
Incorporating Program Characteristics into a
Processor Model

Azam Beg

Abstract – Architectural simulators used for microprocessor
design study and optimization can require large amount
computational time and/or resources. In such cases, models can
be a fast alternative to lengthy simulations, and can help reach a
designer near-optimal system configuration. However, The non-
linear characteristics of a processor system make the modeling
task quite challenging. The models not only need to incorporate
the micro-architectural parameters but also the dynamic
behavior of programs. This paper presents a hybrid
(hardware/software), non-linear model for processors. The model
provides accurate predictions of processor throughput for a wide
range of design space.

Index Terms – Processor throughput, instructions per cycle (IPC),
processor model, micro-architecture simulation, basic blocks.

I. INTRODUCTION

Hardware development is traditionally expedited using
software models. The models are implemented in high level or
hardware description languages. Relevant benchmark programs
are then run on the models to get good approximations of
actual hardware. A processor system model needs to be
inclusive of both the program and hardware behavior. The
program behavior can be dynamic or static. The dynamic
characterization can be done by capturing repeating patterns in
a program [1]- [3]. Cycle-accurate simulators tend to be
accurate but require weeks of simulation time with programs
running for a few billion cycles [1] [2]. Noonburg and Shen [3]
utilized the benchmark (program) traces to create a model for
superscalar instruction level parallelism (ILP). They combined
the ILP and hardware parameters in their model. The prediction
error with their models was as high as 22% for some of the
SPEC CPU95 benchmarks [4]. Wallace and Bagherzadeh [1],
and Hossain et al. [2] presented models for conventional and
trace caches, respectively. The analytical model by Hossain et
al., due to its limited scope (only the caches, and not the full
processor) had higher prediction accuracy – 7% to be specific.
Different parts of a program can be steady state or cyclical in
nature [5]; this property of programs was exploited in Hamerly
et al.'s simulation tool 0. To speed up simulation, Wunderlich
et al. [8] statistically characterized the full-length benchmarks
into smaller subsets. Joseph et al. [9] collected performance
measures from detailed simulations and then used radial basis

functions (RBFs) to build a model as an alternative to
simulations. Their model provided cycles per instruction (CPI)
estimates with error ranges of 1.5%-12% for one of the SPEC
CPU2000 benchmarks [10], and 1.5%-23% for another. Lee et
al.’s simulator [11] identified basic blocks that repeated often;
it then used block behavior within a combination of fast (sim-
cache) and slow (sim-outorder) to speed up the simulations by
a factor of 3.3. A similar method of capturing the dynamic
nature of a program is to detect its recurring patterns (called
program phases). This approach requires one to pick the
appropriate granularity for phase detection and the time for
capturing the phases for unique characterization of a program
 [12]- [15]. Beg [16], and Beg and Ibrahim [17] presented
machine-learnt models for predictor processor system
performance. Their models used a wider range of hardware
(processor and memory) parameters than Joseph et al.’s [9]
predictive RBF. In [17], the authors also proposed that the
models be used as a tool for computer architecture pedagogy.
These models characterized the complete program trace with a
single variable – a somewhat limited representation of a
program’s dynamic behavior.

Artificial neural networks (NNs) are electronic equivalents
of biological brains. The building blocks of NNs are simple
processing entities called neurons. The neurons are
interconnected to generate outputs in a parallel fashion (as
compared to the conventional sequential computers). A simple
feed-forward neural network (FFNN) composed of layers of
neurons: input, hidden, and output. The outputs of each layer
only feed the next layer and not any of the previous layers. The
neurons multiply their inputs values with their respective
weights, before passing them through an activation function
(such as sigmoid) to produce the final neuron output. The
neuron weights are determined by training the NNs with some
known input examples (training sets). The weights are
iteratively adjusted in such a way that each set of inputs
produces output(s) close to the example's pre-known output(s).
An iteration of the weight-tuning process is known as an
epoch. Some known input-output sets (validation sets) are used
for validating the NN prediction accuracy. The validation sets
are not 'shown' to NN during training [18].

In this paper, we present NNs as prediction models for
superscalar processor performance; the performance is
measured in terms of instructions completed per cycle (IPC).
The model’s inputs include both hardware and software
parameters. The 'hardware’ inputs to the model include key
microarchitectural features such as fetch, decode, issue, and
commit widths; number of integer and floating point ALUs;

 Azam Beg is with the College of Information Technology, United Arab
Emirates (UAE) University, P O Box 17551, Al-Maqam Campus, Building
22, Al-Ain, UAE (phone: +971-3-713-5563; fax: +971-3-767-2018; email:
abeg@uaeu.ac.ae).

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

etc. The 'software' inputs represent the dynamic nature of the
programs – sets of basic block frequencies (instead of single
input, the average block size [16] [17]). Inclusion of multiple
software parameters helps the user investigate more accurately
how the dynamic nature of a program affects the processor
performance.

II. DATA ACQUISITION & EXPERIMENTAL SETUP

The NN model in our research emulates the behavior of a
superscalar processor, i.e., SimpleScalar's sim-outorder
architecture [19]. We used different configurations in sim-
outorder's 630 simulations (as listed in Table 1) to collect the
IPC data. The simulations for 6 different SPEC CPU2000
integer benchmarks (namely, bzip2, crafty, eon, mcf, twolf, and
vortex) used 'test' inputs [8]. To reduce the effect of program
initialization, we fast-forwarded the simulations by 50 million
cycles [19]. We limited each run to 500 million instructions in
order to complete all simulations in a reasonable amount of
time [1] [2]. The simulations were run on multiple x86-
machines running cygwin (a UNIX emulator) under Windows-
XP. Each of the 630 simulations lasted 2-2.5 hours.

First, we created 310 sim-outorder command lines by
randomly selecting the parameter values listed in Table 1. One
such command line for crafty benchmark is shown here:

sim-outorder -fastfwd 50000000 -max:inst
500000000 -cache:il1 il1:64:32:4:t -cache:il2
il2:64:32:16:l -cache:dl1 dl1:4:8:4:f -

cache:dl2 dl2:16:8:4:l -cache:dl1lat 3 -
cache:dl2lat 6 -cache:il1lat 2 -cache:il2lat 8
-tlb:itlb itlb:256:16:2:t -tlb:dtlb none -
tlb:lat 30 -mem:lat 16 2 -mem:width 16 -
decode:width 4 -issue:width 8 -commit:width 4 -
ruu:size 16 -lsq:size 8 -fetch:ifqsize 8 -
fetch:speed 8 -fetch:mplat 6 -res:ialu 3 -
res:imult 7 -res:fpalu 1 -res:fpmult 7 -bpred
nottaken crafty00.peak.ev6

The other 320 command lines were created by varying at a
time, a single parameter over its entire range, while all other
parameters were kept at their default values. For example, the
following command lines for bzip benchmark use decoder
widths of 1, 2, 4, and 8:

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 1 bzip200.peak.ev6
input.random 2

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 2 bzip200.peak.ev6
input.random 2

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 4 bzip200.peak.ev6
input.random 2

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 8 bzip200.peak.ev6
input.random 2

Besides containing hardware-related data, sim-outorder’s
text-based log files also included basic block data required for

Table 1. Hardware (microarchitectural) and software parameters used in NN models

No. Input
Parameter Type Description Range/Values

1 Hardware Load/store queue (instrs.) 2, 4, 8, 16, 32, 64, 128
2 Hardware Fetch queue width (instrs.) 2, 4, 8, 16, 32, 64, 128
3 Hardware Decode width (instrs.) 1, 2, 4, 8, 16, 32, 64
4 Hardware Issue width (instrs.) 1, 2, 4, 8, 16, 32, 64
5 Hardware Commit width (instrs.) 1, 2, 4, 8, 16, 32, 64
6 Hardware Register update unit (instrs.) 2, 4, 8, 16, 32, 64, 128
7 Hardware Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128
8 Hardware Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8
9 Hardware Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8

10 Hardware Branch prediction scheme ‘Taken,’ ‘Not-taken,’
‘Perfect’ (symbols)

11 Hardware Branch misprediction penalty (cycles) 1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128

12 Software No. of blocks containing a single instruction 1-100 (percentage)
13 Software No. of blocks containing 2 instructions 1-100 (percentage)

14 Software No. of blocks containing 3 instructions 1-100 (percentage)

15 Software No. of blocks containing 4 instructions 1-100 (percentage)

16 Software No. of blocks containing 5 or more
instructions

1-100 (percentage)

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

program characterization. We experimented with different
groups (histograms) of basic block occurrences, but found the
groups shown in Fig. 1 to be the most appropriate for NN
model development.

III. NEURAL NETWORK STRUCTURE AND TRAINING

Fig. 2 shows a simple NN with software and hardware
inputs. Each of the 16 inputs (not shown in the figure) of the
NN model corresponds to a single neuron; 11 neurons are for
hardware representation, and 5 for program/software. The non-
numerical 'branch prediction scheme' (hardware) parameter is
input to the NN as a symbol. A single ‘continuous’ neuron in
the output layer is sufficient for NN’s IPC predictions.

It is well-known fact that a NN with a single hidden layer is
able to model most non-linear systems, so we limited our
experiments to one-hidden layer NNs. Additionally, in Table 1,
we can notice the non-linearity of input parameter values. This
logarithmic nature of the inputs can adversely affect the learn-
ability of a NN, so we applied log2 transformed such inputs, as
a data pre-processing step. We used MS-Windows-based
Brain-Maker (version 3.75) [20] tool to model our back-
propagation FFNNs. NN training was performed with the
training set that comprised of 90% of full data set. The
remaining 10% data sets were used for validation purposes. For
every NN configuration, we conducted 3 or more training
sessions completely independent of each other, in order to find
the best performing NN, and to avoid the possibility of local
minima.

As we can see in Fig. 3, the validation accuracy stayed in
sync with the training accuracy thus demonstrating the health
of the NN. Maximum validation accuracy of 85% was
achieved with a hidden layer as small as 7 neurons. Although
the same accuracy was attained by larger hidden layers of 17
and 23 neurons, we chose the smallest NN with the use cases
discussed shortly. A small number of hidden neurons
producing the high validation accuracy may mean that not all
16 hardware and software inputs are contributing equitably to
the outputs. Although the examination of the neuron-weight
matrices does not provide sufficient clues, the input-
significance analysis may provide more insight into this
phenomenon – a topic of our continued research.

IV. PERFORMANCE PREDICTION WITH THE NEURAL NETWORK MODEL

The proposed NN model can be used to investigate how
different hardware and software parameters influence the
processor performance. Firstly, Fig. 4 shows the effect of
varying decoder width, i.e., the number of instructions decoded
per cycle. The decoder width in this example varies from 1 to
64 for three different benchmarks. All three benchmarks flatten
out after 4-wide decoder unit. Secondly, Fig. 5 shows the IPC
behavior in response to commit unit variations. The unit shows
maximum throughput with 8-instruction width. Further runs
using the model, one can investigate which hardware elements
(ALU, issue width, etc.) or the software characteristics

(parallelism in a program, branch frequencies, etc.) are the
limiting factors in processor performance.

To illustrate how the dynamic nature of a program –
represented by basic block distribution – affects the execution
performance, we created two artificial program traces, T1 and
T2 (Fig. 6). T1 has small percentages of 1 and 2-instruction
blocks and much larger percentage of larger (5 or more
instructions) blocks. Such a trace may come from programs in
which loop unrolling has been done. T2's distribution is just the
opposite of T1, i.e., there are more blocks of smaller sizes (1 or
2 instructions) and the smaller number of blocks are of larger
sizes (5 or more instructions). When the block frequencies of
T1 and T2 are input to the NN model, we observe that T1 has
33% lower IPC than T2; this may be due to the small cache
(number of sets and line size) used in the experiment; smaller
caches can cause thrashing and thus lower the execution
throughput. On the other hand, T2's smaller blocks may have
better chances of fitting in cache lines making the fetch stage
efficient and thus improving the overall execution throughput.

A point worth noting: the examples presented above, if ran
on a traditional detailed, cycle-accurate simulator would have
required several computer-days. Whereas, the NN model
produces the same results almost instantly. The model’s speed
efficiency can be helpful for researchers and students alike.

V. CONCLUSIONS

Using the NN model proposed in this research, one can
estimate the performance of a processor without requiring
lengthy simulations. The model incorporates both the
microarchitectural features of a processor and the program
characteristics. So a designer can quickly make educated
guesses about the micro-architectural parameters for optimum
hardware performance, while a compiler designer can speedily
observe the effects of code characteristics on the overall
execution throughput. The model can also find application in
the teaching of computer architecture and compiler design. As
a continuation of the current research, we are looking into: (1)
the selection criteria for microarchitectural parameters based on
their significance to the NN model, (2) extending the choice of
software parameters that would characterize the dynamic
nature of the programs more accurately, and (3) creating a
multi-processor prediction model.

REFERENCES

[1] S. Wallace and N. Bagherzadeh, "Modeled and Measured Instruction
Fetching Performance for Superscalar Microprocessors," IEEE Trans.
Parallel and Distrib. Syst., Vol. 9, No. 6, Jun. 1998, pp. 570-578.

[2] A. Hossain, D. J. Pease, J. S. Burns, and N. Parveen, "A Mathematical
Model of Trace Cache," Proc. IEEE Inter. Conf. Appl. Specific Syst.,
Archit. (ASAP’02), San Jose, CA, USA, Jul. 2002.

[3] D. B. Noonburg and J. P. Shen, "Theoretical Modeling of Superscalar
Processor Performance," Proc. Inter. Symp. Microarch. (MICRO-27),
San Jose, CA, USA, Nov. 1994.

[4] SPEC CPU95 benchmarks, (website) http://www.spec.org/cpu95/.
[5] S. Dhodapkar and J. E. Smith, “Comparing Program Phase Detection

Techniques,” Proc. Inter. Symp. Microarch. (MICRO-36), San Diego,
CA, USA, Dec. 2003.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

 bzip crafty gap gcc gzip mcf perlbmk vortex
0

10

20

30

40

50

60

70

80

90

100

B
lo

ck
 s

iz
e

fre
qu

en
ci

es
 (%

)

BS=1

BS=2

BS=3

BS=4

BS=5+

Fig. 1. Basic block sizes (BS) in SPEC CPU2000 integer
benchmarks. ‘BS=1’ represents the percentage of blocks
of size 1, ‘BS=2’ represents blocks of size 2, and so on.
And ‘BS=5+’ represents the blocks of size 5 or more.

N(i1)

N(i2)

N(h11)

N(h12)

N(h13)

N(h14)

N(h15)

N(o1)

input 1

input 2

output
(IPC)

N(i3)

N(i4)

input 3

input 4

Hardware
dependent
parameters

Software
dependent
parameters

Fig. 2. Structure of a simple feed-forward neural network
that contains three layers of neurons, viz, input layer,
hidden layer and an output layer.

0 10 20 30 40 50
55

60

65

70

75

80

85

90

Hidden layer neurons

A
cc

ur
ac

y
(%

)

Training
Validation

Fig. 3. Accuracy as a function of the hidden layer size.
Best validation accuracy was observed for 7, 17, and 23
hidden neurons. We chose the smallest of the three NNs
for running purposes.

10
0

10
1

0.5

1

1.5

2

Decoder width (instructions)

In
st

ru
ct

io
ns

 p
er

 c
yc

le
 (I

P
C

)

bzip
crafty
eon

Fig. 4. Sensitivity of IPC to decoder width, while all other
parameters are set to sim-outorder defaults. As little as 4
bytes are able to produce the best IPC.

10
0

10
1

0.5

1

1.5

2

Commit width (instructions)

In
st

ru
ct

io
ns

 p
er

 c
yc

le
 (I

P
C

)

bzip
crafty
eon

Fig. 5. Sensitivity of IPC to commit width, while all other
parameters are set to sim-outorder defaults. Only a 4
instruction-wide commit unit is sufficient under the given
conditions.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

Block size (instructions)

B
lo

ck
 d

is
tri

bu
tio

n
(%

 o
f b

lo
ck

s)

T1
T2

Fig. 6. Traces with different block distributions exhibit
different IPCs, while all hardware parameters are set to
sim-outorder defaults. IPC for T1 is 1.15 and IPC for T2
is 1.30.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

[6] G. Hamerly, E. Perelman, J. Lau, B. Calder, “Simpoint 3.0: Faster and
More Flexible Program Analysis,” J. Instr. Level Parallelism (JILP),
(website) http://www.cse.ucsd.edu/~calder/papers/JILP-05-

[7] SimPoint3.pdf, 2005.
[8] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:

Accelerating Micro-architecture Simulation via Rigorous Statistical
Sampling," Proc. Inter. Symp. Comp. Arch. (ISCA 2003), San
Francisco, CA, USA, Jun. 2003.

[9] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, "A Predictive
Performance Model for Superscalar Processors," Proc. IEEE/ACM Inter.
Symp. Microarch. (MICRO'06), Orlando, FL, USA, Dec. 2006.

[10] SPEC CPU2000 benchmarks, (website) http://www.spec.org/cpu2000/.
[11] W. Lee, K. Patel, and M. Pedram, "B2Sim: A Fast Micro-Architecture

Simulator Based on Basic Block Characterization", Proc.
IEEE/ACM/IFIP Conf. Hardware/Software Codesign and Syst.
Synthesis (CODES+ISSS'06), Seoul, S. Korea, Oct. 2006, pp. 199-204.

[12] T. Sherwood and B. Calder, “Time Varying Behavior of Programs,”
UCSD Technical Reports, (website) http://www-
cse.ucsd.edu/~calder/papers/UCSD-CS99-630.pdf, Aug. 1999.

[13] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribution
Analysis to Find Periodic Behaviors and Simulation Points in

Applications,” Proc. Inter. Conf. Parallel Microarch. and Compilation
Techniques (PACT-2001), Barcelona, Spain, Sep. 2001, pp. 3-14.

[14] T. Sherwood, S. Sair, and B. Calder., “Phase Tracking and Prediction,”
Proc. Inter. Symp. Comp. Arch. (ISCA 2003), San Francisco, CA, USA,
Jun. 2003, pp. 336-347.

[15] A. S. Dhodapkar and J. E. Smith, “Comparing Program Phase Detection
Techniques,” Proc. Inter. Symp. Micro-arch. (MICRO-36), San Diego,
CA, USA, Dec. 2003. pp. 217-227.

[16] A. Beg, “Predicting Processor Performance with a Machine Learnt
Model,” Proc. 50th IEEE Inter. Midwest Symp. Circuits and Syst.,
(MWSCAS/NEWCAS'07), Montreal, Canada, Aug. 5- 8, 2007, pp.
1098-1101.

[17] A. Beg and W. Ibrahim, “PerfPred: A Web-Based Tool for Exploring
Computer Architecture Design Space,” Comp. Applications In Eng.
Educ., 2008 (In Press).

[18] T. Mitchell, Machine Learning, McGraw Hill Co., Columbus, OH, USA,
1997.

[19] SimpleScalar LLC, (website) http://www.simplescalar.com.
[20] Brain-Maker User’s Guide and Reference Manual, 7th ed. California

Scientific Software Press, 1998.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

