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Abstract – Architectural simulators used for microprocessor 
design study and optimization can require large amount 
computational time and/or resources. In such cases, models can 
be a fast alternative to lengthy simulations, and can help reach a 
designer near-optimal system configuration. However, The non-
linear characteristics of a processor system make the modeling 
task quite challenging. The models not only need to incorporate 
the micro-architectural parameters but also the dynamic 
behavior of programs. This paper presents a hybrid 
(hardware/software), non-linear model for processors. The model 
provides accurate predictions of processor throughput for a wide 
range of design space.    

Index Terms – Processor throughput, instructions per cycle (IPC), 
processor model, micro-architecture simulation, basic blocks.  

 

I. INTRODUCTION 

Hardware development is traditionally expedited using 
software models. The models are implemented in high level or 
hardware description languages. Relevant benchmark programs 
are then run on the models to get good approximations of 
actual hardware. A processor system model needs to be 
inclusive of both the program and hardware behavior. The 
program behavior can be dynamic or static. The dynamic 
characterization can be done by capturing repeating patterns in 
a program  [1]- [3]. Cycle-accurate simulators tend to be 
accurate but require weeks of simulation time with programs 
running for a few billion cycles  [1] [2]. Noonburg and Shen  [3] 
utilized the benchmark (program) traces to create a model for 
superscalar instruction level parallelism (ILP). They combined 
the ILP and hardware parameters in their model. The prediction 
error with their models was as high as 22% for some of the 
SPEC CPU95 benchmarks [4]. Wallace and Bagherzadeh  [1], 
and Hossain et al.  [2] presented models for conventional and 
trace caches, respectively. The analytical model by Hossain et 
al., due to its limited scope (only the caches, and not the full 
processor) had higher prediction accuracy – 7% to be specific. 
Different parts of a program can be steady state or cyclical in 
nature  [5]; this property of programs was exploited in Hamerly 
et al.'s simulation tool  0. To speed up simulation, Wunderlich 
et al.  [8] statistically characterized the full-length benchmarks 
into smaller subsets. Joseph et al.  [9] collected performance 
measures from detailed simulations and then used radial basis 

functions (RBFs) to build a model as an alternative to 
simulations. Their model provided cycles per instruction (CPI) 
estimates with error ranges of 1.5%-12% for one of the SPEC 
CPU2000 benchmarks  [10], and 1.5%-23% for another. Lee et 
al.’s simulator  [11] identified basic blocks that repeated often; 
it then used block behavior within a combination of fast (sim-
cache) and slow (sim-outorder) to speed up the simulations by 
a factor of 3.3. A similar method of capturing the dynamic 
nature of a program is to detect its recurring patterns (called 
program phases). This approach requires one to pick the 
appropriate granularity for phase detection and the time for 
capturing the phases for unique characterization of a program 
 [12]- [15]. Beg  [16], and Beg and Ibrahim   [17] presented 
machine-learnt models for predictor processor system 
performance. Their models used a wider range of hardware 
(processor and memory) parameters than Joseph et al.’s  [9] 
predictive RBF.  In  [17], the authors also proposed that the 
models be used as a tool for computer architecture pedagogy. 
These models characterized the complete program trace with a 
single variable – a somewhat limited representation of a 
program’s dynamic behavior.  

Artificial neural networks (NNs) are electronic equivalents 
of biological brains. The building blocks of NNs are simple 
processing entities called neurons. The neurons are 
interconnected to generate outputs in a parallel fashion (as 
compared to the conventional sequential computers). A simple 
feed-forward neural network (FFNN) composed of layers of 
neurons: input, hidden, and output. The outputs of each layer 
only feed the next layer and not any of the previous layers. The 
neurons multiply their inputs values with their respective 
weights, before passing them through an activation function 
(such as sigmoid) to produce the final neuron output. The 
neuron weights are determined by training the NNs with some 
known input examples (training sets). The weights are 
iteratively adjusted in such a way that each set of inputs 
produces output(s) close to the example's pre-known output(s). 
An iteration of the weight-tuning process is known as an 
epoch. Some known input-output sets (validation sets) are used 
for validating the NN prediction accuracy. The validation sets 
are not 'shown' to NN during training   [18]. 

In this paper, we present NNs as prediction models for 
superscalar processor performance; the performance is 
measured in terms of instructions completed per cycle (IPC). 
The model’s inputs include both hardware and software 
parameters. The 'hardware’ inputs to the model include key 
microarchitectural features such as fetch, decode, issue, and 
commit widths; number of integer and floating point ALUs; 
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etc. The 'software' inputs represent the dynamic nature of the 
programs – sets of basic block frequencies (instead of single 
input, the average block size   [16] [17]). Inclusion of multiple 
software parameters helps the user investigate more accurately 
how the dynamic nature of a program affects the processor 
performance.  

 

II. DATA ACQUISITION & EXPERIMENTAL SETUP 

The NN model in our research emulates the behavior of a 
superscalar processor, i.e., SimpleScalar's sim-outorder 
architecture  [19]. We used different configurations in sim-
outorder's 630 simulations (as listed in Table 1) to collect the 
IPC data. The simulations for 6 different SPEC CPU2000 
integer benchmarks (namely, bzip2, crafty, eon, mcf, twolf, and 
vortex) used 'test' inputs [8]. To reduce the effect of program 
initialization, we fast-forwarded the simulations by 50 million 
cycles  [19]. We limited each run to 500 million instructions in 
order to complete all simulations in a reasonable amount of 
time  [1] [2]. The simulations were run on multiple x86-
machines running cygwin (a UNIX emulator) under Windows-
XP. Each of the 630 simulations lasted 2-2.5 hours.  

First, we created 310 sim-outorder command lines by 
randomly selecting the parameter values listed in Table 1. One 
such command line for crafty benchmark is shown here:  
 
sim-outorder -fastfwd 50000000 -max:inst 
500000000 -cache:il1 il1:64:32:4:t -cache:il2 
il2:64:32:16:l -cache:dl1 dl1:4:8:4:f -

cache:dl2 dl2:16:8:4:l -cache:dl1lat 3 -
cache:dl2lat 6 -cache:il1lat 2 -cache:il2lat 8 
-tlb:itlb itlb:256:16:2:t -tlb:dtlb none -
tlb:lat 30 -mem:lat 16 2 -mem:width 16 -
decode:width 4 -issue:width 8 -commit:width 4 -
ruu:size 16 -lsq:size 8 -fetch:ifqsize 8 -
fetch:speed 8 -fetch:mplat 6 -res:ialu 3 -
res:imult 7 -res:fpalu 1 -res:fpmult 7 -bpred 
nottaken crafty00.peak.ev6 
 

The other 320 command lines were created by varying at a 
time, a single parameter over its entire range, while all other 
parameters were kept at their default values. For example, the 
following command lines for bzip benchmark use decoder 
widths of 1, 2, 4, and 8:  
 
sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 1 bzip200.peak.ev6 
input.random 2 
 
sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 2 bzip200.peak.ev6 
input.random 2 
 
sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 4 bzip200.peak.ev6 
input.random 2 
 
sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 8 bzip200.peak.ev6 
input.random 2 
 

Besides containing hardware-related data, sim-outorder’s 
text-based log files also included basic block data required for 

Table 1.  Hardware (microarchitectural) and software parameters used in NN models 

No. Input 
Parameter Type Description Range/Values 

1 Hardware Load/store queue (instrs.) 2, 4, 8, 16, 32, 64, 128 
2 Hardware Fetch queue width (instrs.) 2, 4, 8, 16, 32, 64, 128 
3 Hardware Decode width (instrs.) 1, 2, 4, 8, 16, 32, 64 
4 Hardware Issue width (instrs.) 1, 2, 4, 8, 16, 32, 64 
5 Hardware Commit width (instrs.)  1, 2, 4, 8, 16, 32, 64 
6 Hardware Register update unit (instrs.) 2, 4, 8, 16, 32, 64, 128 
7 Hardware Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128 
8 Hardware Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8 
9 Hardware Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8 

10 Hardware Branch prediction scheme  ‘Taken,’ ‘Not-taken,’ 
‘Perfect’ (symbols) 

11 Hardware Branch misprediction penalty (cycles) 1, 2, 3, 4, 6, 8, 12, 16, 24, 
32, 48, 64, 96, 128 

12 Software No. of blocks containing a single instruction 1-100 (percentage) 
13 Software No. of blocks containing 2 instructions 1-100 (percentage) 

14 Software No. of blocks containing 3 instructions 1-100 (percentage) 

15 Software No. of blocks containing 4 instructions 1-100 (percentage) 

16 Software No. of blocks containing 5 or more 
instructions 

1-100 (percentage) 
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program characterization. We experimented with different 
groups (histograms) of basic block occurrences, but found the 
groups shown in Fig. 1 to be the most appropriate for NN 
model development.  

 

III. NEURAL NETWORK STRUCTURE AND TRAINING 

Fig. 2 shows a simple NN with software and hardware 
inputs. Each of the 16 inputs (not shown in the figure) of the 
NN model corresponds to a single neuron; 11 neurons are for 
hardware representation, and 5 for program/software. The non-
numerical 'branch prediction scheme' (hardware) parameter is 
input to the NN as a symbol. A single ‘continuous’ neuron in 
the output layer is sufficient for NN’s IPC predictions.  

It is well-known fact that a NN with a single hidden layer is 
able to model most non-linear systems, so we limited our 
experiments to one-hidden layer NNs. Additionally, in Table 1, 
we can notice the non-linearity of input parameter values. This 
logarithmic nature of the inputs can adversely affect the learn-
ability of a NN, so we applied log2 transformed such inputs, as 
a data pre-processing step. We used MS-Windows-based 
Brain-Maker (version 3.75)  [20] tool to model our back-
propagation FFNNs. NN training was performed with the 
training set that comprised of 90% of full data set. The 
remaining 10% data sets were used for validation purposes. For 
every NN configuration, we conducted 3 or more training 
sessions completely independent of each other, in order to find 
the best performing NN, and to avoid the possibility of local 
minima.  

As we can see in Fig. 3, the validation accuracy stayed in 
sync with the training accuracy thus demonstrating the health 
of the NN. Maximum validation accuracy of 85% was 
achieved with a hidden layer as small as 7 neurons. Although 
the same accuracy was attained by larger hidden layers of 17 
and 23 neurons, we chose the smallest NN with the use cases 
discussed shortly. A small number of hidden neurons 
producing the high validation accuracy may mean that not all 
16 hardware and software inputs are contributing equitably to 
the outputs. Although the examination of the neuron-weight 
matrices does not provide sufficient clues, the input-
significance analysis may provide more insight into this 
phenomenon – a topic of our continued research. 

 

IV. PERFORMANCE PREDICTION WITH THE NEURAL NETWORK MODEL 

The proposed NN model can be used to investigate how 
different hardware and software parameters influence the 
processor performance. Firstly, Fig. 4 shows the effect of 
varying decoder width, i.e., the number of instructions decoded 
per cycle. The decoder width in this example varies from 1 to 
64 for three different benchmarks. All three benchmarks flatten 
out after 4-wide decoder unit. Secondly, Fig. 5 shows the IPC 
behavior in response to commit unit variations. The unit shows 
maximum throughput with 8-instruction width. Further runs 
using the model, one can investigate which hardware elements 
(ALU, issue width, etc.) or the software characteristics 

(parallelism in a program, branch frequencies, etc.) are the 
limiting factors in processor performance.  

To illustrate how the dynamic nature of a program – 
represented by basic block distribution – affects the execution 
performance, we created two artificial program traces, T1 and 
T2 (Fig. 6). T1 has small percentages of 1 and 2-instruction 
blocks and much larger percentage of larger (5 or more 
instructions) blocks. Such a trace may come from programs in 
which loop unrolling has been done. T2's distribution is just the 
opposite of T1, i.e., there are more blocks of smaller sizes (1 or 
2 instructions) and the smaller number of blocks are of larger 
sizes (5 or more instructions). When the block frequencies of 
T1 and T2 are input to the NN model, we observe that T1 has 
33% lower IPC than T2; this may be due to the small cache 
(number of sets and line size) used in the experiment; smaller 
caches can cause thrashing and thus lower the execution 
throughput. On the other hand, T2's smaller blocks may have 
better chances of fitting in cache lines making the fetch stage 
efficient and thus improving the overall execution throughput.  

A point worth noting: the examples presented above, if ran 
on a traditional detailed, cycle-accurate simulator would have 
required several computer-days. Whereas, the NN model 
produces the same results almost instantly. The model’s speed 
efficiency can be helpful for researchers and students alike.  

 

V. CONCLUSIONS 

Using the NN model proposed in this research, one can 
estimate the performance of a processor without requiring 
lengthy simulations. The model incorporates both the 
microarchitectural features of a processor and the program 
characteristics. So a designer can quickly make educated 
guesses about the micro-architectural parameters for optimum 
hardware performance, while a compiler designer can speedily 
observe the effects of code characteristics on the overall 
execution throughput. The model can also find application in 
the teaching of computer architecture and compiler design. As 
a continuation of the current research, we are looking into: (1) 
the selection criteria for microarchitectural parameters based on 
their significance to the NN model, (2) extending the choice of 
software parameters that would characterize the dynamic 
nature of the programs more accurately, and (3) creating a 
multi-processor prediction model.  
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Fig. 1. Basic block sizes (BS) in SPEC CPU2000 integer 
benchmarks. ‘BS=1’ represents the percentage of blocks 
of size 1, ‘BS=2’ represents blocks of size 2, and so on. 
And ‘BS=5+’ represents the blocks of size 5 or more. 
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Fig. 2. Structure of a simple feed-forward neural network 
that contains three layers of neurons, viz, input layer, 
hidden layer and an output layer. 
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Fig. 3. Accuracy as a function of the hidden layer size. 
Best validation accuracy was observed for 7, 17, and 23 
hidden neurons. We chose the smallest of the three NNs 
for running purposes. 
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Fig. 4. Sensitivity of IPC to decoder width, while all other 
parameters are set to sim-outorder defaults. As little as 4 
bytes are able to produce the best IPC. 
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Fig. 5. Sensitivity of IPC to commit width, while all other 
parameters are set to sim-outorder defaults. Only a 4 
instruction-wide commit unit is sufficient under the given 
conditions. 
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Fig. 6. Traces with different block distributions exhibit 
different IPCs, while all hardware parameters are set to 
sim-outorder defaults. IPC for T1 is 1.15 and IPC for T2 
is 1.30. 
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