
Bézier Curve for Trajectory Guidance

Ji-wung Choi ∗, Gabriel Hugh Elkaim †

Abstract—In this paper we present two path planning
algorithms based on Bézier curves for autonomous vehicles
with waypoints and corridor constraints. Bézier curves have
useful properties for the path generation problem. The paper
describes how the algorithms apply these properties to gen-
erate the reference trajectory for vehicles to satisfy the path
constraints. Both algorithms join cubic Bézier curve segments
smoothly to generate the path. Additionally, we discuss the
constrained optimization problem that optimizes the resulting
path for user-defined cost function. The simulation shows the
generation of successful routes for autonomous vehicles using
these algorithms as well as control results for a simple kine-
matic vehicle. Extensions of these algorithms towards navigat-
ing through an unstructured environment with limited sensor
range are discussed.

Keywords: Bézier, Path Planning, Optimization, Autonomous
Vehicle, Feedback Control.

1. Introduction
Exploiting the versatility of autonomous vehicles for aca-
demic, industrial, and military applications will have a pro-
found effect on future applications. Current research on
control systems for autonomous vehicles demonstrates that
trajectory generation is hardly a “solved” problem. For ve-
hicle viability, it is imperative to be able to generate safe
paths in real time.

Many path planning techniques for autonomous vehi-
cles have been discussed in the literature. Cornell Uni-
versity Team for 2005 DARPA Grand Challenge [8] used
a path planner based on Bézier curves of degree 3 in a sens-
ing/action feedback loop to generate smooth paths that are
consistent with vehicle dynamics. Skrjanc [7] proposed a
new cooperative collision avoidance method for multiple
robots with constraints and known start and goal veloci-
ties based on Bézier curves of degree 5. In this method,
four control points out of five are placed such that desired
positions and velocities of the start and the goal point are
satisfied. The fifth point is obtained by minimizing penalty
functions. Lizarraga [5] used Bézier curves for generating

∗Ph.D. Student, Autonomous Systems Lab, Computer Engineering De-
partment, University of California, Santa Cruz, 95064, Tel: 831-428-2146,
Email: jwchoi@soe.ucsc.edu
†Assistant Professor, Autonomous Systems Lab, Computer Engineer-

ing Department, University of California, Santa Cruz, 95064, Tel: 831-
459-3054, Email: elkaim@soe.ucsc.edu

spatially deconflicted paths for multiple UAVs.
Connors and Elkaim [1] previously presented a method

for developing feasible paths through complicated environ-
ments using a kernel function based on cubic splines. This
method iteratively refines the path to compute a feasible
path and thus find a collision free path in real time through
an unstructured environment. This method, when imple-
mented in a receding horizon fashion, becomes the basis
for high level control. This previous method, however, re-
sult in an incomplete path planning algorithm to satisfy the
computational requirements in a complicated environment.
A new approach has been developed based on using Bézier
curves as the seed function for the path planning algorithm
as an alternative to cubic splines. The resulting path is ma-
nipulated by the control points of the bounding polygon.
Though the optimization function for collision avoidance
is non-linear, it can be solved quickly and efficiently. The
results of the new algorithm demonstrate the generation of
higher performance, more efficient, and successful routes
for autonomous vehicles. Feedback control is used to track
the planned path. The new algorithm is validated using sim-
ulations, and demonstrates a successful tracking result of a
vehicle.

The paper is organized as follows: Section 2 begins by
describing the definition of the Bézier curve and its useful
properties for path planning. Section 3 discusses the con-
trol problem for autonomous vehicles, the vehicle dynam-
ics, and vehicle control algorithms. Section 4 proposes four
path planning methods of which two are based on Bézier
curves, and discusses the constrained optimization problem
of these methods. In Section 5, simulation results of control
problem for autonomous vehicles are given. Finally, Sec-
tion 6 provides conclusions and future work.

2. Bézier Curve
Bézier Curves were invented in 1962 by the French engi-
neer Pierre Bézier for designing automobile bodies. Today
Bézier Curves are widely used in computer graphics and an-
imation [6]. A Bézier Curve of degree n can be represented
as

P[t0,t1](t) =
n∑

i=0

Bn
i (t)Pi

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Where Pi are control points such that P (t0) = P0 and
P (t1) = Pn, Bn

i (t) is a Bernstein polynomial given by

Bn
i (t) =

(
n
i

)
(
t1 − t
t1 − t0

)n−i(
t− t0
t1 − t0

)i, i ∈ {0, 1, . . . , n}

Bézier Curves have useful properties for path planning:

• They always passes through P0 and Pn.

• They are always tangent to the lines connecting P0 →
P1 and Pn → Pn−1 at P0 and Pn respectively.

• They always lie within the convex hull consisting of
their control points.

2.1. The de Casteljau Algorithm
The de Casteljau Algorithm is named after the French math-
ematician Paul de Casteljau, who developed the algorithm
in 1959. The de Casteljau algorithm describes a recursive
process to subdivide a Bézier curve P[t0,t2](t) into two seg-
ments P[t0,t1](t) and P[t1,t2](t) [6]. Let {P 0

0 , P
0
1 , . . . , P

0
n}

denote the control points of P[t0,t2](t). The control points
of P[t0,t1](t) and P[t1,t2](t) can be computed by

P j
i =(1− τ)P j−1

i + τP j−1
i+1 ,

j ∈ {1, . . . , n}, i ∈ {0, . . . , n− j}
(1)

where τ = t1−t0
t2−t0

. Then, {P 0
0 , P

1
0 , . . . , P

n
0 } are the control

points of P[t0,t1] and {Pn
0 , P

n
1 − 1, . . . , P 0

n} are the control
points of P[t1,t2].

Remark 1. A Bézier curve P[t0,t2] always passes through
the point P (t1) = Pn

0 computed by applying the de Castel-
jau algorithm to subdivide itself into P[t0,t1] and P[t1,t2].

Also, it is always tangent to Pn−1
0 Pn−1

1 at P (t1).

The path planning method introduced in the Section
4.3.2 is motivated by this property.

2.2. Derivatives
The derivatives of a Bézier curve, referred to as the hodo-
graph, can be determined by its control points [6]. For a
Bézier curve P[t0,t1](t) =

∑n
i=0B

n
i (t)Pi, the first deriva-

tive can be represented as:

Ṗ[t0,t1](t) =
n−1∑
i=0

Bn−1
i (t)Di (2)

Where Di, control points of Ṗ[t0,t1](t) is

Di =
n

t1 − t0
(Pi+1 − Pi)

The higher order derivative of a Bézier curve can be ob-
tained by using the relationship of Equation (2).

2.3. Curvature
The curvature of a n degree Bézier curve P[t0,t1] at its end-
point is given by [6]

κ(t0) =
n− 1
n

h0

|P0 − P1|2
(3)

κ(t1) =
n− 1
n

h1

|Pn−1 − Pn|2
(4)

Where h0 is the distance from P2 to the line segment P0P1,
h1 is the distance from PN−2 to the line segment Pn−1Pn.

3. Problem Statement
Consider the control problem of a ground vehicle with a
mission defined by waypoints and corridor constraints in
a two-dimensional free-space. Our goal is to develop and
implement an algorithm for navigation that satisfies these
constraints. Let us denote each waypoint Wi ∈ R2 for
i ∈ {1, 2, . . . , N}, where N ∈ R is the total number of
waypoints. Corridor width is denoted as wj , j-th widths of
each segment between two waypoints, j ∈ {1, . . . , N − 1}.

3.1. Dynamic Model of Vehicle Motion
This section describes a dynamic model for motion of a
vehicle that is used in the simulation in Section 5. For
the dynamics of the vehicle, the state and the control vec-
tor are denoted q(t) = (xc(t), yc(t), ψ(t))T and u(t) =
(v(t), ω(t))T respectively. Where (xc, yc) represents the
position of the center of gravity of the vehicle. The vehi-
cle yaw angle ψ is defined to the angle from the X axis.
v is the longitudinal velocity of the vehicle at the center of
gravity. ω = ψ̇ is the yaw angular velocity. It follows that

q̇(t) =

cosψ(t) 0
sinψ(t) 0

0 1

u(t)

3.2. Controls
The vehicle uses feed forward path planning with feedback
corrections as illustrated in Figure 1 [4]. A position and ori-
entation error is computed every 50 ms. The cross track
error ycerr is defined by the shortest distance between the
reference trajectory and the position of the center of gravity
of the vehicle (xc, yc). A point c is computed with the cur-
rent longitudinal velocity and heading of the vehicle from
the current position. c is projected onto the reference tra-
jectory at point p such that cp is normal to the tangent at
p. The cross track error yerr is defined by the distance be-
tween c and p. The steering control ω uses PID controller
with respect to cross track error yerr.

ω̇ = kpyerr + kd
dyerr

dt
+ ki

∫
yerrdt

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Figure 1: The position error of the vehicle is measured from a
point c, projected in front of the vehicle, and unto the ideal curve
to point p.

4. Path Planning Algorithm
In this section, four path planning methods are proposed.
To describe the methods, we consider the course with way-
points W = {Wi}, i ∈ {1, . . . , N} and corridor width
wk = 8, k ∈ {1, . . . , N − 1} for N = 4 as illus-
trated in Figure 2. The location of waypoints are given
by two-dimensional world coordinates (X,Y) in meter
scale: W1 = (10, 5), W2 = (55, 20), W3 = (47, 65),
W4 = (70, 50).

To describe the algorithms, let us denote lj as the bisec-
tor of ∠Wj−1WjWj+1 for j ∈ {2, . . . , N − 1} and mj

as the normal line to lj at the intersect of the planned path
and lj . The course is divided into segments Gk by lk+1.
Gk indicates the permitted area for vehicles under corridor
constraint wk, from Wk to Wk+1.

4.1. Path Planning Based on Center Lines
The simplest path planning method is to follow a series of
center lines that connect neighboring waypoints, plotted as
a black line in Figure 2. Although this method has advan-
tages of simplicity and optimality in terms of the shortest
path, the sharp turns at waypoints are not feasible for ve-
hicles in practice. It will result in a position error varying
as a function of the longitudinal velocity and the maximum
steer angle. Section 5 details the simulation and Figure 6(a)
shows the result of this path.

4.2. Path Planning Using Circular Arcs for
Turns

To reduce position error at segment transitions with sharp
turns, another path planning method is proposed with cir-
cular arc. Under the assumption that the slip angle of the
vehicle is zero in lateral motion, the ideal shape of a path

Figure 2: The course with four waypoints. Gray area is the per-
mitted area for vehicles under a corridor constraint.

with a turn is a circular arc as it has constant radius of cur-
vature. Figure 3 shows the potential trajectories aroundW2.
They consist of a circular arc and its tangents. It is interest-
ing to note the following property from the geometry.

Remark 2. The tangent of the trajectory on the bisector lj
is normal to lj .

This property will be used as a constraint of the path
planning methods introduced in the Section 4.3.1 and 4.3.2.

Figure 3: An enlarged path based on circular arc for a turn at W2.

4.3. Path Planning Based on Bézier Curves
In this section, two methods of path planning based on
Bézier curves are proposed. Both methods are motivated
by Remark 2 and are developed to preserve it.

Bézier curves constructed by large numbers of control
points are numerically unstable. For this reason, it is desir-
able to join low-degree Bézier curves together in a smooth
way for path planning [7]. The basic requirement of path
planning is to pass through the beginning point and the end

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

point with different desired velocities. The least degree of
the Bézier curve that can satisfy this requirement is three
(See properties of Bézier curves in Section 2). Both meth-
ods use a set of cubic Bézier curves.

The cubic Bézier curves used for the path planning
are denoted as P[ti−1,ti](t) =

∑3
k=0B

3
k(t)Pk,i for i ∈

{1, . . . ,M} where M is the total number of the Bézier
curves. The planned path P (t) for t ∈ [t0, tM] is repre-
sented as

P (t) = {P[ti−1,ti](t)}, i ∈ {1, . . . ,M}

4.3.1 Path Planning Placing Bézier Curves within Seg-
ments

In this path planning method, the cubic Bézier curves
P[ti−1,ti](t) =

∑3
k=0B

3
k(t)Pk,i for i ∈ {1, . . . , N − 1}

are used within each segment Gi as shown in Figure 4. The
planned path P (t) are designed such that it begins from W1

with the heading of
−−−−→
W1W2 and ends to WN with the head-

ing of
−−−−−−−→
WN−1WN . Furthermore, the corridor constraint and

Remark 2 are satisfied.

Figure 4: The planned path based on cubic Bézier curves used
within segments when Ti = Wi. The Bézier curves are plotted
with different colors: blue, black, and red.

The control points of P[ti−1,ti](t), Pk,i are determined
to maintain these conditions. The beginning point of
P[t0,t1](t), P0,1 is W1. The end point of P[tN−2,tN−1](t),
P3,N−1 is WN . Other beginning/end points denoted as Tj

are chosen on the bisectors lj for j ∈ {2, . . . , N − 1} and
bounded within the corridor. Then it is assigned to P3,j−1

and P0,j . {P0,i, P1,i, P2,i, P3,i} always lie within the area
ofGi so that the resulting Bézier curve satisfies the corridor
constraint by the convex hull property. Also, {P1,i, P2,i}
are chosen such that the derivatives of P[tj−2,tj−1](t) and
P[tj−1,tj](t) at Tj are continuous and are normal to lj .

These can be formulated as the following constraints:

P[t0,t1](t0) = P0,1 = W1 (5)
P[tN−2,tN−1](tN−1) = P3,N−1 = WN (6)

3
t1 − t0

(P1,1 −W1) = ci(W2 −W1) (7)

3
tN−1 − tN−2

(WN − P2,N−1) = cf (WN −WN−1) (8)

P3,j−1 = P0,j (9)
3

tj−1 − tj−2
(P3,j−1 − P2,j−1) =

3
tj − tj−1

(P1,j − P0,j)

(10)

Tj ∈ lj (11)

|Tj −Wj | <
1
2
wj−1, |Tj −Wj | <

1
2
wj (12)

P1,i ∈ Gi, P2,i ∈ Gi (13)
3

tj−1 − tj−2
(P1,j−1 − P0,j−1) · lj = 0 (14)

Where ci ∈ R, cf ∈ R and velocity constraints (7), (8),
and (14) are represented by applying (2). [ti−1, ti] are as-
sumed to be given. Then P = {P1,i, P2,i} and T = {Tj}
are computed by minimizing the constrained optimization
problem:

min
P,T

J =
N−1∑
i=1

Ji (15)

subject to (7), (8), (10), (11), (12), (13), and (14).
Where Ji is the cost function of P[ti−1,ti](t) which is

defined in Section 5. As the result, the planned trajectory
passes through {W1, T2, . . . , TN−2,WN−1} with Remark
2 preserved.

4.3.2 Path Planning Placing Mid-points of Bézier
Curves on Bisectors of Turns

In the section 4.3.1, a Bézier curve is used within each seg-
ment. Another path planning method places the mid-points
of the Bézier curves on the bisectors lj , j ∈ {2, . . . , N −1}
using the de Casteljau algorithm. In this method, cubic
Bézier curves P[ti−1,ti](t) =

∑3
k=0B

3
k(t)P 0

k,i for i ∈
{1, . . . , 2N − 3} are used.

The local area of the course around Wj can be seen as
symmetric with respect to lj . Thus the cubic Bézier curves
P[ti′−1,ti′]

(t), i′ ∈ {2, 4, . . . , 2N−4} used for this area will
also be symmetric with respect to li′/2+1. In other words,
P 0

0,i′ and P 0
3,i′ are symmetric with respect to li′/2+1. So are

P 0
1,i′ and P 0

2,i′ . After applying the de Casteljau algorithm
with τ = 0.5 to the curve, the mid-point P 3

0,i′ is on li′/2+1.
Then Bézier curves P[ti′′−1,ti′′]

(t) for i′′ ∈ {1, 3, . . . , 2N−

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

3} are used for the rest part of the path. The constraints
imposed on the planned path are as follows:

Figure 5: The path based on cubic Bézier curves placed such that
their mid-point lies on the bisectors.

P 0
0,1 = W1 (16)

P 0
3,2N−3 = WN (17)
3

t1 − t0
(P 0

1,1 −W1) = ci(W2 −W1) (18)

3
t2N−4 − t2N−3

(WN − P 0
2,2N−3) = cf (WN −WN−1)

(19)

P 0
3,i = P 0

0,i+1 (20)
3

ti − ti−1
(P 0

3,i − P 0
2,i) =

3
ti+1 − ti

(P 0
1,i+1 − P 0

0,i+1)

(21)

(P 0
0,i′ + P 0

3,i′)/2 ∈ li′/2+1

(P 0
1,i′ + P 0

2,i′)/2 ∈ li′/2+1

}
(22)

P 0
3,i′ ∈ Gi′/2 (23)

P 0
0,i′ ∈ Gi′/2

1
2P

0
0,i′ +

1
2P

0
1,i′ ∈ Gi′/2

1
4P

0
0,i′ +

1
2P

0
1,i′ +

1
4P

0
2,i′ ∈ Gi′/2

 (24)

| 18P
0
0,i′ +

3
8P

0
1,i′ +

3
8P

0
2,i′ +

1
8P

0
3,i′ | < 1

2wi′/2

| 18P
0
0,i′ +

3
8P

0
1,i′ +

3
8P

0
2,i′ +

1
8P

0
3,i′ | < 1

2wi′/2+1

}
(25)

P 0
1,i′′ ∈ G(i′′+1)/2, P 0

2,i′′ ∈ G(i′′+1)/2 (26)

Where ci ∈ R, cf ∈ R, and boundary constraints
(24) and (25) are represented by applying (1). [ti−1, ti]
are assumed to be given. Then P = {P 0

0,i′ , P
0
1,i′} and

Q = {P 0
1,i′′ , P

0
2,i′′} are computed by minimizing the con-

strained optimization problem:

min
P,Q

J =
2N−3∑
i=1

Ji (27)

subject to (18), (19), (21), (22), (24), (25), and (26).
Remarkable feature of this method is the fact that it

poses desirable position and velocity of the mid-point of
a Bézier curve as well as those of the beginning and
the end points. Furthermore, the convex hull property is
tested for {P 0

0,i′ , P
1
0,i′ , P

2
0,i′ , P

3
0,i′} of the divided curves in-

stead of {P 0
0,i′ , P

0
1,i′ , P

0
2,i′ , P

0
3,i′}. Since the curve and the

course is locally symmetrical, we do not need to check
{P 3

0,i′ , P
2
1,i′ , P

1
2,i′ , P

0
3,i′}. As the result, it comes up with

more tight condition for curves against the corridor con-
straint than checking {P 0

0,i′ , P
0
1,i′ , P

0
2,i′ , P

0
3,i′} by perform-

ing the same number of tests.

5. Simulation Results

(a) Line (b) Arc

(c) Bézier1 (d) Bézier2

Figure 6: Tracking simulation results (blue) over the planned
paths (black).

Simulation performed in this paper uses the course as
shown in Figure 2. Initial position and heading are assumed
to fit to the first waypoint and the direction to the second
waypoint respectively. The constant longitudinal velocity
v(t) = 10 m/s is used. The magnitude of ω is bounded
within |ω|max = 2.618 rad/s. The PID gains are given by:
kp = 2, kd = 1, and ki = 0.1.

Path planning methods based on Section 4.1, 4.2, 4.3.1,
and 4.3.2 are denoted as Line, Arc, Bézier1, and Bézier2 re-
spectively. The simulated trajectory of a vehicle that tracks

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

(a) The steering control ω. (b) The cross track error ycerr .

Figure 7: The steering control ω and the cross track error ycerr .

the planned path by Line is shown in Figure 6(a). Although
the vehicle tracks the straight parts of the planned path ac-
curately, it overshoots in turns resulting in a large position
error due to maximum steer angle limitation. Decreasing
speed as the vehicle approaches to the turning area can re-
duce the position error. However, in this simulation, the
longitudinal velocity v was kept constant which magnifies
the tracking errors with this method of path planning.

Figure 6(b) shows the tracking result of Arc. Where
uniform radius R = 5 is used. It satisfies the condition
of R ≥ v

|ω|max
= 3.8197 for vehicles to converge to the

planned circular arc path.
Figure 6(c) is the tracking result over the path planned by

Bézier1. This path obtained by solving Equation (15) with

Ji =
∫ ti

ti−1

[
(Ṗ[ti−1,ti](t))

2 + (P̈[ti−1,ti](t))
2
]
dt

Where ti = i. Ji penalizes Ṗ and P̈ to give smoothness to
each Bézier curve.

Figure 6(d) is the tracking result over the path planned
by Bézier2. This path obtained by solving Equation (27)
with

Ji =
∫ ti

ti−1

[
(Ṗ[ti−1,ti](t))

2 + (P̈[ti−1,ti](t))
2
]
dt,

i ∈ {1, 3, . . . , 2N − 3}
(28)

Ji =
∫ ti

ti−1

[
(Ṗ[ti−1,ti](t))

2 + (P̈[ti−1,ti](t))
2
]
dt+

20
κ(ti)

,

i ∈ {2, 4, . . . , 2N − 4}
(29)

Note that two different Ji are used. Bézier curves used in
turns are additionally penalized inversely to the curvature at
their endpoints in Equation (29). This leads to a resulting
path with smooth turns.

6. Summary and Conclusions
This paper presents two path planning algorithms based on
Bézier curves for autonomous vehicles with waypoints and

corridor constraints. Bézier curves provide an efficient way
to generate the optimized path and satisfy the constraints at
the same time. The simulation results also show that the
trajectory of the vehicle converges to the planned path suc-
cessfully.

These path planning algorithms will be implemented on
the Overbot [4], the autonomous ground vehicle at Au-
tonomous Systems Lab in UCSC.

In this work, proposed algorithms only generate nominal
path. We will extend and expand our work in receding hori-
zon obstacle avoidance for an autonomous ground vehicle.
Enabling autonomous vehicles to detect unknown obstacles
and safely avoid them is essential to future operations. Ad-
ditionally, receding horizon control methods will be applied
to generate real-time Bézier-based optimal trajectories.

References
[1] J. Connors, G. Elkaim, “Analysis of a Spline Based, Obstacle

Avoiding Path Planning Algorithm,” IEEE Vehicle Technol-
ogy Conference, IEEE VTC 2007, Dublin, Ireland, Apr. 22-
25, 2007

[2] J. Connors, G. Elkaim, “Experimental Results for Spline
Based Obstacle Avoidance of an Off-Road Ground Vehicle,”
ION Global Navigation Satellite Systems Conference, ION
GNSS 2007, Fort Worth, TX, Sept. 25-28, 2007

[3] J. Connors, G. Elkaim, “Manipulating B-Spline Based Paths
for Obstacle Avoidance in Autonomous Ground Vehicles,”
ION National Technical Meeting, ION NTM 2007, San Diego,
CA, Jan. 22-24, 2007

[4] G. Elkaim, J. Connors, and J. Nagel, “The Overbot: An off-
road autonomous ground vehicle testbed,” ION Global Nav-
igation Satellite Systems Conference (ION-GNSS 2006), 1,
Sept. p.22-24, 2006.

[5] M. Lizarraga, G. Elkaim, “Spatially Deconflicted Path Gener-
ation for Multiple UAVs in a Bounded Airspace,” ION/IEEE
Position, Location, and Navigation Symposium, ION/IEEE
PLANS 2008, Monterey, CA, May 5-8, 2008

[6] T. W. Sederber, “Computer aided geometric design,” CAGD
Course Notes, Brigham Young University, Provo, UT, 84602,
April 2007.

[7] I. Skrjanc, G. Klancar “Cooperative Collision Avoidance be-
tween Multiple Robots Based on Bzier Curves,” Information
Technology Interfaces, 2007 (ITI 2007), p.451-456, June 25-
28, 2007.

[8] The 2005 DARPA Grand Challenge, vol. 36/2007, p.363-405,
Springer Berlin / Heidelberg, 2007.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

