
 
 

 

  
Abstract -In this paper, we present a new designed multi-view 

single camera and a novel model of scale and illumination 
invariant corner detection for a service robot in indoor 
environment. Vision-based simultaneous localization and 
mapping (VSLAM) has received much attention. It is used for 
VSLAM that are single cameras, multiple cameras in a stereo 
setup or omni-directional cameras. We propose a different 
approach which multiple mirrors are mounted on a vision 
system in a single-view-point (SVP) configuration. This vision 
system is easily to acquire no distortion image sequences 
without any preprocessing. Robust feature detection method is 
also described for VSLAM of a service robot in indoor 
environment. This method can detect scale and illumination 
invariant corner features in any environment. 
 

Index Terms—Multi-view single camera, Feature detection, 
Scale and illumination invariant corner feature (SIICF).  
 

I. INTRODUCTION 
    Recently, cameras have been small and cheap sensors with 
low power consumption, which makes them suitable for large 
scale employment in commercial products such as robotic 
toys and security robot. Various types of cameras including 
pin-hole, stereo, omni-directional and non-central camera 
have been used in robot vision. These vision systems posses 
the characteristics of either a narrow field of view (FOV) or a 
wide FOV but suffer from complex distortion. 
    The most widely used vision system is stereo rigs 
composed of two perspective cameras. Since ordinary 
cameras have limited FOV, one can get stereo range in only 
one direction at a time. But, the restricted FOV of single 
cameras and traditional stereo setups causes the limited 
function of service robots. Service robots need to survey 
more widen environment around it constantly in real-time in 
order to avoid obstacles and perform more advanced 
functions, such as VSLAM and object tracking.  Thus, many 
researchers have added rotational device to get the 
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omni-directional view.  This system is better to obtain good 
resolution, but it requires the rotation of the cameras and this 
prevents treating scenes with moving objects. Some fixed 
cameras have been also used to avoid the time-consuming 
scanning. This system can achieve high resolution 
omni-directional image with very high costs. However, it is 
difficult to force all cameras to be calibrated and 
synchronized [1]-[6]. To overcome the problem, catadioptric 
omni-directional system is widely used over both the 
scanning method and multi-camera method, because of 
system simplicity. Catadioptric systems that use a curved 
mirror to map a panoramic view onto a single sensor are able 
to achieve a single view point at video rate. No mechanical 
rotation is needed [7][8]. But, even though omni-directional 
cameras provide a whole view around it, they suffer from an 
unfavorable spatial distribution of the available resolution. 
   We propose to use a novel multi-mirror setup that is 
mounted on the vision system in a SVP configuration. The 
mirrors face in four different directions. This multi-view 
single camera combines the advantages of omni-directional 
camera with those of single cameras.  In contrast to single 
camera and traditional stereo cameras, the vision system 
provides a wider FOV, leading to better constraints for 
VSLAM. And in contrast to omni-directional cameras, which 
distribute the available pixels over the complete scene, a 
multi-view single camera can focus the available resources 
on interest areas depending on the application.  
   In this paper, we also describe a novel model to perform the 
robust feature detection in indoor. Visual SLAM has been an 
interesting topic in mobile robotics for the last years. The 
approaches using vision apply a feature-based SLAM, in 
which visual features are used as landmarks.  The main key in 
VSLAM is how to select suitable features on the images to be 
used as reliable landmarks. Various algorithms have been 
established for feature detection, including scale-invariant 
feature detection (SIFT) by Lowe [12][13]. In his system, a 
trinocular sensor is used to generate 3D landmark points from 
a single robot pose. Though the algorithm gives very good 
resulting output, it is unfortunately very computationally 
intense and also requires a lot of data for each feature 
detected. Some attempts of further improvements to the 
algorithm have been made, such as PCA-SIFT by Ke and 
Sukthankar[14]. Another promising approach is the speed up 
robust features (SURF) by Bay et al. [21], which has been 
shown to yield comparable or better results to SIFT while 
having a fraction of the computational cost. These methods 
are strong to scale and notation transform, but illumination 
changing has a weak property. A service robot in indoor 
requires illumination-robust feature detection. This paper 
presents a novel model to perform the scale and illumination 
invariant feature detection in indoor environment.  
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II. MULTI-VIEW SINGLE CAMERA 
    A geometric structure of the proposed system and 
characteristics of images captured by the proposed system are 
described in this section. Most ordinary cameras used in 
machine vision either possess a narrow FOV or have a wide 
FOV, but suffer from complex distortion. It can be difficult to 
unwrap a wide FOV image to perspective projection views 
accurately. The proposed vision system can have the broad 
FOV and acquire low distortion and lossless scene. This 
vision system uses five planar mirrors for SVP multi-view 
mirror setup and a conventional camera. Four mirrors have 
the property of an isosceles trapezoid and a base mirror is 
rectangular form. The shape of each planar mirror plays a 
leading role to solve serious distortion problem of 
catadioptric omni-directional vision system.  

  
    This vision system locates the single-view-point (SVP) on 
the axis of symmetry of the multi-view mirror setup. This 
viewpoint is placed at the top of the vision system. It can be 
easily accomplished by starting with a viewpoint located 
inside the mirror setup and projecting its image into the 
physical world by finding the reflections of the viewpoint in 
the planes containing each respective mirror face. Each 
projection of four planar mirrors is the location of the bottom 
mirror. The SVP is well defined in the projective pin-hole 
camera imaging model, and each lens camera is modeled as a 
point in space and an image plane. By definition, all normal 
lens cameras in the perspective pin-hole model meet the SVP  

 
(a) 

 
(b) 

Fig. 2. Ray tracing illustration of the multi-view single camera. 
(a) shows the configuration of the multi-view mirror setup, (b) 
illustrates the ray tracing. 

 
(a) 

 

 
(b) 

Fig. 1. Multi-view mirror imaging model in the pin-hole camera 
model. (a) is the planar mirror model, (b) shows the proposed 
multi-view mirror model. 
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condition. Fig. 1 illustrates the imaging model of an SVP 
multi-view mirror system. Given the geometric configuration 
of the mirror and the camera, for any given world point, we 

can find its corresponding image point by finding the virtual 
object point behind the mirror surface. Once the virtual object 
is determined, it can be viewed just like a real object such that 
its image is found by drawing a line from the virtual object 
point toward the viewpoint until it intercepts the image plane.  
   Ray-tracing which has a different meaning in the geometric 
optics model is the other way to describe the imaging of an 
SVP multi-view mirror system. If we have an algorithm such 
that, given any world point, one can traces the light ray via a 
unique path to a unique image point on the image plane, we 
have projection. If every such unique ray path for every given 
world point passes through the SVP of both the mirror and 
the camera, we have met the SVP condition. These ray paths 
must not violate the law of reflection; however, the law of the 
refraction is a nonissue because the lens component is 
represented by an ideal pin-hole. The multi-view mirror setup 
can also be proven to be SVP by ray tracing, as shown in Fig. 
2.  
   After placing the camera at the location dictated by the 
viewpoint in a given multi-view mirror setup, we need to 
determine some parameters of physical camera such as 
orientation and focal length. It also decides the size of the 
camera image sensor and the field of view. The minimum 
requirement for camera here is to be able to capture, on its 
sensor, a complete image of its corresponding bottom mirror 
face. This bottom mirror face image from the camera consists 
of the images projected from four isosceles trapezoid mirrors. 
This requirement may not ensure optimal parameters of the 
available camera sensor. In other words, the image of a 
bottom mirror face on a camera sensor may be larger than the 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. One image captured by multi-view single camera. (a) is 
the front side image, (b) is the back side image, (c) shows the left 
side image, (d) shows the right side image. 

  
(a)                                            (b) 

 
(c) 

Fig. 6. Multi-view single camera. (a) is the configuration of the 
proposed vision system, (b) and (c) show the side image of  the 
multi-view single camera. 

 
Fig. 5. The geometry of the multi-view mirror setup.  

 
Fig. 4. Variations in the mirror face image as the camera focal 
length and orientation changes.  

 
Fig. 3. The projection geometry of the bottom mirror face onto 
optical sensor.  
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sensor, and thus not fully utilize the sensor.   Fig. 3 represents 
the projection geometry of a bottom mirror face onto the 
sensor plane of a camera. The image sensor is perpendicular 
to the optical axis and parallel to the image plane which 
matches with the sensor plane. The focal length and the size 
of the image sensor can determine the effective field of view 
of the camera. Given the orientation and position of a camera 
in Fig. 3, we can then find the optimal focal length such that 
the bottom mirror face image is contained in the sensor 
capture area. Fig. 4 shows an example of the range of a 
bottom mirror face images projected on the sensor plane as a 
camera focal length and orientation changes. It can be seen 
that changes in orientation and focal length affect the location, 
size, and shape of the face image. 
   Fig. 5 illustrates the geometry of the multi-view mirror 
setup. This multi-view mirror setup can be characterized by 
the following parameters: radius (γ), tilt angle (θ), height (h), 
and the number of faces in Fig. 5. Radius stands for the 
perpendicular distance from the main axis to the line of 
intersection of each mirror face with the top of the system. 
Tilt angle stands for the angle between each mirror face plane 
and the top plane. The distance between the top plane and 
base plane is height of this system. Finally, the number of 
faces stands for the number of mirror faces.   
   Fig. 6 and Fig. 7 present the configuration of the proposed 
multi-view single camera and the captured images. The 
system components used in Fig. 5 are a Logitech QuickCam 
Pro 9000, Carl Zeiss lens, and a multi-view mirror setup of 
18×13.5×12.5 cm size. 
 

III. ROBUST FEATURE DETECTION 
The evaluation of interest point detectors presented in 

Schmid [15] demonstrate an excellent performance of the 
Harris detector compared to other existing approaches. This 
detector however is not invariant to scale changes. In this 
section we propose a new interest point detector that 
combines the reliable Harris detector [11] with scale 
selection [16][17] and intensity changing to obtain a scale 
and illumination invariant detector. 

Difference of Gaussian (DoG) algorithm has been used 
mainly to extract feature points, and to make the descriptor of 
feature point, scale invariant feature transform algorithm has 
been used. In complex environment, feature points are 
extracted easily. But, in simple environment and illumination 
changes, it is hard to extract reliable feature points. In this 
study, corner points are considered in the model of feature 
detection. However, corner points are very weak at scale 
transform. The scale and illumination invariant corner feature 
(SIICF) for an indoor environment is thus proposed in Fig. 8 
and Fig. 9. 

The proposed algorithm utilizes the modified Gaussian 
pyramid including intensity changes.  For changing intensity, 
the brightness of image is performed at down sampled 
images.    

 
η+= ),() ,( yxDyxF                                  (1) 

 
where D(x,y) is a down sampled image, η is the scale of 
brightness or darkness.   

   

     
   The Gaussian pyramid images are computed by convolving 
the intensity changing image F(x, y) with a Gaussian function 
of standard deviation σ, to obtain a blurred image of input 
image. 
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where * is the convolution operator in x and y plane. 
   The Gaussian function : 
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is applied to B(x, y, σ) sequentially obtaining B(x, y, kσ) 
where kσ represents the number of convolutions applied to 
the intensity change image.  
   The Harris detector is based on the locally averaged second 
moment matrix computed from the image gradients. The 
second moment matrix, which is also called the local 
auto-correlation matrix, is often used for feature detection or 
for describing local image structures. This matrix must be 
adapted to scale changes to make it independent of the image 
resolution [22]. The scale-adapted second moment matrix is 
defined by: 
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Fig. 9. Scale and illumination invariant corner detection model. 

 
 

Fig. 8. Block diagram for robust feature point detection. 
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 where σI is the integration scale, σD is the differentiation scale 
and Lx and Ly is the derivative computed in the x and y 
direction, respectively. The matrix describes the gradient 
distribution in a local neighborhood of a point. The local 
derivatives are computed with Gaussian kernels of the size 
determined by the local scale σD (differentiation scale). The 
derivatives are then averaged in the neighborhood of the 
point by smoothing with a Gaussian window of size σI 

(integration scale). The eigenvalues(λ1, λ2) of this matrix will 
be proportional to the principle curvatures of the image 
surface and form a rotationally invariant description of H. 
This property enables the extraction of points, for which both 
curvatures are significant that is the signal change is 
significant in the orthogonal directions i.e. corners, junctions 
etc. Such points are stable in arbitrary lighting conditions and 
are representative of an image. One of the most reliable 
interest point detectors, the Harris detector is based on this 
principle. The Harris measure combines the trace and the 
determinant of the second moment matrix: 
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Local maxima of f determine the location of interest points. 
 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
We have implemented and tested our method using a 

custom made multi-view single camera that utilizes a 
conventional web camera.  The mirrors are evenly distributed 
along four sides on the vision system, facing outwards as 
shown in Fig. 10(a) and the resolution is 1600 ×1200 size.  

 
 

 

 
 

Fig. 10(b) is a picture taken indoors. Fig. 11 represents 
unwrapped view images from the multi-view mirror setup of 
Fig. 10. The image quality is close to that of an ordinary 
camera with the same lens and sensor. 

For evaluating the proposed model, we use the scale, 
notation, and affine transform images in indoor environment. 
And, the proposed method is compared with other feature 
detection methods. Fig. 12 shows the result of the proposed 
method using various change images. 
 

 

V. CONCLUSION AND FUTURE WORK 
   We have presented a new designed multi-view single 
camera for wide FOV, no distortion, and lossless information, 
and robust feature detection method for a simple indoor 
environment. This vision system is easily to acquire no 
distortion image sequences without any preprocessing. The 
SIICF method can detect scale and illumination invariant 
corner point for any environment. We showed the basic 
effectiveness for a VSLAM technique with the proposed 
vision system and method.  
   In the vision system, we had limitations on the achievable 
camera orientations and employed lens for focal length 
optimal to capture the bottom mirror face image. The most 
significant implication of these limitations is that the usage of 
commercial camera may not be optimized. However, the 
multi-view mirror setup validates the basic design 
experimentally that it is possible to construct a multi-view 
single camera. 

 
 

Fig. 12. Scale and illumination invariant corner detection. (a) is 
an original image, (b) is a scale transform image, (c) is a notation 
transform image, (d) is an affine transform image. 

   
(a)                                             (b) 

  
(c)                                             (d) 

Fig. 11. Image captured by multi-view single camera. These 
images are not calibrated for unwrapping. (a), (b), (c) and (d) are 
the front, back, left and right side image, respectively. 

 

     
(a)                                            (b) 

Fig. 10. Implementation of the multi-view single camera. (a) 
shows the multi-view single camera, (b) is the image captured by 
the vision system. 

Table. 1. Threshold, number of detected points and 
calculation time for the detectors comparison with Laplace of 
Gaussian (LoG), Difference of Gaussian (DoG), and 
Harris-Laplace. The images of the test set (50 images) were 
taken under various conditions 

Method LoG DoG Harris- 
Laplacian SIICF 

Threshold 600 default 2500 500 
nb of point 207 1520 153 353 
Comp. 
time(msec) 310 400 1600 250 
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  In our ongoing work, we are investigating the use of this 
multi-view single camera in area such as mobile robot, and 
the multi-view mirror setup for a wider FOV and less 
distortion by setting lenses. 
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