
 Security Mutation Algorithm for
 Google Print and Google’s Search Security

Deficiency

Amar Akshat

Abstract.—The research work prove the fact that Google®
installs its cookie into the user’s system for more than thirty
years and they expire on 17th January 2038. Google® recognized
the efforts of all the researchers throughout the world and as
update Google® has informed us about their changed cookie
policy. Google® is modifying how it keeps track of users via
cookies, by setting cookies to expire in two years if a user doesn't
return and auto-extending cookie length for active users,
according to a policy change announced by Google's Global
Policy Counsel. However the algorithm discussed in the paper
was developed at the time the when Google’s® cookie expired on
the date above mentioned. The algorithm emphasizes upon the
web session management techniques of Google® and ways to use
the services to attack the security of Google® Print cookie,
which enables Google Book Search, which is a tool that searches
the full text of books that Google scans and stores in its digital
database. Further the paper relates to various search syntaxes
provided by Google® for efficient searches and how they are
incapable to maintain searcher’s and searched security.

Index Terms — Cookie , Google Print , Security

I. INTRODUCTION

Analysing the Google® cookie.
GPREF=ID=61s3149f117f3033:TM=1102333418:LM=1129
745420:S=gbbDQwe8rVmtrGK [4]
The Google® cookie which is in our system has four distinct
parameters namely:

1. ‘ID’ which is hopefully unique.
2. ‘TM’ is a time stamp of some sort at which

Google® baked our cookie and injected into our
system.

3. ‘LM’ again a time stamp.
4. ‘S’ is a signature or checksum of some sort. It could

be a cryptic, a hash for instance. In my
experience, the signature only varies with
different ID and/or TM values. [5]

Manuscript submitted April 23, 2008. The work was supported by Dept. Of
CSE , Sikkim Manipal Institute of Technology , Mazhitar , Sikkim.
A.Akshat , Dept. Of CSE , 5th Semester, Sikkim Manipal Institute of
Technology , Mazhitar , Rang-Po , E-Sikkim , 737132 , India.(Phone No:
+919932389841. E-mail : amar.akshat@gmail.com)
The algorithm discussed in the paper relates to identifying the
Google® print [3] cookie and then parsing its parameters to
relate to a new parameter baking scheme.

The fact that Google® does not recognize users on a unique
level helps us to iterate the procedure to generate user defined
cookies. The user defined cookies would be generated by the
PRNG (pseudo random number generator) [5],[1] algorithm
used by Google®.

II. ANALYZING GOOGLE® PRINT URLs

Google® Print URLs are of form:

http://print.google.com/print?id=KvBRxoA2icQW&pg=1
&sig=hoLj_8Gt12aG2cSj Rxr741sbP7E

We notice a signature parameter again in the URL which
actually interacts with the parameter of signature in the
actual Google® cookie and generates a 4 + 22 lettered
character parameter by simply modifying the parameters
in signature parameter of the actual Google® cookie by
some algorithm. ID in the URL points to the book that you
are reading and PG points to the page number (may be).
Now click the "Next Page" arrow. The URL now becomes
like this.
Though Google Global Policy Counsel claims to have reduced
the time limit [2], the assurance of the point can not be
provided that tracking and monitoring of web activity to
enhance search accuracy is discouraged by Google.

http://print.google.com/print?id=KvBRxoA2icQW&pg=2
&sig= gBBbI6T0Fz HxgVeJJQKQqmZ_MNk

What changes here is the signature and the page number, and
pg now becomes 2 , so now its sure enough that pg is the page
number. The signature changes when you change pages,
and PG points to the page you started from! Google wants
to limit you on reading the number of pages, because if you
read the whole book then it would make the publishers
unhappy. Now try removing the pg from the URL, the
resulting URL results in page not found error. So we may
say that the signature allotted to every URL depends upon
the page we entered on, the page we are currently on and
the book id.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

III. THE ALGORITHM

// HTTP GET a page from a URL string getPage(string
url)

By using some function or the getPage() function provided by
Java® libraries we get the page provided as the string and
download into the local memory device.

// search the book for pageNumber and return first (if any)
URL found with pg = pageNumber string
searchForPageURL(string bookid, int pageNumber)

Searching for the page number (which the user wants to read)
in the victim book provided by Google® print pages (using a
for loop) and if any such page exists then simply search for the
URL string which actually points to the page, which contains
any such parameters.

// extract the URL from the "next page" link on the book
viewing page string extractNextPageURL(string page)

Now the function implementing the algorithm tries extracting
the next page link on the same page provided to surf further on
the book. Java® libraries provide us with such function which
searches for all the links going from the page and returns
which is closest to the matching all the parameters and some
parameter changing in ascending order.

// extract the URL from the "previous page" link on the
book viewing page string extractPreviousPageURL(string
page)

The similar function extracts the URL for the previous page ,
as the link which has most of the parameters as same , except
one which descends by lowest.

// from the oven if we get null ... then keep the new cookie
if it works,

The “Cookie Baker” comes into action at this particular stage
when method has the hard link hit and the function has older
cookie overhauled. The cookie baker using the PRNG
algorithm used by Google® bakes a new cookie. The
Algorithm then checks for the validity of the cookie and
decides its usage criteria.

// that way we can get earlier parameters of the BOOK:
limits string bookid, integer pageNumber

{ // first try directly searching for the page String page =
getPage(searchForPageURL(bookid, pageNumber));

The function now searches for the target page which the user
is looking for the page. The getPage method from Java®

libraries searches for the page having the parameters
“bookid” and “pageNumber” same as provided.

// if we found the page, return the image URL from the
page if (page ISNOT null)

//return extractImageURL(page);

The algorithm stops working if the target URL is achieved
without violating validity checksums. The above condition is
theoretically impossible to attain but in practical situations due
to inefficient server load balancing features the pages outside
hard link may be retrieved.

// do this for up to 2 pages, forward and backwards for
(integer i = 1; i <= 2; i++)

{ // search for the i'th page after the one we want page =
getPage(searchForPageURL(bookid, pageNumber + i));

The theoretically possible situation arrives here; the algorithm
now gets two pages from the valid page backwards.

// if we found this one, then "click" the "previous page"
button until we get to the page we want, then return the
image URL from it if (page ISNOT null)

If the page returned is not null then surf to previous page links
until we reach the page we want. The previous page surfing
may be cumbersome so an automatic page surfer may be
developed to grab the links and extract them into the page.

{ // "clicking" the previous page button for (integer j = 0; j
< i; j++) { page =
getPage(extractPreviousPageURL(page)); }
return extractImageURL(page); }

The method extracts the previous page URL for each iteration
of ‘i’ upon ‘j’ and returns the image URL to the calling
function. The page in case returned is NULL then the iteration
looks for another such iteration.

// search for the i'th page before the one we want page =
getPage(searchForPageURL(bookid, pageNumber - i));

The theoretically possible situation arrives here; the
algorithm now gets two pages from the valid page forwards.

// if we found this one, then "click" the "next page" button
until we get to the page we want, then return the image
URL from it if (page ISNOT null)

The page is then surfed manually or by any tool which
actually surfs the page for the user. The page which is not
NULL is returned by the function.

// "clicking" the next page button for (integer j = 0; j < i;
j++) { page = getPage(extractNextPageURL(page)); }
return extractImageURL(page); } }

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

// null }

Since we got nothing the algorithm returns NULL.

IV. SEARCH SECURITY DEFICIENCY

Google is world’s most popular and powerful search engine
which has the ability to accept pre-defined commands as
inputs and produce unbelievable results. This enables
malicious users like hackers, crackers, and script kiddies etc to
use Google search engine extensively to gather confidential or
sensitive information which are not visible through common
searches.

V. GOOGLE'S® ADVANCED SEARCH QUERY SYNTAXES [6].

Below discussed are various Google’s special commands and I
shall be explaining each command in brief and will show how
it can be used for critical information digging.

• The “intitle:” syntax helps Google restrict the search
results to pages containing that word in the title.

• The “inurl:” syntax restricts the search results to
those URLs containing the search keyword.

• The “site:” syntax restricts Google to query for
certain keywords in a particular site or domain.

• This “filetype:” syntax restricts Google search for
files on internet with particular extensions (i.e.doc,
pdf or ppt etc).

• “link:” syntax will list down web pages that have
links to the specified webpage.

• The “related:” will list web pages that are "similar"
to a specified web page.

• The query “cache:” will show the version of the web
page that Google has in its cache.

• The “intext:” syntax searches for words in a

particular website. It ignores links or URLs and page
titles.

• “phonebook” searches for U.S. street address and
phone number information.

In the last few years a number of news articles appeared that
warned of the fact that hackers (or crackers if you will) make
use of the google search engine to gain access to files they
shouldn't be allowed to see or have access to. This knowledge

is nothing new to some people but personally I have always
wondered how exactly a thing like this works. VNUnet’s
James Middleton wrote an article in 2001 talking about
hackers using a special search string on google to find
sensitive banking data:

"One such posting on a security newsgroup claimed that
searching using the string 'Index of / +banques +filetype:xls'
eventually turned up sensitive Excel spreadsheets from French
banks. The same technique could also be used to find
password files"[6]

An article on wired.com informed us about how hackers like
Adrian Lamo used Google® as severe tool to get into boxed
information of many such companies. Adrian tells us:

“For example, typing the phrase "Select a database to view" -
- a common phrase in the FileMaker Prodatabase interface --
into Google recently yielded about 200 links, almost all of
which led to FileMaker databases accessible online.”[7].

The tabulation in figure (Fig 1) shows the results of query
formulation for different cases. The advanced search query
formulation successfully works as shown in the fig for attining
sensitive information which has been made available on the
web by simple means of tricky Google search syntaxes. There
are six categories listed in the table which have been tested
with syntax searches and the basic site indexing is exposed
when the search is actually executed. The “Search String”
column provides a basic description of the subject of search.
The “Supported File Types” column lists the format of file or
document for which search is targeted. “Search Query”
column is for actual query with syntax which refines our
search.

The category of interest lies is “Password” where the result is
very sensitive for the sites who have their configuration files
just listed in index without a protection layer. Two techniques
have been analyzed , which is the most common way many
site administrators prefer to store passwords in.
z auth_user_file.txt : a file used to store information

about the authorized users , their passwords and
information about the permissions awarded to them.

z config.php : a very common file to store the
configuration information which is very often
detailed with the password information.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

 Fig 1. Query Formulation.

The theory behind this is very simple in actual practice. The
attacker only collects the maximum information he can
collect about the target file and then biases the search result
according to them. For example using wildcard characters
we search for particular type of files (e.g.*.doc), then
instead of mixed up result we get the procedure to extract
the best match with that type of file executed. This is what
the attacker actually hits. General attacks with open index
pages and interesting hints to inside sensitive pages. A very
good example is of attack on HMAC and NMAC at
sensitive information with complexity low.[9]

A web server which allows browsing through indexes and
directories may be visited and hunted for through Google®.
The ‘index of ‘syntax has been doing this job for hackers
throughout the world. This syntax with dangerous
combinations such as:

• index of /admin
• index of /mail
• index of /passwd

• index of /confidential
• index of /root

A case study shows that when the query “index of
/confidential” was issued in Google® search prompt it
showed an in figure (Fig 2).

The security of navref.org is straightforward put to question.
The PDF therein contains a list of personal and official
letters. The case is actually not surf onto a number of pages
in search, this happens to be the first result.

The security question is actually not into the parameter for
one combination. A combination using other syntaxes like
“allinurl: winnt/system32/” lists down all the sites which
gives access to sensitive directories like system32 which is
the by default option in server managers. Being lucky enough
we may get an access to the “cmd.exe”. A combination like
“inurl: config.txt” may list up links which may have left an
unchecked link to “config.txt” open.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

Fig 2. Screen Shot Of Google Directed Search.

Checking for the sites vulnerable to SQL injection techniques
a trial like “allinurl:/privmsg.php” or “allinurl:/errmsg.php”
may be efficient enough for the hacker to try the buzzer on
them. Attacking has always been a combination of several
hits and trials. So a much thought combination with such
syntaxes may generate pages not to be viewed by general
user. The link: http://wacker-welt.de/webadmin/
explains about webadmin , which is a piece of software
which allows the user to remotely access an edit parts of
websites. The workhouse for webadmin starts from the PHP :
“webeditor.php”. Simply searching for links which have in
their URL “webeditor.php” does the job for the malicious
user.
“inurl: webeditor.php”
The results of the above search query :
www.namo.com/products/webeditor.php [8]
http://artematrix.org/webeditor/webeditor.php
http://www.directinfo.hu/kapu/webeditor.php
www.directinfo.hu/kapu/webeditor.php

The Freesco router software for Linux as a default, installs a
small web browser which allows owners to control the
router through the http protocol. In other words, a website
automatically gets setup that allows you to control the
router. The default password and login for this control panel
is “admin” and “admin”. Many people who use freesco
don’t know this. Planning an attack against it may be
fruitful and syntax queries like:

 “intitle: Freesco System” or “intitle: Freesco Control”

VI. CONCLUSION

The checks kept upon the books and the limit described by
the servers or authorities is very much legal and the society
respects that as well. However the cookie conspiracy which
Google® was planning by keeping a track of all the web
pages which every client is searching for is the closest to

defacing public information security. The security regarding
Google® print is at a stage that only planned attack may be
able to crucify its conditions. This would not have been
possible until I.T professionals throughout the world felt that
they were being cheated by one way or the other.

Software designers and end users should pay more attention
to default installation security configuration and security
policy. In the end, there are always going to be people who
make mistakes, use default installs, use poorly secured
software or just don’t care or still believe there’s no danger in
putting this kind of data online.

ACKNOWLEDGMENT

The research work is an idea out of curiosity towards the
reason why Google cookies dwell in one's system by default
for so long.
A.Akshat thanks Mr. C.T.Singh (Reader , SMIT) , Mr.
S.Borah (Lect. SMIT) , Mr. Mohan Pradhan(Lect. SMIT)
and Mr D. Mohanty's research works for Google's unsecure
search feature. A vote of thanks to Dept. Of C.S.E , SMIT for
encouraging such work in good faith.

REFERENCES
[1] Unveiling Google Cookie Secrets by Amar Akshat.
www.ethical-hackers.741.com/googly.html

[2] Google Changes Cookie Policy But Privacy Effect is

Small
http://blog.wired.com/27bstroke6/2007/07/google-
changes-.html

[3] Google Book Search – Wikipedia.

http://en.wikipedia.org/wiki/Google_Print

[4] Unveiling Google Cookie Secrets by Amar Akshat.

www.ethical-hackers.741.com/googly.html

[5] Stompy - The Web Application Session Analyzer Tool

http://www.darknet.org.uk/2007/03/stompy-the-web-
application-session-analyzer-tool/

[6] Google not 'hackers' best friend',James Middleton,

VNUnet.com, 2001
 http://www.vnunet.com/News/1127162

[7] Google: Net Hacker Tool du Jour

http://www.wired.com/news/infostructure/0,1377,57897,
00.html

[8] Google Search: “inurl: webeditor.php”

http://www.google.co.in/search?hl=en&q=inurl%3Aweb
editor.php&btnG=Google+Search&meta

[9] General Distinguishing Attacks on NMAC and HMAC

with Birthday Attack Complexity by Donghoon Chang
and Mridul Nandi.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

