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Abstract - A model for spread of STD's, and 
other infectious diseases is presented which is 
applicable to the propagation of an infectious 
disease for which there is no known core group.  
A study based on this model is discussed for the 
recent spread of SARS in Toronto. 
 
1. Introduction 
 
According to a report published by the 
American Social Health Association in 1998, 
the estimated total number of people living in 
the US with a viral STD/STI was over 65 
million.  Every year, there are at least 19 million 
new cases of STDs/STIs, some of which are 
curable [1]. The cost to the nation runs into 
billions of dollars. The situation in Canada is 
perhaps no better. For the propagation of most 
of STD's there is usually a core group and a 
non-core group. The members of the core group, 
though small in number, account for a large 
percentage of infections in the society. In this 
paper, we present a model for spread of  STD's, 
and other infectious diseases like SARS,  in any 
society. The model does not allow for a core 
group, so that it is applicable to the propagation 
of an infectious disease for which there is no 
known core group. SARS is such a disease. In 
this model, the community is divided three 
ways; namely, those who are susceptible to 
infection to the disease, those who are infected 
and those who have recovered.  
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We apply this model to the recent spread of 
SARS in Toronto and show, convincingly we 
hope, that the city of Toronto has been a safe 
place to visit from April 22, 2003 onwards so 
that the travel advisory imposed on this city by 
WHO on April 23, 2003 was perhaps 
unjustified. 
 
It should be pointed out that in the case of 
SARS, in most cases, the immune system of the 
body is able to fight the infection quite 
successfully.  However, this cure provides only 
a partial immunity from re-infection (about ten 
percent of the 'cured' people have been reported 
to have become infected again in Hong Kong).  
Because of this, the rate at which people get 
cured should be different from the one at which 
the cured people become susceptible again.  
 
We shall assume that, without this disease, the 
population of our community would increase 
logistically. 
 
2. The Model 
 
We write  
x'(t) = A1 x- A2  x2- A3 x y + c2 y,..........(1a) 
y'(t) = A3 x y- c1 y- k1 y, ........................(1b) 
and  
z'(t) = c1 y- c2 y- k2 z..............................(1c) 
 
where 
x(t) = the number of susceptible people in the 
community at time t, 
y(t) = the number of infected people in the 
community at time t,  
z(t) = the number of  people at time t who have 
recovered from the disease and are susceptible 
no more, 
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 A1x- A2 x2 = logistic growth of x(t), 
 A3xy = the rate at which the susceptible people 
become infected by coming into contact with 
the infected people, 
 c1y = the rate at which the infected people 
recover from the disease, 
 c2y = the rate at which the recovered people 
become susceptible again, 
 k1y = the rate at which the infected people die, 
and 
 k2 z = the rate at which the recovered people 
die. 
 
The equilibrium points of this dynamic are  
 
P1 = (0, 0, 0),  P2 = ( A1/ A2, 0, 0), and  P3 = ( x0, 
y0, z0) where 
 
 x0 = (c1+k1)/A3, y0 =  ((c1+k1) (A1 A3 - A2 
(c1+k1)))/(A3^2 (c1-c2+k1))and  z0 =  ((c1-c2) 
(c1+k1) (A1 A3 - A2 (c1+k1)) )/(A3^2 (c1-c2+k1) 
k2). 
 
For ( x0, y0, z0) to be in the first octant, we need  
(A1 A3-A2 (c1+k1))>0 and  c1> c2.  So that we 
need  A3> A2( c1+ k1)/ A1 for  ( x0, y0, z0) to be 
in the first octant.  
 
We now notice that 
 
1. As the treatment improves, c1 goes up, and 

the y coordinate of P3 comes down. This is 
what we would expect. 

2.  The disease can be eradicated if  A3 　 A3 cr 
=  A2( c1+ k1)/ A1 which is the critical value 
of the contact parameter  A3.  

3. Through public education,  c2 can be reduced 
which brings the y coordinate of  P3 down. 
Again, this is what we would expect. 

4.  If c2 is a constant fraction of  c1 (90% say), 
this y coordinate still comes down as  c1, the 
cure factor, goes up. 

5.  If c1 =  c2, which occurs if people are 
apathetic, then the y coordinate of  P3 is at 
its maximum. 

6. Quite often, a sexual disease is asymptomatic, 
so that c1 is small (because not too many 
people come forward for cure). With c2 as a 
constant percentage of c1, this increases the 
y coordinate of  P3. 

7. With public awareness, or with more 
thorough and routine checking of asymptotic 
patients, (as happened in the U.S. in the 
eighties for gonorrhoea),  c1 goes up, and  y0 
of  P3 comes down as actually happened in 
the case of gonorrhoea.  

 
3. Positivity of the solution 
 
We shall show that if x(0) 0, y(0) 0 and 　 　
z(0) 0, then the solution of our equations 　
stays in the first octant of the (x,y,z) space. We 
notice that if y = 0 then y' = 0. This implies that 
if the moving point (x,y,z) hits the y = 0 plane, 
then it cannot leave this plane. Combined with 
y(0) 0, this proves the positivity (rather the 　
non negativity) of the y coordinate of the 
solution of our equations. Since  c1 　 c2, we get 
z'(t) 0 at z = 0, which proves the non 　
negativity of z(t) in t 0. Similarly for x(t).　  
 
4. Boundedness of the solution 
 
We notice that (x+y+z)' =  A1x - A2 x2- k1y- k2z. 
If we write u = y+z, and k = min( k1,  k2), it 
follows that (x+u)'< A1x- A2 x2 - ku. If we now 
draw the parabola ku =  A1x- A2 x2 in the (x,u) 
plane, then (x+u)'<0 at any point which lies 
outside of this parabola in the (x,u) plane in u > 
0 (see fig.1). Combined with the positivity of 
the solution, this proves the boundedness of the 
solution in the (x, y, z) space.  
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Fig 1: The Parabola  
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5. Stability of the equilibrium points  
 
The stability of the various equilibrium points 
depends upon the roots of a cubic equation 
which may be written as   　　 + a2 　　  + a1 
+　  a0 = 0, where the coefficients of this cubic 

depend upon the point under consideration.  A 
necessary and sufficient condition for stability 
of the point is  a0>0,  a1>0,  a2>0 and  a1 a2- a0 > 
0 [2].  
 
The equilibrium point  P1(0,0,0) is found to be 
always unstable.  P2( A1/ A2,0,0) is found to be 
stable if and only if  P3( x0, y0, z0) is not in the 
first octant and  P3 is found to be always stable 
provided  x0>0, y0>0 and  z0>0. This requires A3 
>  A3 cr =  A2( c1+ k1)/ A1 and  c1> c2. 
 
6. Discussion 
 
These considerations make our model suitable 
for propagation of an infectious disease. Non-
negativity of solutions is important in such a 
model because, if the number of susceptible 
people, or the number of infected people, or the 
number of cured people, become negative, it 
would not make any practical sense at all.  Same 
about boundedness.  The model would be 
meaningless if, at any time, the number of 
people in any of these categories became 
infinitely large in the community, say more than 
a hundred billion people, and more, in the city 
of Toronto. Stability of any two equilibrium 
points for the same given values of the 
parameters is unrealistic in such a model. Also, 
the result says that if the disease is not endemic, 
then the society will reach a disease free state 
and if the disease is endemic then, in the long 
run, it will reach an equilibrium state. The 
critical value of the parameter  A3 below which 
the disease will be wiped out is  A2( c1+ k1)/ A1. 
If you consider the development of a disease 
over a short period of time, five to ten years say, 
then the increase in population can be 
effectively modeled with  A2 = 0, so that  A3 cr = 
0. This says that an infectious disease, without 

medical intervention, takes a very long time to 
be eradicated. This is, in fact, true of most of 
STD's and we painfully know it to be true in the 
case of HIV/AIDS.  This result also says that if 
the cure provides very little immunity, then the 
disease is harder to control. Also, the less the 
death rate from the disease, the harder it is to 
control. Common cold is still with us! 
 
This model is also suitable for infectious 
diseases like SARS, where (1) the incubation 
period is long, (2) the period during which the 
patient is not infectious is relatively short and 
(3) the cure provides partial immunity to the 
disease, and (4) there is no known core group 
for the propagation of the disease. We shall now 
apply this model to the spread of SARS in 
Toronto in the year 2003. 
 
7. SARS 
 
This disease appeared in Toronto on March 7, 
2003 when a patient arrived at the emergency 
department of the Scarborough Grace Hospital. 
The disease raged in Toronto, affecting 
practically every aspect of life in the city. It 
infected more than two hundred and fifty people 
killing twenty three of them. Thousands of 
people were isolated. On April 22, the city of 
Toronto was declared to be an unsafe area to 
visit by WHO. The travel advisory itself cost the 
city hundreds of millions of dollars and 
adversely affected the economy of the whole 
country.   
 
8. Quarantine 
 
In the case of a successful quarantine of a 
person, his contribution to the A3xy term is 
clearly zero. It follows from equation (1b) that if 
all the infectious people are successfully 
quarantined, then the current number of 
infectious people (those quarantined) should 
come down exponentially. If we consider the 
expected amount of time during which a person 
is successfully cured (or he/she dies) to be 20 
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days (Vietnam was declared to be free of SARS 
by WHO after no new cases appeared in that 
country for twenty days [3]), and take twenty 
days to be the unit of time, then we get  c1 + k1 = 
1 and  A3 = 0 in equation (1b). We shall, 
instead, take one day as the unit of time and, in 
the following figure, compare the curve 
y(0)exp(-t/20) with the actual number of 
hospitalised SARS susceptibles in Toronto from 
April 22  to May 6, 2003. SARS probables, 
those people who showed no physical signs of 
having contacted the disease but were only 
suspected of having done so because of their 
past associations as also those SARS probables 
who were still under investigation, have been 
left out of our count. The close agreement in this 
figure is a strong indication that as of April 22, 
2003, the infection coefficient  A3 was zero in 
Toronto and that there was no danger to 
anybody either living in or travelling to the city. 
WHO gave its travel advisory for Toronto on 
April 23, which, in retrospect, was quite 
unnecessary. But there was no way to know this 
on April 23.  Toronto was declared to be a 'safe' 
place to visit on April 30.  
 
 

 
 
Fig 2: The numbers y(0)exp[-i/20] from i = 0 to 
i = 14  compared with the actual number of 
SARS  susceptibles in Toronto between April 
22 and May 6.  
 

9. Conclusion 
 
The close agreement between the two sets of 
numbers strongly indicates that the coefficient  
A3 was zero in Toronto from April 22 onwards 
and that it was a safe place to live in. 
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