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Abstract—This paper presents a constructive learn-
ing approach for developing sensor-motor mapping
in autonomous systems. The system’s adaptation to
environment changes is discussed and three meth-
ods are proposed to deal with long term and short
term changes. The proposed constructive learning al-
lows autonomous systems to develop network topol-
ogy and adjust network parameters. The approach
is supported by findings from psychology and neu-
roscience especially during infants cognitive develop-
ment at early stages. A growing radial basis func-
tion network is introduced as a computational sub-
strate for sensory-motor mapping learning. Experi-
ments are conducted on a robot eye/hand coordina-
tion testbed and results show the incremental devel-
opment of sensory-motor mapping and its adaptation
to changes such as in tool-use.
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1 Introduction

In many situations such as home services for elderly
and disabled people, artificial autonomous systems (e.g.
robots) need to work for various tasks in an unstruc-
tured environment, system designers cannot anticipate
very situation and program the system to cope with them.
This is different from the traditional industrial robots
which most work in structured environment and are pro-
grammed each time for a specific task. Autonomy, self-
learning and organizing, and adapting to environment
changes are crucial for these artificial systems to success-
fully fulfill various challenge tasks. Traditional controllers
for intelligent systems are designed by hand, and they do
not have such flexibility and adaptivity. General cogni-
tivist approach for cognition is based on symbolic infor-
mation processing and representation, and does not need
to be embodied and physically interact with the environ-
ment. Most cognitivist-based artificial cognitive systems
rely on the experience from human designers.

Human beings and animals face similar problems dur-
ing their development of sensor-motor coordination, how-
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ever, we can tackle these problems without too much ef-
fort. During human cognitive development especially at
the early stages, each individual undergoes changes both
physically and mentally through interaction with environ-
ments. These cognitive developments are usually staged,
exhibited as behaviours changes and supported by neu-
ron growth and shrinking in the brain. Two kinds of
developments in the brain to support the sensory-motor
coordination: quantitative adjustments and qualitative
growth [19]. Quantitative adjustments refer to the ad-
justments of the synapse connection weights in the net-
work and Qualitative growth refers to the changes of
the topology of the network. Inspired by developmen-
tal psychology especially Piaget’s sensory-motor devel-
opment theory of infants [12], developmental robotics fo-
cuses on mechanisms, algorithms and architectures for
robots to incrementally and automatically build their
skills through interaction with environment [23]. The key
features of developmental robotics share similar mecha-
nisms with human cognitive development which include
learning through sensory-motor interaction; Scaffolding
by constraints; staged, incremental and self-organizing
learning; intrinsic motivation driven exploration and ac-
tive learning; Neural plasticity, task transfer and adapta-
tion. In this paper, we examine robot sensory-motor co-
ordination development process at early stages through
a constructive learning algorithm. Constructive learning
which is inspired by psychological constructivism, allows
both quantitative adjustments and qualitative network
growth to support the developmental learning process.
Most static neural networks need to predefine the net-
work structure and learning can only affect the connec-
tion weights, and they are not consistent with develop-
mental psychology. Constructive learning is supported by
recent neuroscience findings of synaptogenesis and neu-
rogenesis occurring under pressures to learn [16, 20]. In
this paper, a self-growing radial basis function network
(RBF) is introduced as the computational substrate, and
a constructive learning algorithm is utilized to build the
sensory-motor coordination development. We investigate
the plasticity of the network in terms of self-growing in
network topology (growing and shrinking) and adjust-
ments of the parameters of each neuron: neuron position,
the size of receptive field of each neuron, and connection
weights. The networks adaptation to systems changes is
further investigated and demonstrated by eye/hand co-
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ordination test scenario in tool-use.

2 Sensory-motor mapping development
via constructive learning

In order to support the development of sensor-motor co-
ordination, a self-growing RBF network is introduced due
to its biological plausibility. There exists very strong ev-
idence that humans use basis functions to perform sen-
sorimotor transformations [15], Poggio proposed that the
brain uses modules as basis components for several of
its information processing subsystems and these modules
can be realized by generalized RBF networks [14, 13].

There are three layers in the RBF network: input layer,
hidden layer and output layer. The hidden layer consists
of radial basis function units (neurons), the size of recep-
tive field of each neuron varies and the overlaps between
fields are different. Each neuron has its own centre and
coverage. The output is the linear combination of the
hidden neurons.

A RBF network is expressed as:

f(x) = a0 +
N∑

k=1

akφk(x) (1)

φk(x) = exp(− 1
σ2

k

‖x− µk‖2) (2)

where f(x) = (f1(x), f2(x), · · · , fNo(x))T is the vector of
system outputs, No is the number of outputs and X is
the system input. ak is the weight vector from the hidden
unit φk(x) to the output, N is the number of radial basis
function units, and µk and σk are the kth hidden unit’s
center and width, respectively.

2.1 Why constructive learning?

According to Shultz [19, 20], in addition to that construc-
tive learning is supported by biological and psychologi-
cal findings, there are several advantages of constructive
learning over static learning: first, constructive-network
algorithms learn fast (in polynomial time) compared with
static learning (exponential time), and static learning
maybe never solves some problems. The designer of a
static network must find a suitable network topology.
Second, constructive learning may find optimal solutions
to the bias/variance tradeoff by reducing bias via incre-
mentally adding hidden units to expand the network and
the hypothesis space, and by reducing variance via ad-
justing connection weights to approach the correct hy-
pothesis. Third, static learning cannot learn a particu-
lar hypothesis if it has not been correctly represented,
a network may be too weak to lean or too powerful to
generalize. Constructive learning avoid this problem be-
cause its network growth enables to represent hypothesis

that could not be represented previously with the limited
network power.

2.2 Topological development of the sensory-
motor mapping network

During the development of sensory-motor mapping net-
work, two mechanisms exist: topological changes of the
mapping network and network parameter adjustments.
The qualitative growth of the sensory-motor mapping
network depends on the novelty of the sensory-motor in-
formation which the system obtained during its interac-
tion with the environment in the development, the growth
is incremental and self-organizing. The sensory-motor
mapping network starts with no hidden units, and with
each development step, i.e., after the system observes
the consequence after an action, the network grows or
shrinks when necessary or adjusts the network parame-
ters accordingly. The network growth criteria are based
on the novelty of the observations, which are: whether
the current network prediction error for the current learn-
ing observation is bigger than a threshold, and whether
the node to be added is far enough from the existing
nodes in the network: ‖e(t)‖ = ‖y(t)− f(x(t))‖ > e1,
‖x(t)− µr(t)‖ > e3. In order to ensure smooth growth of
the network, the prediction error is checked within a slid-

ing window:

√
t∑

j=t−(m−1)

‖e(j)‖2
m > e2, where, (x(t),y(t))

is the learning data at tth step, and µr(t) is the center
vector of the nearest node to the current input x(t). m
is the length of the observation window. If the above
three conditions are met, then a new node is inserted
into the network with the following parameters: aN+1 =
e(t), µN+1 = x(t), σN+1 = k ‖x(t)− µr(t)‖, where, k is
the overlap factor between hidden units.

The above network growth strategy does not include any
network pruning, which means the network size will be-
come large, some of the hidden nodes may not contribute
much to the outputs and the network may become over-
fit. In order to overcome this problem, we use a pruning
strategy as in [8], over a period of learning steps, to re-
move those hidden units with insignificant contribution
to the network outputs.

Let onj be the jth output component of the nth
hidden neuron, onj = anj exp(−‖x(t)−µn‖2

σ2
n

), rnj =
onj

max(o1j ,o2j ,··· ,oNj)

If rnj < δ for M consecutive learning steps, then the nth
node is removed. δ is a threshold.

2.3 Parameter adjustments of the sensory-
motor mapping network

There are two types of parameters in the network, the
first type of parameters is the connection weights; the

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008



second is parameters of each neuron in the network: the
position and the size of receptive field of each neuron.
A simplified node-decoupled EKF (ND-EKF) algorithm
was proposed to update the parameters of each node in-
dependently in order to speed up the process. The pa-
rameters of the network are grouped into No + N com-
ponents. The first No groups are the weights, wk =
[a0k, a1k, · · · , aNk]T , k = 1, 2, · · · , No (aij is the weight
from ith hidden node to jth output); and the rest N
groups are the parameters of hidden units’ parameters:
wk = [µT

k , σk]T , k = 1, 2, · · · , N . The superscript T
stands for transpose of a matrix.

So for kth parameter group at tth learning step, ND-EKF
is given by:

wk(t) = wk(t− 1) + Kk(t)ek(t) (3)

where

ek(t) =
{

yk(t)− fk(x(t)) k = 0, 1, 2, · · · , No

y(t)− f(x(t)) k = No + 1, · · · , No + N
(4)

and Kk(t) is the kalman gain, yk(t) is the kth component
of y(t) in training data (x(t),y(t)), Bk(t) is the subma-
trix of derivatives of network outputs with respect to the
kth group’s parameters at tth learning step. Rk(t) is
the variance of the measurement noise, and is set to be
diag(λ) (λ is a constant) in this paper. q is a scalar that
determines the allowed random step in the direction of
the gradient vector.

In our algorithm, an extended Kalman filter is used to
adjust the systems’s parameters. There may exist a sim-
ilar mechanism in our brain. Recent research findings
has found evidences that Kalman filtering occurs in vi-
sual information processing [17, 18], motor coordination
control [22], and spatial learning and localization in the
hippocampus [1, 21]. In hippocampus studies, a Kalman
filtering framework has been mapped to the entorhinal-
hippocampal loop in a biologically plausible way [1, 21].
According to the mapping, region CA1 in the hippocam-
pus holds the system reconstruction error signal, and the
internal representation is maintained by Entorhinal Cor-
tex (EC) V-VI. The output of CA1 corrects the internal
representation, which in turn corrects the reconstruction
of the input at EC layers II-III. O’Keefe also provided
a biologically plausible mechanism by which matrix in-
versions might be performed by the CA1 layer through
an iterated update scheme and in conjunction with the
subiculum [11]. In addition, the matrix inversion lemma
has been widely used in computational neuroscience [4].

3 Adaptation of sensory-motor mapping

Two kinds of changes in our daily life may require the
learned sensory-motor mapping to update: short term
changes and long term changes. For the short term,

humans may just reuse learned knowledge and quickly
adjust some parameters to adapt to the environment
changes. But for the longer term, after an adult is trained
in a special environment or for a special tasks for a long
time, they may grow new neurons to gain new skills, and
to enhance the already acquired knowledge. Examples of
these two kinds of changes can be found during human
development, the kinematics of limbs and bodily struc-
tures are not fixed during human growth but may change,
either slowly over long periods during growth and bod-
ily maturation, or rapidly such as when we use tools to
extend the reach or function of our manipulation abili-
ties. It has been discovered that infants learn and up-
date sensorimotor mappings by associating spontaneous
motor actions and their sensory consequences [12]. It
takes a relatively long time to build up the mapping skills,
which involves neuron growth processes in the brain to
support the sensorimotor transformation. After an adult
has gained the basic skills, he or she can quickly adapt
to different situations, for example, an adult can quickly
adapt to the use of a pointer to point to a seen target.
This indicates that after rapid structural changes we do
not learn new sensorimotor skills from scratch, rather we
reuse the existing knowledge and simply (and quickly) ad-
just some parameters. Maguire at al [9] studied the struc-
tural changes in the hippocampi of licensed London tax
drivers. They found that taxi drivers had a significantly
greater volume in the posterior hippocampus, whereas
control subjects showed greater volume in the anterior
hippocampus. Maguire’s study suggests that the human
brain grows or shrinks to reflect the cognitive demands
of the environment, even for adults.

In autonomous systems, some parameters may gradually
change after a long time use, the systems need to adapt
to these changes automatically. Autonomous systems
have additional situations where structures may change
suddenly, these may be unintentional, for example when
damage occurs through collisions, or by design when a
new tool is fitted to the arm end-effector. For these rea-
sons it is important for autonomous systems in unstruc-
tured environments to have the ability to quickly adjust
the existing mapping network parameters so as to auto-
matically re-gain the eye/hand coordination skills. We
note that humans can handle this problem very well. Re-
cent neurophysiological, psychological and neuropsycho-
logical research provides strong evidence that temporal,
parietal and frontal areas within the left cerebral hemi-
sphere in humans and animals are involved and change
during activities where the hand has been extended phys-
ically, such as when using tools [5, 6, 10, 2, 3]. Japanese
macaque monkeys were trained to use a rake to pull food
closer, which was originally placed beyond the reach of
their hands [2, 3]. The researchers found that, in mon-
keys trained in tool-use, a group of bimodal neurons in
the anterior bank of the intraparietal sulcus, which re-
spond both to somatosensory and visual stimuli related
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to the hand, dynamically altered their visual receptive
field properties (the region where a neuron responds to
certain visual stimuli) during training of the tool-use.

In this paper, we develop approaches of adapting to envi-
ronments, and more specifically, different robot limb sizes
in our experiments, were investigated and compared. All
these adaptation skills are usually not available in com-
mercial calibration-based eye/hand mapping systems.

In our plastic RBF network for robotic eye/hand map-
ping, the knowledge learned for the mapping is stored in
the network in terms of the number of neurons, their po-
sitions and sizes of receptive fields, and the node weights.
In order to quickly adapt to structural changes of the
robotic system, this knowledge needs to be reused in
some way rather than setting up the network again from
empty. In this paper, we considered three methods for
such adaptation, all of them reuse the learned knowledge
by adjusting the learned network:

1. Full adjustment of the learned network after a struc-
tural change. This includes network topological
changes by adding new hidden nodes or remove ex-
isting ones if necessary, and adjusting the following
parameters: the centres and widths of the existing
nodes, and the weights from the hidden nodes to the
outputs.

2. Adjusting the weights of the learned network, re-
moving the insignificant hidden units, but keeping
the rest of the hidden units unchanged.

3. Only adjusting the weights, and keeping the hidden
unit structure of the learned network completely un-
changed.

4 Experimental studies

4.1 Experimental system

In this paper, the robot eye/hand coordination is used
as a testbed to demonstrate the process of constructive
learning and adaptation of the sensory-motor mapping
network to the changes. The experimental robot system
has two manipulator arms and a motorized pan/tilt head
carrying a color CCD camera as shown in figure 1. Each
arm can move within 6 degrees of freedom. The whole
system is controlled by a PC running XP which is respon-
sible for controlling the two manipulator arms, any tools,
the pan/tilt head, and also processing images from the
CCD camera and other sensory information. The control
program is written in C++.

In this paper only one of the robot arms was used. In the
experiments we commanded the robot arm to move ran-
domly at a fixed height above the table by driving joint
2 and joint 3 of the robot arm. After each movement,
if the hand was in the current field of view of the cam-
era, the eye system moved the camera to center on the

Figure 1: Experimental system for developmental coor-
dination learning

end of the robot finger, and then the pan/tilt head posi-
tion (p, t) and current arm joint values of the two joints
used (j2, j3) were obtained to form a training set for the
system; otherwise, if the hand tip is out of the view of
the camera, this trial was ignored because the eye could
not locate the arm end before setting up the mapping
between pan/tilt and robot arm. After each trial, the
obtained data (p, t, j2, j3) was used to train the mapping
network, and this data was used only once. In order to
simplify the image processing task of finding the end of
the robot finger we marked the finger end with a blue
cover. The position of the blue marker could be slid up
and down the finger to effectively alter the length of the
finger.

4.2 Constructive learning and adaptation in
tool-use

To illustrate the network topological growth and param-
eter adjustments in constructive learning, figure 2 gives
the structures of the hidden units at the 100th learning
step and the 1597th learning step in eye/hand mapping.
The results shows that at the beginning, the system used
large neurons to quickly cover the whole space, and later
on gradually built the details with smaller neurons when
necessary, this let the system achieve more accuracy. This
neuron growing process from coarse to fine using different
neuron coverages is similar to infant development where
the decrease in the size of neural receptive fields in the
cortical areas relates to object recognition ability [24].
Figure 2 also demonstrates the changes of position and
size of receptive field of each neuron. It should be noted
that some neurons are removed in the learning process
due to their little contribution to the sensory-motor map-
ping network.

Our next experiment was to test the network’s adaptabil-
ity to sudden changes in the motor-sensory relationship
due to structural changes. We chose changes in finger
length as a scenario to test this adaptability. Using a va-
riety of tools with different sizes is necessary for a robot
system to conduct different tasks, and the eye/hand map-
ping network’s ability to quickly adapt to this change is
crucial for the robot to re-gain its eye/hand coordina-
tion skills. We have tested three approaches to reusing
and adjusting the learned eye/hand mapping network in
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(a) Structure of hidden units at the
100th learning step
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1597th learning step

Figure 2: Distribution of the hidden units and their cov-
erage in eye/hand mapping by RBF with SDEKF. The
background points are the input learning points in the
pan and tilt space of the camera head, and the circles are
the hidden units of the eye/hand mapping network

order to re-gain coordination skills. As a test, at the
1598th trial (a purely arbitrary point) the finger length
was changed in size from 27.5cm long to 20.5cm long and
we investigated the adaptation of the system to such a
sudden change. Figure 3(a) shows the output error when
all the parameters of the learned network are adjusted,
including adding possible nodes, moving node centres,
adjusting widths of each node, and updating the weights.
Figure 3(b) and figure 3(c) show the results of only ad-
justing the weights and keeping the parameters of the
hidden units unchanged, but figure 3(b) used a pruning
procedure as described in section 2.2 to remove the in-
significant hidden units, while figure 3(c) kept the hidden
unit structure completely unchanged. From the results,
we can see that all three methods quickly adapt to the
sudden change in finger size. The method of adjusting
the full network parameters achieved the best result. Al-
though the other two methods did not change the pa-
rameters of the hidden units of the learned network, they
obtained reasonable small errors. It is important to note
that, the third method, which completely reused the orig-
inal hidden unit structure in the mapping network and
only adjusted weights, achieved a quite similar result to
the second method with pruning. This may be similar to
the approach that adults adopt to handle tool changes.
We can quickly adapt to structural changes with little
effort, but during such short time-scales we cannot re-
generate receptive fields in our brain, and so may only

reuse the knowledge already learned and quickly adjust
the weights of the existing neurons. But if we are trained
to use this tool for a long time, we may improve our op-
eration skills as we might grow new neurons to support
the changes as in figure 3(a).
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(a) Fully updating the learned network
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(b) Updating the weights of the learned
network, with pruning
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(c) Only updating weights of the learned
network, no pruning

Figure 3: Adapting to structural change by reusing the
learned network in different ways.
Now considering network size, as shown in figure 4, the
first method with full updating of all network parameters
required by far the largest network, 48 nodes; while the
second method removed three hidden units, reducing the
network to 16 nodes; the third method kept the original
network size, 19 nodes.
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Figure 4: The number of hidden units for the three ap-
proaches.
We have also studied the staged development in sensory-
motor mapping learning process [7]. The system
constructs sensory-motor schemas in terms of inter-
linked topological mappings of sensory-motor events, and
demonstrates that the constructive learning moves to
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next stage if stable behavior patterns emerges.

5 Conclusions

Constructive learning has advantages over static learning
in sensory-motor mapping development for autonomous
systems. It supports both topological network growth
and parameter adjustments, which is supported by find-
ings in psychology and neuroscience. It also has the ad-
vantage of adaptation to system changes such as in tool-
use. A growing radial basis function network by construc-
tive learning constructs the computational substrate for
such sensory-motor mapping development. It forms a
platform to examine the relationship between behavior
development and the growth of internal sensory-motor
mapping network; the staged and developmental learn-
ing process through various constraints in motors and
sensors; and active behavior learning driven by intrinsic
motivation. The experimental results on robot eye/hand
coordination demonstrate the incremental growth of the
mapping network and the system’s adaptation to envi-
ronmental changes.
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