
is an operator rule.

In MTT, domain knowledge is captured in the
form of many such rules. The crux of an MTT is to
“trace” the student’s input, where tracing consists of
finding a sequence of rule executions whose final
result matches the student’s input. If the tutor is able
to do this, it is taken to mean that the tutor has
understood the process by which the student arrived at
an answer. In order to identify student errors an MTT
has a set of “buggy” rules which reflect common student
misperceptions. If the tutor’s trace of a student
solution contains the application of one or more of these
buggy rules, then the tutor provides the remediation
associated with the buggy rule(s).

A sample buggy rule in our tutor follows:

IF The population standard deviation is unknown,

 and the sample size < 30.

THEN The appropriate test statistic is the z

 statistic.

This rule models incorrect reasoning; for sample
sizes less than 30 the appropriate test statistic is the t
statistic. If the student’s behavior matches this buggy
rule, the system concludes that the student does not
understand this piece of declarative knowledge, and
provides the remediation associated with the rule.
Since MTTs can provide well-targeted remediation
only when one or more buggy rules are used in a
successful trace, their tutoring capabilities depend on
how well they capture the corpus of mistakes made by

students.

While the ideal situation is that the tutor is able to
trace all student inputs, this might not always be
practical. Tutors should generally be able to trace all
student inputs which are correct. For incorrect student
input the tutor is unable to trace, the best
remediation might be a general response that
something is wrong.

In general, there could be several alternate
strategies to solve a problem. A particular tutor might choose
to allow only one strategy, or support multiple strategies. In
the latter case, the tutor must have expert rules and buggy
rules for each strategy, and the model-tracing process
should be able to map the student’s input to a particular
strategy Schultze, K.G., [22].

3. USER INTERFACE

A different approach to building tutors looks at the
possibility of creating generic versions of each of the
requisite components and using these to help create tutors
in a broad variety of application domains. It is possible to
do this fully for the constraint-based paradigm, but for
the model-tracing paradigm it is unable to generalize the
knowledge base that the tutor uses. Despite the
limitations that generic ness introduces, we have seen that
useful tutors from many domains can be quickly and easily
generated from our generator.

When a generated tutor is started, a window
appears showing the available problems. Our current
implementations work at the level of individual problems;
there is no sequencing of problems based on the student’s
performance. When a student selects a problem to work on,
the Tutor displays a problem. The problem has several tabs
and the student is free to move among the tabs as needed.
To start working on the selected problem the student selects
the “Work Area” tab. Solving a problem consists of
selecting variables (from a master list) relevant to the
problem solution and supplying values for those variables.
Students type in values for the selected variables and submit
the (possibly partial) solution for evaluation. The tutor
evaluates the solution and provides solution in the answer
status column. The tutor provides progressive hints, or the
correct solution, on the student’s request. If there are
multiple errors, then the “Errors” list has multiple rows.
When the student has supplied correct values for all the
appropriate variables, the system treats the problem as
having been completed. In the case of MTT, the “Guidance”
tab and the “Guide” button are visible. When a student using
the generated MTT is stuck and does not know how to
proceed, then the student can press the “Guide” button and
the tutor will provide guidance. Under the current state of
the art in constraint-based tutors, such a facility is extremely
difficult, if not impossible to provide in most domains. This
is a natural feature of all model-tracing tutors since they
always know where the student stands in the problem
solving process. All the domain/problem specific
information is supplied as data to our tools. The tools
generate a problem-specific user interface based on
declarative data. For someone wanting to use the generators
without any additional coding, the user interface is currently
restricted to allowing the student to select from a list of
predefined variables and supplying values for these.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Anything else would require the tutor developer to
write a plug-in. We planned to introduce a wide range of
user-interaction primitives, using which tutor developers can
declaratively create other user interaction paradigms.

4. CONSTRAINT-BASED TUTOR ARCHITECTURE

The other significant components are the constraint
base and the constraint engine. All problem specific
information is stored in a relational database. The
generators support the notion of a problem type. Problem
type represents a family of problems. For example, in the
hypothesis testing domain, all single population tests for
comparisons of means would constitute a single type. Thus
once the constraints are specified for a problem type, any
number of problem instances of that type can be created
without needing to specify the constraints all over again. A
new problem can be added by populating database tables
with all the problem parameters. The parameters problems
are variable-value pairs. Some variables are a-priori
variables which inform the tutor about some data that
appears in the problem description. Other variables are the
variables for which the student has to provide values.
Tables 1 and 2 provide examples of a-priori and other
variables.

A priori variable

Name
Description

Problem Type

The kind of hypothesis testing
problem(testing for mean less than a given
value, greater than a given value or equal to
a given value)

muZero
The hypothesized value of the population
means

popStdKnown
Whether the population standard deviation is
known

Table 1- A Priori variable Examples

Variable Name Description

Null Hyp Sign
The comparison operator for the null
hypothesis)<,> or =).

StudentmuZero Students’s value of mu zero.

Mean The sample mean.

testStatistic The test Statistic to be used

zValue
The value for the z statistic (this is
applicable only if the proper statistic to be
used in a problem instance is the z statistic).

Table 2- Student variable examples

Problem type Hypothesis Testing

Constraint number 30

Description
If the problem type is “one population,
testing for Mu<=muZero then the correct
sign for the null hypothesis is “<=”

Relevance
Equals(problem Type, “IPM<=”)
&&exists(“nullHypSign”)

Satisfaction condition Equals((“nullHypSign, “<=”)

Error title Incorrect null hypothesis

Hint 1

Check your null hypothesis, You want to
formulate your null hypothesis in such a
way that you do not move away from the
status quo unless there is strong
evidence indicating otherwise. The null
hypothesis is always that the observed
mean favors retaining the status quo.

Hint 2

Think above whether a larger value or a
smaller value for the mean than muZero
would favor moving away from the
status quo, and then formulating the null
hypothesis accordingly. In general, one
would tend to stick with the status quo
unless the data gathered convincingly
indicates that there is a case to make
changes, in this problem would a small
sample mean or a large one convince
you to maintain status quo? The null
hypothesis is the case for maintaining
the status quo.

Hint 3

In the problem a small sample mean
would convince you that it makes sense
to stick with the status quo and not to
take any action whereas a large mean
would provide a rationale to do
something.

Answer
The null hypothesis should be

µ =| µ 0|

Variable(s) nullHyeSign

Table 3- A constraint

The constraint engine is generic and can handle
constraints based on extensive string, numeric and logical
processing, with numerous built-in functions that
encompass the requirements of several domains. The
constraint base is implemented with relational database
technology and is independent of any programming
language. A small constraint language enables tutor
developers to specify constraints as Boolean expressions in
a Java like syntax. The heart of the engine was developed
using Java Compiler (Java CC) based on an EBNF
specification of the language. Table 3 shows an example of
a constraint. Note that the relevance and satisfaction
conditions are shown as Boolean expressions. Associated
with each constraint is the relevant remediation.

The generated tutors optionally allow for problem
data to be generated individually for each student. That is,
each student can work on the same problem, but with
different randomly generated data. This is the case in the
hypothesis testing problems shown on the screen. Data thus
generated can be copied to the systems clipboard for
transfer to any other application for further work.

The systematic interface between the user-interface

and the constraint engine is very narrow. The user interface
invokes a single operation on the constraint engine and
passes the problem state to it. The result of this invocation
contains all the information that the user interface needs to
provide remediation to the student. This was explicitly done
to facilitate the planned addition of a web interface.

Although the default functionality of the generator is

already sufficient to build tutors in many domains, it is
extensible through a plug-in architecture. New domain-
specific functions can be added to the constraint language
by writing standalone Java classes. The complete work area
for a family of problem can be replaced by a user-supplied
Java class that conforms to a specific interface. It is thus
possible to create tutors with just the required functionality
with a minimum of effort since most of the functionality
will be reused.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

5. MODEL-TRACING TUTOR ARCHITECTURE

We have already described the user interface portion
of the MTT generator. The MTT uses the same approach as
the constraint-based tutor generator for storing problems
and problem types. The major difference between the two is
the knowledge base. In MTT the domain knowledge of the
tutor is represented in the form of rules. The use of the Java
Expert System Shell (JESS) Friedman-Hill, E [6] as our
rule engine and coded the rules in the JESS language.

(defrule decompose-ready-to-decide
 (Need-ready-to-decide)
 (Critical-value-computed)
 (statistic-value-computed)
 =>
 (assert(ready=to=decide)))
(defrule compute-right-side-cutoff-correct
 (need-critical-value-computed)
 (alpha-established)
 (statistic-established)
 (ht_prob (problemType “1PM<=”) (testStatistic “z”) alpha
?alpha) (zAlphaRight? z&nil&(approx-eq?z (zlookup ?alpha))))
 =>
 (assert (cirical-value-computed))
 (addResult (fetch results) nil CORRECT (create$ “zAlphaRight”)
))

Fig. 3 – Sample goal decomposition rules in the MTT

JESS is inherently a forward chaining rule engine.

However, model-tracing requires a backward chaining rule
engine. Fortunately JESS supports backward chaining
through “backward chaining reactive” templates those
allow one to build a goal structure and case the rule engine
to try to achieve a goal by recursively trying to achieve its
sub goals. An example snippet of JESS code that defines
the goal breakdown is given in Figure 3.The first rule in
that figure essentially says that in order to be able to make a
decision, the critical value and the statistic value must both
have been calculated. Firing this rule will cause JESS to try
to satisfy the two sub goals. A JESS operator rule is shown
in Figure 4.

(defrule compute-right-side-cutoff-correct
 (need-critical-value-computed)
 (alpha-established)
 (statistic-established)
 (ht_prob (problemType “1PM<=”) (testStatistic “z”) alpha
?alpha) (zAlphaRight ?z&nil&(approx-eq?z(zlookup ?alpha))))
 =>
 (assert(cirical-value-computed))
 (addResult(fetch results) nil CORRECT(create$ “zAlphaRight”))
)

Fig. 4 – Sample operator rule pertaining to computing the right side

cutoff value in the MTT

In order to pass data back and forth between JESS
and Java user interface uses the native data transfer
mechanisms that JESS provides. Essentially data are passed
back and forth as variable-value pairs. The MTT functions
quite differently from the constraint-based tutor. Whereas in
the constraint- based tutor, the student could submit values
for any variables and get the partial solution evaluated by
the tutor, the structure of model tracing is such that the tutor
will proceed only along the goal structure. Suppose the
student supplies values for a variable, which is part of a
downstream goal without having satisfied upstream goals,
the model-tracing process will find that earlier goals have
not been satisfied. Hence some of the values supplied by
the student will not be evaluated at all. The fact that these

values were not evaluated itself tells the student that
something is wrong.

The unique feature of MTT is their ability to provide

guidance when the student does not know what to do next.
In this case rather than submit a partial solution for
evaluation, the student invokes the “Guide” button. At this
stage the tutor knows exactly which goals have already
been satisfied and which have not. Based on this the tutor
can give precise guidance on what goals the student can try
to meet next. This functionality is achieved by means of a
set of “Guidance ” rules stored in the rule base. An example
guidance rule is given in Figure 5. Since a model tracing
tutor can figure out the solution process the student
knows which goals have been satisfied at any point in time.
It provides remediation based on this knowledge. The
example rule in Figure 5 is checking for the goal that is
being satisfied (establishing the null hypothesis) and
verifies that an upstream goal (computing mu-zero) has
already been satisfied. It also verifies that the null
hypothesis has not yet been established. Based on this
information it constructs the guidance.

(defrule null-hypothesis-guidance
 (need- null-hypothesis –established)
 (mu-aero-computed)
 (ht_prob (nullHypSign nil))
 =>
 (store guidance
 (str-cat(fetch guidance) (build_guidance”decision” “hypotheses”
“mu_zero_established” “null_hypothesis”))))

Fig. 5 - Sample guidance rule in the MTT

6. CONCLUSIONS

This paper describes tutor generators for building tutors
based on the constraint- based and model-tracing intelligent
tutoring paradigms. The generator for constraint-based
tutors supports the creation of tutors from several domains
without the need for any coding. The user interface,
problem details and the constraints are all declaratively
specified. The generator for model- tracing tutors also
shares the same user interface capabilities, but its
knowledge base is not generic and has to be coded in an
expert system language as rules for each type of problem to
be solved. On the other hand, the generated model-tracing
tutors have the ability to guide the student as to the possible
next step when the student is lost. This capability is absent
in the constraint-based tutors generated.

In this ITS it is possible to add features to the tutor
generators. We are looking for ways to eliminate the need
for tutor developers to have to write JESS code for creating
MTT. We are also working on enhancing the user interface
to provide many additional pre-built motifs that tutor
builders can use directly to create more appealing
interfaces.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

7. REFERENCES

[1.] Skinner, B.F. (1968). The Technology of Teaching.

Appleton Century Crofts, New York.

[2.] Hebenstreit, J.(1985). Computers in education – the
next step. Education and Computing, 1(1): 37-43.

[3.] Koedinger, K.R. and Anderson, J.R. (1997).
Intelligent Tutoring Goes to School in the Big City.
International Journal of Artificial Intelligence in
Education, 8, 30-43.

[4.] Mitrovic, A. and Ohlsson, S. (1999). Evaluation of a
Constraint-Based Tutor for a Database Language.
International Journal of Artificial Intelligence and
Education, 10, 238-256.

[5.] Murray, T. (1999). Authoring Intelligent Tutoring
Systems: An Analysis of the State of the Art.
International Journal of Artificial Intelligence and
Education, 10, 98-129.

[6.] Friedman-Hill, E. (2003). Jess in Action: Rule-
Based Systems in Java. Manning Publications,
Greenwich, CT. (See also the JESS homepage at:
http://herzberg.ca.sandia.gov/jess/index.shtml.)

[7.] Kodaganallur, V., Weitz, R., Rosenthal, D.V.,
(2005), A comparison of model-tracing and
Proceedings of the 39th Hawaii International
Conference on System Sciences – 2006 constraint-
based intelligent tutoring paradigms, International
Journal of Artificial Intelligence in Education, 15,(2)
117-144.

[8.] Koedinger, K. R., Aleven, V., and Heffernan, N.T.
(2003) Toward a Rapid Development Environment
for Cognitive Tutors. 12th Annual Conference on
Behavior Representation in Modeling and
Simulation. Simulation Interoperability Standards
Organization. Available online at
http://nth.wpi.edu/pubs_and_- grants/03-BRIMS-
063.doc

[9.] Martin, B. and Mitrovic, A. (2002). WETAS: A
Web-Based Authoring System for Constraint-Based
ITS. In P. De Bra, P. Burilovsky and R. Conejo
(Eds.), Proceedings of the Second International
Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, AH 2002, Malaga, Spain, 543-
546, Berlin Heidelberg New York: Spring-Verlag.

[10.] Siddappa. M, Dr.A.S.Manjunath, “Knowledge
representation using multilevel hierarchical model in
intelligent tutoring system”, Proceedings of the third
IASTED International conference, Advances in
Computer Science & Technology, April 2-4, 2007,
Phuket, Thailand, ISBN CD:978-0-88986-656-0.

[11.] Ohlsson, S. and Rees, E. (1991). The Function of
Conceptual Understanding in the Learning of
Arithmetic Procedures. Cognition and Instruction, 8,
103-179.

[12.] Mitrovic, A. (2003). An Intelligent SQL Tutor on the
Web. International Journal of Artificial Intelligence
in Education 13, pp. 171-195.

[13.] Gertner, A. and VanLehn, K (2000). Andes: A
Coached Problem Solving Environment for Physics.
In Gauthier, G., Frasson, C. and VanLehn, K. (Eds)
Intelligent Tutoring Systems: 5th International
Conference, ITS 2000, 131-142, Berlin Heidelberg
New York: Springer-Verlag

[14.] Shelby R, Schulze K, Treacy D, Wintersgill M,
VanLehn K, and Weinstein A. (2001, July). An
Assessment of the Andes Tutor. Proceedings of the
Physics Education Research Conference, 119-122,
Rochester, NY.

[15.] Heffernan, N. T., and Koedinger, K. R. (2002). An
Intelligent Tutoring System Incorporating a Model of
an Experienced Human Tutor. In S.A. Cerri, G.
Gouardères, F. Paraguaçu (Eds.), Proceedings of the
Sixth International Conference on Intelligent
Tutoring Systems (ITS 2002), Biarritz, France and
San Sebastian, Spain, June 2-7, 2002, 596-608,
Berlin Heidelberg New York: Springer-Verlag.

[16.] Heffernan, N.T. (2001). Intelligent Tutoring Systems
Have Forgotten the Tutor: Adding a Cognitive
Model of Human Tutors. Doctoral Dissertation,
School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213.

[17.] Anderson, J.R., Boyle, C.F., and Yost, G. (1985).
The Geometry Tutor. In A. K. Joshi (Ed.):
Proceedings of the 9th International Joint Conference
on Artificial Intelligence, 1-7, Los Angeles, CA.

[18.] Wertheimer, R. (1990). The Geometry Proof Tutor:
An “Intelligent” Computer-Based Tutor in the
Classroom. Mathematics Teacher, 308-317
Proceedings of the 39th Hawaii International
Conference on System Sciences – 2006

[19.] Corbett, A.T. and Anderson, J.R. (1993). Student
Modeling In An Intelligent Programming Tutor. In
E. Lemut, B. du Boulay and G. Dettori (Eds.)
Cognitive Models and Intelligent Environments for
Learning Programming. Berlin Heidelberg New
York: Springer-Verlag.

[20.] Corbett, A.T., Anderson, J.R. and O’Brien, A.T.
(1995). Student modeling in the ACT Programming
Tutor. In P. Nichols, S. Chipman and B. Brennan
(eds.) Cognitively Diagnostic Assessment. (19-41).
Hillsdale, NJ: Erlbaum.

[21.] Corbett, A.T. and Bhatnagar, A. (1997). Student
modeling in the ACT Programming Tutor: Adjusting
a procedural learning model with declarative
knowledge. Proceedings of the Sixth International
Conference on User Modeling. Berlin Heidelberg
New York: Springer-Verlag.

[22.] Schultze, K.G., Shelby, R.N. Treacy, D.J.,
Wintersgill, M.C., Vanlehn, K., and Gertner, A.
(2000). Andes: An Intelligent Tutor for Classical
Physics. Journal of Electronic Publishing, 6,
University of Michigan Press. (Retrieved June 14,
2005 at http://www.press.umich.edu/jep/06-
01/schulze.html.)

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

