
 
 

 

  
Abstract— A diagnostic method based on Bayesian Networks 

(probabilistic graphical models) is presented. Unlike 
conventional diagnostic approaches, in this method instead of 
focusing on system residuals at one or a few operating points, 
diagnosis is done by analyzing system behavior patterns over a 
window of operation. It is shown how this approach can loosen 
the dependency of diagnostic methods on precise system 
modeling while maintaining the desired characteristics of fault 
detection and diagnosis (FDD) tools (fault isolation, robustness, 
adaptability, and scalability) at a satisfactory level. As an 
example, the method is applied to fault diagnosis in HVAC 
systems, an area with considerable modeling and sensor 
network constraints. 
 

Index Terms— Fault Detection, Bayesian Networks, Machine 
Learning, System Diagnostics, HVAC Systems.  
 

I. INTRODUCTION 
The topic of fault detection and diagnostics (FDD) has 

been the center of attention for several decades [1], [2], [3] & 
[4]. The desired characteristics of FDD tools along with 
practical limitations have made fault diagnosis problems 
challenging and as much art as science. It is not just the 
advancement of diagnostic methods; it is also the issue of 
scalability and the capability of large industrial applications. 
The characteristics of an ideal diagnostic tool have been 
discussed in several resources [1]: The more important ones 
can be summarized as:  

  
- Fault Isolation: the ability to diagnose and 

distinguish different faults and their combinations 
- Robustness: the ability to maintain FDD 

performance despite the existence of noise and 
uncertainty 

- Adaptability: the ability to respond accordingly to 
system change and disturbances 

- Interoperability: the capability for quick 
implementation with minimum (or reasonable) prior 
adjustment, investment … 
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The point is that maintaining all these characteristics at a 

satisfactory level is challenging. Usually improving one 
comes at the expense of sacrificing the other(s). For instance, 
when robustness is improved by loosening the thresholds, 
fault isolation ability degrades.  

  
On the other hand, in mechanical systems, there are other 

practical limitations imposing further challenges to 
diagnostic problems: First, modeling: The accuracy of 
system models can usually be improved up to certain levels, 
beyond that, it will be expensive, slow, and too customized, 
affecting interoperability. Such a constraint can degrade the 
effectiveness of model based diagnostic techniques in 
mechanical systems. Second, sensor network: The 
architecture of the sensor network may expand the 
complexity of diagnostic problems. Usually in practical 
applications, the design of the sensor network is not solely 
based on diagnosis purposes. Other factors like controls, 
financial constraints, and space limitations are also involved. 
As a result, what is measured by the installed sensors may not 
necessarily be the parameter(s) contaminated by fault(s) 
directly.    

   
One way to address these issues is to focus on system 

behavior patterns instead of residuals. In other words, instead 
of diagnosing system health status through comparing its 
outputs directly with model predictions (or other references), 
diagnosis can be done by analyzing system behavior over a 
window of operation. Such a transition can loosen the 
dependency of diagnostic mechanisms on precise predictions 
of system behavior while maintaining desired FDD 
characteristics. In a fuzzy environment, there is more 
flexibility in classifying system behavior patterns than 
analyzing the deviation of system outputs from model 
predictions.  

The diagnostic tool should have some level of 
understanding of system behavior patterns in faulty and 
non-faulty modes in advance. Such an understanding is under 
the influence of various uncertainties. This can be achieved 
through first-principle modeling, empirical approaches, or a 
combination of both depending on constraints and limitations. 
Then at the interface level, when the FDD tool is provided 
with data from system behavior, it matches them with 
different hypotheses.  

 
This approach has been applied in some diagnostic 

methods, especially in qualitative and semi-quantitative 
approaches, e.g.  [5] [6] [7] & [8].  The key here is a 
mechanism (interface) capable of matching data from system 
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behavior with a set of predefined (or new) hypotheses in an 
environment affected by uncertainties.  

 
Fuzzy logic is a popular choice for these types of problems. 

The nature of fuzzy sets and fuzzy inference mechanisms has 
enough flexibility to deal with model uncertainties. Fuzzy 
based diagnostic mechanisms have extensively been used in 
different applications, e.g. [9] [10] [11] & [12]. For example, 
in [9] fuzzy logic has been used for induction motor 
condition monitoring, or, in [12], a fuzzy logic approach has 
been developed for gas turbine fault diagnostics. 

 
However, fuzzy based mechanisms have their own 

limitations. As the complexity grows (due to system 
complexity, variety of faults, or the potential of multiple 
faults), the number of fuzzy rules explodes. The same thing 
happens when a fuzzy based diagnostic mechanism is 
extended to have the capability of updating its belief about 
the system health status as more data are observed. Added to 
this is the issue of adjusting and tuning fuzzy sets either 
manually or through other approaches.  

 
In this paper, a different approach based on Bayesian 

networks (BN) is proposed. The application of Bayesian 
networks in fault diagnostics has been studied in some areas, 
e.g. [13], [14], & [15]. For example, in [15] Chien et al have 
applied Bayesian networks for fault diagnostics in a power 
delivery system. In [14], a Bayesian network is implemented 
for controlling an unsupervised fault tolerant system to 
generate oxygen from the CO2 on Mars.  

 
However, these approaches are not based on the strategy of 

system behavior pattern analysis. They are based more on 
cause-effect-relationship approaches. What is different here 
is the way Bayesian networks are applied for diagnostic 
purposes. In the proposed method, system behavior patterns 
are at first captured by the diagnostic mechanism using 
knowledge of first-principle modeling (simplified physical 
models). This includes patterns of faulty and non-faulty 
modes. The limitations coming from model simplification (or 
other resources) are quantified either analytically or 
statistically. In other words, the diagnostic tool captures both 
knowledge of first-principle modeling and empirical results. 
Then at the diagnosis stage, the tool will look for predefined 
(or new) hypotheses of faulty or non-faulty operation in 
system behavior. 

 
The rest of the paper goes as follows: In section 2 a brief 

introduction to Bayesian networks is provided. Section 3 
explains the proposed diagnostic mechanism and its 
characteristics, in section 4, the method is applied to the 
problem of fault diagnostics in HAVC systems, an area with 
considerable modeling and sensor network constraints. 

 

II. INTRODUCTION TO BAYESIAN NETWORKS 
A Bayesian network (BN) is a directed graph in which 

each node is annotated with qualitative probability 
information. The full specification is as follows:  

 

1- A set of random variables makes up the nodes in the 
network. Variables may be discrete or continuous. 

2- A set of directed links or arrows connects pairs of nodes. 
If there is an arrow from node A to node B, A is said to be the 
parent of B (Fig. 1). The intuitive meaning of an arrow in a 
properly constructed network is usually that A has a direct 
influence on B.  

3- Each node Xi has a conditional probability distribution 
( ))(| ii XparentsXP  that quantifies the effect of the parents 

on the node.  
4- The graph has no directed cycles.  
 
The topology of the network – the set of nodes and links - 

specifies the conditional independence relationships that hold 
in the domain. Each node is conditionally independent of all 
its non-descendants given its parents. For example in Fig. 1, 
D is conditionally independent of A given B. The 
combination of the topology and the conditional distributions 
suffices to specify (implicitly) the full joint distribution for 
all the variables.   

 
Using the chain rule in probability, a joint distribution can 

always be broken down into a product of conditional 
probabilities. For example, for A, B, C, and D, P(A, B, C,D) 
can always be represented as: 

 
( ) ( ) ( ) ( ) ( )CBADPBACPABPAPDCBAP ,,|,||,,, =           (1) 
 
The conditional independence assumptions expressed by a 

BN allow a compact representation of the joint distribution. 
For example in Fig. 1, knowing that A and D are 
conditionally independent given B, the joint probability 
distribution can be simplified to: 

( ) ( ) ( ) ( ) ( )CBDPCPABPAPDCBAP ,||,,, = . In general in Bayesian 
networks with nxxx ,.....,, 21 as random variables, the joint 
probably can be simplified as: 

 
( ) ( ))(|,...,, 21 ii

i
n xParentsxPxxxP ∏=                                           (2) 

III. FAULT DIAGNOSTICS BASED ON BAYESIAN NETWORKS 
The proposed BN based FDD mechanism has four nodes 

(Fig. 2):  
 

- Fault node: representing different faults and their 
combinations (e.g. valve leakage). 

- Fault Level node: representing the level or degree of 
fault (e.g. leakage position).It may be continuous or 
discrete. If it is not applicable, it can be omitted.  

- Input node: representing system inputs and other 
known parameters (e.g. control signal, ambient 
temperature …),  

- Output Node: representing system outputs or what 
is measured from the system.  

 
The input node is deterministic (no probability 

distribution). The projection from the input node to the 
output node is through functions that are influenced by the 
fault node. This influence may vary from changing a 
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parameter value to defining a significantly different 
behavioral pattern. These functions capture the simplified 
physical model of the system. The level of model 
simplification depends on available knowledge from 
first-principle modeling, complexity etc. The uncertainty at 
the output node due to model simplification (modeling error) 
and other factors (e.g. sensor noise, etc) is interpreted as the 
variance of the output node variable(s). It can be quantified 
through analytical or statistical approaches.  

 
The realization of the fault node influence on projecting 

functions from the input node to the output may happen in 
different ways. For instance, there might be a different set of 
projecting functions for each type of fault, or the parameters 
of the probably distribution random variable(s) of the output 
node might be a linear combination of a set of basis functions 
generated at the input node with coefficients defined by fault 
node.     

 
The undefined parts of projecting functions will be 

addressed in the training phase. This may include but is not 
limited to: the variance of the output node random 
variable(s), the coefficients of linearly combined basis 
functions, etc. If the distribution of the output node random 
variable is Gaussian, it is straightforward to estimate the 
output node variance and coefficients of linearly combined 
basis functions.     

 
The posterior probability of the fault node can be 

interpreted as the FDD tool belief level about the existence of 
different faults in the system. Using Bayesian networks 
interface algorithms, this probability can be calculated by:   

   
{ }nfaultfaultfaultfaultFault ,....,,, 321=                 (3)   

( ) ( ) =∝ OutptInputfaultPOutptInputfaultP ii ,,,|
( ) ( ) ( )∑

FaultLevel
ii faultLevelInputOutputPfaultfaultLevelPfaultP ,||

                                                                                             
A normalizing factor ‘Z’, is required at the end, which can 

be calculated by:                                                                                         
 

).,|()|(

.)(

faultLevelInputOutputpfaultfaultLevelP

faultpZ
fault faultLevel

⋅

= ∑ ∑    (4) 

 
The prior distribution of faults and P(FaultLevel|Fault) 

can be estimated statistically or as a quick solution they may 
all be assumed to be uniformly distributed.  

 
Now, as more evidence is observed (more output data are 

measured), the tool can improve its belief about system 
health status accordingly. In other words, more data from the 
system behavior help the diagnostic mechanism to do a better 
matching between the system behavior pattern and different 
hypotheses. For instance, if two set of measurements,Output1 
and Output2 ,are observed (Fig. 3), the fault belief can be 
calculated by: 

 

( )
( ) =

∝

2211

2211

,,,,
,,,|
OutptInputOutptInputfaultP
OutptInputOutptInputfaultP

i

i    (5) 

( ) ( ) ( )iii faultInputOutputPfaultInputOutputPfaultP ,|,| 2211
 

 
There are different techniques to simply this calculation in 

a recursive manner as more data are observed. As before, 
there is also a normalizing factor involved. Note that the 
graph in Fig. 3 can be extended into a dynamic graph in 
which improving and updating the belief are handled 
simultaneously.  

 

IV. EXAMPLE, FAULT DIAGNOSTICS IN HVAC SYSTEMS 
Heating, Ventilation, and Air Conditioning Systems 

(HVAC) are getting growing attention for fault diagnosis 
purposes. HVAC systems are a major consumer of energy in 
building, however it has turned out that most HAVC facilities 
are not working efficiently due to system faults [4]. In this 
example, fault diagnosis of an HAVC device, an air handling 
unit is studied. An air handling unit has the task of mixing the 
air, controlling the temperature and the humidity of the air 
going to the building (Fig. 4).  

 
A component in an air handling unit, the mixing box, has 

the task of mixing the air coming out from the building 
(Return Air) and the outside air with a specified ratio defined 
by the controller. The ratio is calculated such that it 
minimizes the energy required to heat up or cool down the 
supply air (the air going into the building), and also satisfies 
the standard of fresh air requirement for building occupants. 
Mixing box mal-functionality is a common problem in air 
handling unit. The abnormality of mixing box could be due to 
stuck damper fault, outside air damper leakage, return air 
damper leakage, reversed actuator, sensor offset, etc.  

 
In a typical air handling unit there are usually three 

sensors, measuring outside air temperature (OAT), return air 
temperature (RAT), and supply air temperature (SAT) (Fig. 
5). The performance of the mixing box is analyzed by a 
parameter, Outside Air Fraction (OAF), which is the ratio of 
the difference between SAT and RAT over OAT and RAT:  

 

retout

ret

TT
TT

OAF
−

−
= sup (6)   

 
OAF is an indication of the influence of outside air 

temperature on supply air temperature. When the outside air 
damper (OAD) is fully open, OAF is ideally 1, and when it is 
closed, it supposed to be 0. Fig. 6 shows how OAF changes 
with damper position in non-faulty operation. Inside the 
envelope is the acceptable performance. The wide range of 
acceptable performance is due to the uncertainty of 
parameters not easily measurable in a typical application 
(fluid resistance, air velocity, thermal resistance …).  Fig. 7 
shows the behavior of the mixing box in different faulty 
modes.      

 
Fig. 8 shows the fault diagnosis mechanism designed for 

the mixing box. The input is damper position and the output 
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is OAF. The distribution of the output node (OAF) is 
assumed to be Gaussian. The projection from the input node 
(DMP) to the output node (OAF) is a linear combination of 
the basis functions, B1 & B2, by coefficients defined by the 
fault node. The potential faults are: outside air damper 
leakage, return air damper leakage, stuck, and reverse, with 
the possibility of multiple faults. The FDD mechanism was 
tested by data from the Iowa Energy Center, an experimental 
facility for research, education, and demonstration [5]. The 
results are shown in Figures 9 and 10. 

 

V. CONCLUSION 
The transformation from focusing on residuals at one or a 

few operating points to analyzing system behavior patterns 
over a window of operation can relax the dependency of 
diagnostic mechanisms on system models, but it also 
increases the necessity for more sophisticated mechanisms 
for analyzing system behaviors in an environment affected by 
uncertainties. The proposed BN based diagnostic mechanism 
seems to be capable of dealing with such circumstances. Its 
ability to capture both knowledge of first-principle modeling 
and empirical results can provide more flexibility in the 
design process. The method was applied to the problem of 
fault diagnostics in HVAC systems, an application area with 
considerable modeling and sensor network limitations.  
Given the promising results in HVAC systems, this method 
appears to have good potential for application to other types 
of mechanical systems. 
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Figure 6, OAF versus damper in non-faulty mode Figure 7, OAF versus damper in faulty modes   
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Figure 8, Fault diagnosis design for mixing box 

Fault

Fault Level

DMP OAF

FaultFault

Fault LevelFault Level

DMP OAF

)(2211 FaultLevelfBBOAF ++= θθµ

)100/(,1 21 DMPBB ==

2)100/()100/( DMPDMPOAF −=σ

Fault = {Damper Stuck, outsider DMP leakage, Return DMP leakage, Reverse}

Figure 10, Diagnostic results, Note how FDD belief 
about the system health status improves as it sees
more data. It shows that there is an “Outside Air 
Damper Leakage” fault in the system. However, due 
to the nature of the “Outside Air Damper Leakage” 
fault, it can not be isolated until the system goes to 
the one hundred percent damper position. Note how 
the diagnostic tool waits until the system goes to the 
one hundred percent damper positions, and then 
finalizes its evaluation.  
 

Figure 9, OAT: outside air 
temperature, RAT: return air 
temperature, SAT: supply air 
temperature, DMP: damper. The data is 
from a test run on one of the air 
handing units at Iowa energy center. 
The diagnostic result is shown in 
Figure 10 
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