

Abstract: This paper presents a combination of several

techniques (RSS Feed, Lucene, and MySQL) that constituted a
powerful, efficient system to acquire, parse, and optimize data
from Blogs, and then based on analyzing TF (Term Frequency)
and Links we make a contribution to Similarity Analysis and
Influence Analysis by proposing another two novel Algorithms
which are Similarity Score and Influence Score. Hence it becomes
much easier and more effective to rank the related and
authoritative Blogs under the comparison of Scores.

Keywords: Term Frequency, Vector Distance, Penalization

I. INTRODUCTION

The explosive development of the internet and the massive
utilization of social media have dramatically increased the
popularity of blogs. As it is claimed in [4] that “over 50 million
blogs are reported to exist, and around a hundred thousand new
blogs are created everyday”. According to the same estimation
in [5], it reported that “blogging activity is doubling in size
every two hundred days or about once every six and a half
months”. In additional, blog contains a wealth of information
about a variety of events due to more bloggers bloging on more
diverse topics including their personal lives, product reviews,
political opinions, technology trends, tourism experiences, and
the entertainment industry [2], that is, a set of keywords will be
correlated and aggregated together, which cause blog spam.
However when such topics and events recede, the keyword
clusters dissolve automatically since such clusters are temporal,
transient, and are associated with a specific time period [5].

Consequently, it becomes difficult to find out which blogs are
in highly similar, which blogs are the most important or
authoritative (can be reflected in several ways: content, title,
and links) due to the frequent changing of blogs over time.

Hence it is significant and urgent for us to build a blog
analyzing system to overcome these problems. And
accordingly the motivation of this paper is to employ effective
existing techniques (RSS, Lucene, and MySQL) and present
Score Functions (Similarity Score and Influence Score) with
computationally efficient in order to develop a specialized Java
application for discovering correlated outlinks, mining hot

1 Supported by Applications and Algorithms Research Group in Comlab,
Oxford University; the grand project of the Science and Technology
Commission of Shanghai Municipality (No.06DZ11202); Shanghai Leading
academic Discipline Project (No. T0602); and the Subject Foundation of
Shanghai Maritime University (No.XL0101-1).

Xiaorui Chan (1982-), Master, MSc in Computer Science, Oxford
University, United Kingdom, focus on algorithms design & analysis and
network security. E-mail: sherrychan82@yahoo.com.

keywords, distinguishing similarity of blogs, and identifying
the influential authoritative websites.

II. RELATED WORK

(1) RSS Feed
Due to the massive development of current web techniques,
several APIs (Application Programming Interfaces) have been
provided for individuals to view, update, and obtain data from a
variety of blogs, and there are two of them are the most popular.
One is the Google data APIs ("GData" for short) and the other
is RSS (Really Simple Syndication) feed [3] technique, a
method [3] that uses XML instead of HTML to distribute web
content and fetch updated website information faster by using a
RSS aggregator (a site or program that gathers and sorts out
RSS feeds) which has been currently widely spread and
adopted due to its effective and efficient application.

However, due to its applicable limitation, that is, GData is a
protocol based on the Atom 1.0 and RSS 2.0 syndication
formats [2] that make GData a far narrower applicable field
(constrained by both syndication formats). In addition, the
Blogger Data API only supports the standard Google Data API
query parameters, namely, this sort of APIs are only applicable
for Authenticated Google Blogs [2]. What if the blogs without
GData APIs? What if the Bloggers have not authenticated
Google Accounts? In this case, GData feed becomes helpless.

Moreover, Dare Obasanjo, a famous experienced Program
Manager in Microsoft Corp. suggested that “GData less than a
Web General Purpose Editing Protocol set too much restriction
and becomes sorts of less compatible with Microsoft”. He also
claims that “XML data might be lost at times when
downloading original ‘atom:entry’ due to the fact that GData is
less supportive for updated entries”. Consequently the
applicable limitation of GData forces us to use RSS feed in this
work.

(2) Lucene
Lucene is a free/open source information retrieval library. At
the core of Lucene’s logical architecture is the idea of a
document that contains several fields of text, hence it allows
Lucene’s API to be independent of file formats [1], that is, text
from PDFs, HTML, Microsoft Word documents, as well as
many others can all be indexed and searched flexibly so long as
their textual information can be extracted [1].

(3) MySQL
MySQL is one of the most popular open source databases in
terms of the ease of use, scalability, and performance, we
choose MySQL as the storage environment in this work.
Lucene provides the same function as well; however, due to the

Blog Quality Analysis1

Xiaorui Chen

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

mailto:sherrychan82@yahoo.com

fact that the data storage function performs less professional
and shows ineffective compared with MySQL, hence it is only
adopted as a semantic parser rather than all.

III. IMPLEMENTATION

This work is carried out under Windows XP system on IBM
R61 laptop of Intel (R) Core (TM) 2 Duo CPU, T 7100 & 1.80
GHz, 2G memory, using MyEclipse 6.0.1 as Java platform and
Navicat 8 as MySQL development tool. The version of MySQL
applied in this work is 5.0.51a.

Most of the researches with large number of data operations
would be based on database management due to its easy control.
Hence, database becomes more indispensable and critical for
many current projects.

(1) Create Connection
After completing the installation of Navicat and MySQL
successfully, then we have to connect them together; otherwise
they are just separated software without data transportation and
communication. Click the “Connection” icon in tool bar of
Navicat and it pops a window of Navicat Connection. In my
work, “User name” and “Password” are “root” and “Null”
respectively, and other parameters are defaults. If it is a
successful connection, Navicat pops a window showing
“Connection Successful” message when clicking “Test
Connection” button. Otherwise, it is being impossible to
connect Navicat with MySQL database. See Figure 3.1.

(2) Create Tables
As long as Navicat has been connected to MySQL successfully,
then we have to design data models and create tables in MySQL.
Figure 3.2 used to store the basic details of URLs of given
blogs. “ID”, the series number of each blog, should keep
unique. “FeedURL” is the specified URL of the corresponding

blog. “WebSite” is defined as a constraint on outlinks, that is, if
links appearing in URL containing sub-string equal to
“WebSite”, then they are no longer deemed as outlinks.
“IsChinese” filed is “1” if the URL contains Chinese character.
“IsDeleted” means re-fetch (whether to obtain data again), that
is, if “IsDelete” is “1”, the program no longer obtain new
records from the URL.

In the work, we rank the Similarity Score and Influence Score
by comparing the results from the following ten different
URLs,and the corresponding code format of inserting such
URLs into MySQL are as follows.

insert into feed values(1,'url','website',0,0);

Figure 3.3 shows the result of “Feed table” after inserting
URLs.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

“Item” table is designed to store all the original raw data parsed
from the URLs, and the structure of “Item” table in Navicat
after running codes is shown as Figure 3.4.

“PubDate” is used to store the date that it has been published
and it is a primary argument in the function of Influence Score;
“Description” field provides some abstracts of each post,
usually the first paragraph of each post. “Insertdate” registers
the time of each record that has been inserted into Databases.

However, due to the fact that the term weights and Vector
Distance (will be discussed later) are different when calculating
the Scores, hence we also have to divide up the raw data and
store them into each corresponding tables. Accordingly, we
design another three tables named “contentword”, “titleword”,
“outlink” separately, all of which are used to store the
information of content terms, title terms, and outlinks
respectively. Hence after parsing raw data from the “Item”
table, each term and link will be stored into each corresponding
tables rather than aggregated them together in single “Item”
table.

“contentword” and “titleword” tables have the same structure
as follows, where, “Quantity” field calculates the total number
of each term that occurs (frequency) in all contents records.

Table3.1. ContentWord table

Name Type Length
ID char 36
ItemID char 36
Word varchar 50
Quantity int 11

Table 3.2 lists the structure of Outlinks table.

Table3.2. Outlinks table

Name Type Length
ID char 36
ItemID char 36
Outlink varchar 200

After successfully creating the infrastructure of MySQL, then
we can build a program to obtain data from the given URLs and
store them into each corresponding table.

(3) Build Java Platform
Apart from constructing the infrastructure in MySQL
Databases, we also have to build a corresponding java program
in MyEclipse environment with methods of acquiring data from
URLs, and then parsing, inserting data into the aforementioned
MySQL tables, and then calculate the Scores.

Step 1: Connect to MySQL
MySQL Databases infrastructure and Java program
environment are two separated projects only until we bridge
them together by loading the MySQL driver.

First create a java class named “DBConn”, second add a java
class package “mysql-connector-java-5.0.8-bin.jar” provided
by Sum Corporation into the java library; and then import a
java connector named “java.sql.Connection”, and load a
MySQL driver named “com.mysql.jdbc.Driver” into the
program. Due to the fact that the Username and Password of
MySQL are “root” and “Null” respectively, hence the bridge
can be set up as: “Connection con =
DriverManager.getConnection (temp, “root”, “”), where,
“temp” is a String type and equals to
“jdbc:mysql://127.0.0.1:3306/rss?useUnicode=true&character
Encoding=utf8”; “jdbc” is the querying mode; “127.0.0.1” is
the bind address, which also is equivalent to “localhost”;
“3306” is the default port; “rss” is the name of MySQL
Database in this work, and “utf8” is the encoding character.
Then we can query data from MySQL via Java platform by
calling a “jdbc” query class and the codes are as follows:

Connection connection = DBConn.getConnection()
connection.createStatement().executeQuery
("SELECT * FROM tablename");

Step 2: Acquire Data
In MyEclipse environment we set two pointers point to URLs
before fetching data so that the program knows which ones are
going to be analyzed. Codes are as follows.

URL feedUrl = new URL(feedVO.getFeedUrl());

Where, feedVO is a class which stores the basic information of
the given URLs, and the structure of it is constituted according
to the fields listed in the Feed Table, which includes ID,
FeedURL, Website, and IsChinese variables; and getFeedUrl()
method returns “this.feedUrl”.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

However, the pointers do not know what kind of data (there are
severalt types of information in each URL such as Publish Date,
Category, and Abstract etc.) should be obtained since so far
they have only been notified which URLs should be visited.
Hence we introduce an “XPath” object (XPath, a language for
selecting nodes from an XML document, is based on a tree
representation and provides the ability to navigate around the
tree) to fetch the aimed data from the given RSS feeds as
follows,

XPath xPath = XPathFactory.newInstance().newXPath();

Combined with XPath, we also have to adopt NodeList object
(the NodeList interface provides the abstraction of an ordered
collection of nodes without defining or constraining how this
collection is implemented) correspondingly in order to fetch the
matched data from the given URLs, codes are as follows,

NodeList tableNodeList = (NodeList) xPath.evaluate (
 "/rss/channel/item", URL, XPathConstants.NODESET);

Each tag in such RSS documents has several corresponding
nodes in the tree representation in terms of “rss/channel/item”;
XPathConstants.NODESET” is the nodeset data type which
maps to “NodeList”, then we can obtain each type of raw
records such as “title”, “abstract”, “pubdate”, “link”.

temp = xPath.evaluate("abstract ", tableNodeList.item(i));

Step 3: Parse Data
Utilize Lucene to filter the aimed data (title terms, content
terms, and outlinks) from the Item table. First define an
analyzer:

Analyzer analyzer = new StandardAnalyzer ();
TokenStream ts = (TokenStream) analyzer.tokenStream (“”, Reader);

Where, StandardAnalyser() is a popular Analyzer provided by
Luence. Reader, an abstract class for reading character streams.
analyzer.tokenStream() function is one of the methods in

Analyzer class with fix format, and returns tokens. Analyzer
plays as a chopping machine which cuts sentences into several
single words. Codes for Outlinks acquisition are as follows,

if (URL.getHost().toLowerCase().endsWith
(feedVO.getWebSite())) continue;

feedVO class (described before) provides the basic information

of given URLs. “getHost()” gets the host name of this URL.

“toLowerCase” sets all URLs lowercase. “endsWith()” checks

if a link contains a sub-string that equals to “WebSite” variable.

If links do contain such a sub-string， program will discard it

and loop to the next record.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

IV. ALGORITHM AND EXPERIMENT

Due to the spatial and temporal limitation, we select 1000 terms
which occur most frequently to participate in this work

(1) Similarity Analysis
Similarity Analysis is a research on searching for “connected
blogs” -- similarity in topic and similarity in links. That is,
given two URLs, we exploit a novel technique to suggest the
similarity of blogs by applying the observation that how many
terms are in common or overlap, how many times a term occurs
(we name it “TF (Term Frequency)”), and how many outlinks
are similar. First, we define (VD) Vector Distance as follows:

VD =
m

tfBtfAtfBtfA 22)10001000(....)11(−++−

Where, tfAi means the TF of the ith keyword of blog A, as the
same, tfBi means the TF of the ith keyword of blog B. m is the
penalization factor, which equals the total number of terms in
the whole universe set.

Hence we define the ideas of VD_of_Title (Vector Distance of
terms in title), VD_of_Content (Vector Distance of terms in
content), and VD_of_Link as follows.
*VD_of_Title = VD (tfAi/tfBi are from titleword table).
*VD_of_Content = VD (tfAi/tfBi are from contentword table).
*VD_of_Link = the number of common outlinks in two URLs.

Then we define the function of Similarity Score as follows:

Score = wt *)
__

1(
TitleofVD

 + wc *

)
__
1(

ContentofVD
 + wl *)__(LinkofVD

Where, wt, wc, wl are the weights of each VD, and set 15, 12,
and 10 respectively in this work.

From the Similarity Score function, we know that there is an
inverse relationship between the Score and the VD_of_Title,
that is, the more similar the terms are, the smaller the
VD_of_Title is, and hence a bigger Score we get. And it is as
the same as the VD_of_Content. However, the Score goes in
proportional relationship with the VD_of_Link, the more pairs
of outlinks are in common, the bigger Similarity Score it is.
However, ten selected blogs deem themselves as authoritative
pages that the similar OutLinks in this experiment are all zero.

For 10 different Feeds there are: 45
1*2
9*102

10 ==C pairs of

choices. However, due to the spatial limitation, we only list the
results of some significant and representative pairs of blogs
here and Table 4.1 shows a clear comparison of these RSS
Feeds.

Table 4.1: Some Pairs of Similarity Scores

No. Each pair of URLs

Quantity of
common
terms
(title/content)

Score

1. Blog A: 1 (same order with
Blog B: 2 Feed Table) 120 / 701 80.3

2 Blog A: 7
Blog B: 9 5/275 30.8

3 Blog A: 3
Blog B: 7 1/185 5.95

4 Blog A: 2
Blog B: 3 4/185 5.25

5 Blog A: 4
Blog B: 7 0/141 2.49

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Figure 4.1 shows a curve for the comparison among some pairs

of blogs. Due to the fact that the scores of most unrelated pairs

of URLs are under 60, hence it is meaningful to defined the

threshold of Similarity Score as 60, that is, URLs with

Similarity Scores higher than 60 are deemed as similar blogs.

(2) Influence Analysis
Influence Analysis is based on determining whether a blog
mentions a keyword/link earlier than another by adding
directionality and searching Influence Relation among blogs.
And we defined these blogs as “authority blogs”.

With extending the functions of VD_of_Title, VD_of_Content,
and VD_of_Link, we describe another argument named PTPE
(the percentage of overlapped terms whose first occurrences
have been published earlier in Blog A than in Blog B). Then we
give the definition of Influence Score function as follow.

Score = wt * PTPE _T *)
__

1(
TitleofVD

 + wc *

PTPE _C *)
__
1(

ContentofVD
 + wl * PTPE _L *

)__(LinkofVD

Where, PTPE_T, PTPE_C, PTPE_L are the PTPE of Titles,
Contents, and Outlinks respectively; wt, wc, wl are the weights
of each corresponding PTPE and different from the ones in
Similarity, we set wt = 3, wc = 1, wl = 2.

Table 4.2: Some Pairs of Influence Scores

No. URLs
Quantity of
Title terms

(early/overlap)

Quantity of
contents terms
(early/overlap)

Score

1. Blog A: 1
Blog B: 2 51/120 275/701 6.52

2. Blog A: 2
Blog B: 1 69/120 426/701 8.48

3 Blog A: 7
Blog B: 9 4/5 196/275 4.04

4 Blog A: 1
Blog B: 9 3/3 187/267 3.32

5 Blog A: 2
Blog B: 3 3/4 67/185 0.57

From Table 4.2, in first comparison, there are 51 out of 120
overlapped terms are published earlier from Title, and 275 out
of 701 from Content and the Influence Score of blog A on B is
6.52112078643748. However, Influence Score is a
bidirectional function, after switching blog A and blog B, then
that of blog B on A showing in the computer is
8.47899304383688 due to the fact that the occurrences of
overlapped terms published earlier in blog A are 69 out of 120
and 426 out of 701 in Title and Content respectively. Therefore,

it is evident to draw the conclusion that Blog 1 is a slight more
authoritative than Blog 2. Accordingly, Figure 4.2 shows the
Influence Score for the comparison among some pairs of blogs.

From Figure 4.2, we find out that the scores of less influenced
pairs of URLs are less than 6; hence it is reasonable to set the
threshold of Influence Score 6 in this work, that is, Influence
Scores bigger than 6 are considered as influential pairs and
Blog 2 are considered to be authoritative blog.

The Web is not a static environment and changes constantly.
Influence Blogs in the past may not be quality pages now or in
the future. Hence it is meaningful to study Influence Analysis
to find out which blog with popular significant terms is
published first.

V. CONCLUSIONS AND FUTURE WORK

We construct a Blog Quality Analysis system by employing
techniques with computationally efficient such as RSS Feed,
Lucene, and MySQl in order to discover correlated terms, mine
hot keywords, and enhance ranking functions.

Blogs quality analysis is a novel academic study; in which, RSS
and Lucene have supplied several successful elegant and
delicate solutions for related problems. In any case, Blogs
quality analysis technology develops continuously; solutions to
problems in these areas will correspondingly find their way
from theory into practice quickly.

References

[1] (Basic introduction of Lucene) http://en.wikipedia.org/wiki/Lucene
[2] (Online sources, basic introduction of GData)

http://code.google.com/apis/gdata/overview.html

[3] (Online RSS introduction) http://www.w3schools.com/rss/rss_intro.asp

[4] Nilesh Bansal, Nick Koudas. Searching the Blogosphere. In Proceedings
of the 10th international Workshop on Web and Databases, WebDB 2007,
(co-located with SIGMOD) Beijing, China, June 15 2007.

[5] Nilesh Bansal, Fei Chiang, Nick Koudas, Frank Wm. Tompa. Seeking
Stable Clusters in the Blogosphere. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB 2007, Vienna,
Austria, Sept 23-28 2007.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

http://en.wikipedia.org/wiki/Lucene
http://www.blogscope.net/about/docs/stable-clusters-vldb07.pdf
http://www.blogscope.net/about/docs/stable-clusters-vldb07.pdf

