
 

 

 

  

Abstract—Fuzzy ARTMAP neural networks have been 

widely used in the areas of pattern and image recognition. They 

are well known for their ability to learn new patterns and 

efficiently identify previously learned patterns. However, they 

are rarely used in control applications. Our concept in this 

paper is to construct, train, and test a Fuzzy ARTMAP 

controller to do a certain control action. We would like to show 

that the Fuzzy ARMAP neural network is capable of performing 

the control action that the human being is able to perform. This 

would help in training the robot to do tasks the human is in 

charge of. A human based moving target tracking experiment is 

employed. In this research we choose a fuzzy ARTMAP neural 

network to imitate the behavior of the human in such away to 

track a target the way the human does. This may completely 

replace the human and may result in transferring a lot of tasks 

the human does daily to an intelligent system if it is trained to do 

the job in the right way. Necessary data is collected from the 

said tracking experiment and is used to train the fuzzy 

ARTMAP network. The network is then used to replace the 

human in the testing and application phases. 

 
Index Terms— Fuzzy ARTMAP, Adaptive Resonance 

Theory,  Neural Networks,  Intelligent Control.  

 

I. INTRODUCTION 

The term ART stands for adaptive resonance theory. It is 

basically a clustering algorithm proposed by Carpenter and 

Grossberg in 1987 [1]. The algorithm was intended for 

unsupervised clustering of binary data and known as 

ART-1.[2]. Later on, they generalized the ART-1 algorithm to 

become applicable to both binary and analog clustering. This 

generalized algorithm is known as ART-2 [2]. Since then 

many researches have suggested different forms of ART 

algorithms and modifications [2].  

Fuzzy ARTMAP is a supervised learning algorithm for 

analog data. It is a clustering technique with supervision that 

redirects training inputs which would be grouped in an 

incorrect category to a different cluster.  

A fuzzy ARTMAP system consists of two fuzzy ART 

modules; ARTa and ARTb. Each Fuzzy ART module clusters 

vectors in an unsupervised fashion [3]. Both ARTa and ARTb 

are linked by the map field module, fig. 1. This linkage 

establishes a one to one correspondence between ARTa 

categories (clusters) and their counterparts in ARTb. Training 

the fuzzy ARTMAP system is done by introducing input 

patterns to ARTa module. Those patterns represent an 

M-dimensional vectors. ARTa groups those patterns into 

clusters based on a certain factor called vigilance factor ρ [4]. 

The bigger the vigilance factor, the bigger the number of 

clusters to result from training and the smaller the number of 

patterns to be grouped within each cluster. Every input pattern 

introduced to ARTa is to be compared with all of its 

categories. Based on ρ value, an input vector is to be 

combined with a current existing cluster or would be 

considered as a new category. High vigilance leads to narrow 

generalization and to prototypes that represent fewer input 

exemplars. Thus a single ART system may be used, say, to 

recognize abstract categories of faces and dogs, as well as 

individual faces and dogs [1]. The above mentioned 

description fully applies to ARTb as well. ARTb also accepts 

patterns in vector form and decide whether those patterns 

have seen before (cluster members) or they are new 

categories. The major difference between ARTa and ARTb is 

the nature of each module patterns. ARTa patterns represent 

the overall system input to be recorded, whereas ARTb 

patterns represent the overall system target output to be 

reached in the classification phase. Fuzzy ART requires input 

pattern to be normalized to prevent category proliferation [2]. 

Each input pattern is an M-dimensional vector (I1,  ,  ,  ,  , IM ), 

where each component Ii is in the interval [0,1]. [1].  
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Input patterns are further complementary coded. Complement 

coding represents both the on-response and off-response to a. 

[1]. So If a represents the on-response, the off-response is 

represented by 
ca  

where  
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II. ART STRUCTURE AND TRAINING 

ART module learning process is based on checking the 

module’s input vectors (patterns). Based on certain criteria, 

each new pattern is compared with all of the nodes 

(categories) saved in the ART memory. Before learning starts, 

the ART module memory is empty, which means no 

categories have been yet recorded. With the first pattern to 

arrive, the first category is created. The created category 

(which is in fact the pattern itself) is then saved in the ART 

module’s memory. When the second pattern reaches the ART 

module, a comparison between the arrived pattern and the 

saved category(s) is established. Comparison results would 

specify the nature of the second pattern. If the pattern is close 

enough to the category saved, learning starts. The said 

learning modifies the saved category according to equation 

(6). Otherwise, they are not similar and the input pattern is 

considered to be a new category. This process continues for 
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the rest of the training patterns. Vigilance factor ρ determines 

the number of created categories by the end of the training 

phase. Vigilance factor ranges between 0 and 1. If the 

vigilance factor is set to 0, the resulting number of categories 

is zero, and if it is set to 1 the resulting number of categories 

would be exactly the same number of patterns used in the 

training process. In either case no learning occurs. 

Comparison is based on calculating the activation value [2] 

for each input pattern (4).  
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where I is the input pattern currently applied to the ART 

module and jw  is the jth category found in the ART module 

memory, ∧  is the fuzzy AND operation, (X ∧  Y) = 

min( ix ,
iy ) [5],[9]. α  is a constant > 0.  J is the index that 

represents the category of which the activation function is 

highest. 
Jw  undergoes another test called vigilance test [5] 

shown in (5).  
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Vigilance test is performed in order to measure the match of 

the category whose activation is highest with input pattern I. If 

the match function exceeds the vigilance parameter ρ, we say 

that the Jth category has won, the resonance is reached [6],[7], 

and learning is performed. Otherwise the said category is 

excluded from the search for this pattern. The search process 

resumes looking for another category maximizes the 

activation function and satisfies the vigilance test (5). If no 

category is found to satisfy both of the activation and 

vigilance conditions, a new category is formed and added to 

the ART module’s memory. The new formed category would 

be the input pattern I itself. In case of resonance occurrence, 

learning rule (6) is used to modify the category weights.  
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Where ( ]1,0 ∈β is known as learning rate. When β =1, it is 

the case of fast learning where the category vector is directly 

equated to the input pattern. It is notable that not the input 

pattern but the attended portions of it are learned. This causes 

detection of relevant feature groupings of the categories and 

focusing attention on these portions while trying to match new 

input patterns [11].  

In our research, fuzzy ARMAP algorithm is employed to 

do a control action in a similar way a regular control system 

does. We monitor the error signal and generate the necessary 

control signal to reduce that error. ARTa is responsible for 

recording the error vectors and cluster them into categories 

known as error categories. ARTb is responsible for recording 

the desired control actions needed to reduce this error and 

cluster them into categories known as target categories. 

Recording those error and target patterns and clustering them 

into categories is the outcome of the whole fuzzy ARTMAP 

system training. Fig. 1 shows the fuzzy ARTMAP system. 

 

 
 

 

 

Each pattern arrives to ARTa or ARTb would undergo the 

activation and vigilance tests. Error patterns are compared 

with ARTa categories whereas target patterns are compared 

with ARTb categories. Both of the activation and vigilance 

tests would ensure that the number of categories in both ARTa 

and ARTb are not going to increase without bound. If the 

number of categories grows without bound, the system 

efficiency and response would be highly degraded during 

classification phase. It is the case that is referred to as 

category proliferation. Category proliferation would result in 

flooding the ART module memory with huge number of 

adjacent category vectors that are alike. ARTa vigilance 

parameter is ρ and ARTb vigilance parameter is ρab.. ARTa 

categories are mapped to ARTb categories via a map field 

containing a matrix of weights w
ab 

. The winning category in 

ARTa would be given the index (row number) J. The said 

index would also refer to the corresponding output category 

node in ARTb . We can say that a one-to-one correspondence 

between a category in ARTa and its counterpart in ARTb is 

established by the index J. The map field is essentially a 

look-up table [6], retrieving an analog-valued weight 
ab

Jw  

when module “a” category J and module “b” category J are 

active. It is necessary to say that only one category node in 

each module is active at a time. During the training phase, the 

map field performs a vigilance test similarly to ARTa 

vigilance test. In the said test if the match function exceeds the 

map field vigilance parameter (7)  
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then both the resonance and learning occurs [5]. Else a match 

tracking procedure [2],[3],[4] is initiated to find a better 

candidate in ARTa. The procedure is represented by 

incrementing ARTa ’s vigilance parameter ρ by δ, where δ is 

a positive number much less that 1. This would result in 

exempting category J which has failed the competition and 

open the door for a new search for other candidates so as to 

fulfill the vigilance tests (5) and (7). This search for an ARTa 

category that predicts the correct ARTb category proceeds 

until it is found, otherwise a new category is created. The 

association between an ARTa category and an ARTb category 

is gained by the following learning rule. 

Map Field 

Fuzzy 

ART 

module 

b 

Fuzzy 

ART 

module 

a 

Input Ia,  represents the pattern 

vectors   

Input Ib, represents the target 

pattern vectors (desired output 

during training)  

Fig. 1: Fuzzy ARTMAP system showing the two fuzzy ART 

 modules and the map field link between them. 
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It is the case of map field resonance. 

Once the training is pursued, the fuzzy ARTMAP system 

becomes ready for testing. This phase is called; classification 

phase [8],[10], [12]. In this phase, each input vector applied to 

ARTa is compared with all of the categories stored in ARTa 

memory (9).  

 

|| ||  

|| ||

j

j)(

j
w

wI
T

+

∧
=

α

testinga
                         (9) 

 

A search for the category of Jth index whose activation is 

highest is run (10) 

 

JT  = max ( jT )                           (10) 

 

The category of the highest activation jT is considered to be 

the winner, Jw . The map field unit returns the corresponding 

ARTb’s winner category
ab

Jw and would be considered as the 

fuzzy ARTMAP system’s corresponding output.   

 

III.  METHODOLOGY AND EXPERIMENT SETUP 

In this research we use an experiment based data 

representing the performance of a certain system as training 

data for a fuzzy ARTMAP neural network. The trained 

network is then used to substitute the above mentioned system 

so that it gives the same performance that the system itself 

gives. The system we have used in this research is simply a 

man’s eye-brain-hand trying to track a moving target in the 

plane. The target is simply a moving trapezium in the plane 

with certain frequency and displacement. 

Proportional and proportional-differential trained fuzzy 

ARTMAP controllers are to be used for result comparisons.  

Fig. 2, 3, and 4 show signals collected from the best run of the 

experiment. To get best training data, it is important to run the 

experiment more than once. It might be hard for the man to do 

the best tracking from the first trial. Fig. 2 shows the man 

tracking error signals resulting from missing the target. Px is 

the x-component of the error vector and Py is its 

y-component. The faster the target motion, the larger the error 

obtained.  
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Fig. 3 shows the man control command signals Ux and Uy. 

Those are the brain signals sent to the hand muscles so that 

tracking is pursued and less error is obtained. Fig. 4 shows the 

function generators’ excitation signals (set values) versus 

feedback signals. The difference between excitation and 

feedback results in error signal shown in fig. 2. 
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IV. FUZZY ARTMAP SCHEME 

We construct a fuzzy ARTMAP based control system to 

replace the man’s eye-brain-hand controller. The fuzzy 

ARTMAP controller monitors the error signal and generates 

the necessary output to reduce the said error. In the training 

phase, ARTa module accepts error signal vector patterns and 

cluster them into categories whereas ARTb module accepts 

the controller’s output signals collected from the tracking 

experiment and clusters them into categories known as target 

vector categories. 

Vector patterns applied to ARTa module during training 

should be normalized and complementary coded. In our case 

those patterns are the error vectors collected from the 

eye-hand experiment and saved on a data file. They are two 

dimensional error vectors representing the position mismatch 

between the target and the hand track in the plane. Fig. 5 

shows the error data after normalization. 
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Normalization is also applied on the output tracking 

signals. Fig. 6 shows the controller’s output signals after 

normalization. Once the normalized patterns are generated, 

they are complementally coded (3). Complement coding 

doubles the vector size. In all of our experiments, fuzzy 

ARTMAP parameter were set to β = 0.5, abβ =1, abρ = 1, 

α =1, and ρ was given different values to see the effect of 

Fig 2: Error signal represents the mismatch between 

target position and tracking line. 

Fig 3: Man output signal represents the brain commands to the hand 

muscles 

Fig. 4: Function generator signal versus feedback signal 

Fig. 5: Normalized error data in eye-hand tracking experiment 
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this parameter on the number of categories generated and 

classification accuracy. 
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For training, we have used 15000 input patterns and got 

different numbers of categories in each training process 

depending onρ ’s value.  

 

V. FUZZY ARTMAP NEURAL NETWORK TRAINING AND 

CLASSIFICATION RESULTS 

Training the fuzzy ARTMAP neural network with ρ = 0.8 

and 15000 input patterns results in only 155 categories. Each 

category in ARTa module is a 4-diemensional vector (row 

vector with four columns). The first column represents the x 

axis error category, the second column represents the y-axis 

error category, the third and fourth columns represent the 

complement codes of the first and the second columns. ARTb 

categories are also four dimensional row vectors. First and 

second columns represent x and y control outputs, the third 

and fourth columns represent their corresponding 

complement codes. The trained fuzzy ARTMAP neural 

network is then involved in a testing process to evaluate its 

performance. The trained system consists of two ART 

modules “a”, “b”, and map field. ARTa stores in its memory 

error categories whereas ARTb stores in its memory the 

corresponding target categories. In classification phase an 

ARTa input vector which in our case is an error vector would 

undergo an activation test to find the category it belongs to. 

The said activation test would return the cluster J which 

would be the category index of ARTb module and would be 

considered as the network output. Once the output category is 

selected, it is demoralized to give the original output level. 

Demoralization processes is exactly the opposite of the 

normalization process.  

A. Fuzzy ARTMAP Proportional Target Tracking 

Controller Simulation Results 

Fig. 7 shows fuzzy ARTMAP based proportional control 

system where the human eye-brain-hand controller is replaced 

with the trained fuzzy ARTMAP neural network. In this 

simulation we test the generality of the trained network by 

calculating the tracking mean square error for both x and y 

axes. In the testing process, we try a mixture of sinusoidal and 

step target motions. Fig. 8, 9, and 10 shows the simulation 

results for ρ =0.95 and sinusoidal target motion. Another set 

of results is obtained for a mixture of sinusoidal and step 

target motion. ρ =0.95. See fig. 11, 12, and 13. 
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Fig. 7: Fuzzy ARTMAP target tracking control system. 

 

Transport  

delay 

_ 
+ 

 
 

 

 

X-Y screen with 

diamond target and 

tracking line 

Fig. 6: Man output signal represents brain commands to hand 

muscles 

Fig. 8: Fuzzy ARTMAP controller error 

Fig. 9: Fuzzy ARTMAP controller’s output 

Fig. 10: Fuzzy ARTMAP controller tracking   

Fig. 11: Fuzzy ARTMAP controller error 
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B. Fuzzy ARTMAP Proportional Differential Target 

Tracking Controller Simulation Results 

In this experiment we train the fuzzy ARTMAP network to 

cluster patterns of error and differential error vectors. Instead 

of making the training based on error vectors only, we 

introduce two additional patterns; x and y differential errors. 

ARTa module categories that result from the training process 

are eight-dimensional row vectors. First and second columns 

represent x and y error categories. The third and fourth 

columns represent x and y differential error categories and the 

rest of the columns represent the error and differential error 

corresponding complement codes. ARTb module categories 

are still four dimensional row vectors same as those found in 

ARTb module of the fuzzy ARTMAP proportional controller. 

Fig. 14 shows the PD fuzzy ARTMAP based control system. 

Fig. 15 shows the normalized error and differential error data 

collected from eye-brain-hand experiment. 

 

 

 
 

An error differential is constructed by subtracting the current 

error vector from the previous one and feeding the difference 

to the fuzzy ARTMAP controller as an additional pattern 

appending the original error vector.  
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Fig. 16, 17, and 18 shows the system response for 

sinusoidal target motion and fig. 19, 20, and 21 shows the 

system response for a mixture of sinusoidal and step target 

motions.  
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Fig. 14:  Fuzzy ARTMAP target tracking system, PD control 

Fig. 12: Fuzzy ARTMAP controller’s output 

Fig. 13: Fuzzy ARTMAP controller tracking   

Fig. 15: Normalized error and differential error data  

obtained from hand eye-hand tracking experiment  

 

Fig. 16: Fuzzy ARTMAP controller error, PD control, ρ=0.9 

Fig. 17: Fuzzy ARTMAP controller’s output, PD control, ρ=0.9 

Fig. 18: Fuzzy ARTMAP controller tracking, PD control, ρ=0.9 

Fig. 19: Fuzzy ARTMAP controller error, PD control, ρ=0.9 

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008



 

 

 

0 5 10 15 20
-10

0

10

Time (s)

F
u

z
z
y

 A
R

T
M

A
P

  
c

o
n

tr
o

l 
s

ig
n

a
l

Ux

Uy

 
 

 

0 5 10 15 20
-5

0

5

Time (s)

T
a

rg
e

t 
m

o
ti

o
n

 a
n

d
 

fu
z
z
y

 A
R

T
M

A
P

  
  

  
tr

a
c

k
in

g
 s

ig
n

a
l 

  

x-Target Motion

x-ANN Track

y-Target Motion

y-Target Motion

 
 

 

 

C.  Error Calculation for the fuzzy ARTMAP Controller 

We evaluate the performance of the trained networks by 

calculating the mean square value of the error signal.  

Let the error mean square value be 

N

)(e

 MSE  

2N

1

i∑
== i

                           (11) 

where N is the vector length and ie is an individual element 

within the error vector. Different ρ  values result in different 

training outcomes. Table 1 shows that the number of 

categories increases as ρ  increases with gradual drop in MSE 

value. We can see that there are two major factors that 

contribute to the popularity of neural networks. The first 

factor is the ability of neural networks to approximate 

arbitrary nonlinear functions. The second factor is the 

capability of neural networks to adapt [13],[14].  

 

 

 

 
Proportional Control PD  Control  

 
ρ  

Number 

of 

Clusters 

x-axis 

MSE 

y-axis 

MSE 

Number 

of 

Clusters 

x-axis 

MSE 

y-axis 

MSE 

0.800 153 0.6535 1.0167 153 1.0022 0.0486 

0.850 158 0.8563 0.0218 158 1.0245 0.0332 

0.900 255 0.5206 0.0344 255 0.8403 0.1035 

0.920 255 0.6896 0.0637 255 0.8403 0.1035 

0.940 257 1.8109 0.0624 257 0.8228 0.0961 

0.960 264 0.6964 0.0800 264 0.6770 0.0691 

0.980 290 1.8072 0.1111 290 0.6268 0.0886 

0.990 372 1.3656 0.1602 372 1.3699 0.1607 

0.999 2113 1.3706 0.1720 2113 1.4229 0.1712 

VI. CONCLUSION 

It is obvious from table1 that MSE value decreases as 

ρ value increases in the training phase. This is an important 

indication which means that the number of categories 

(clusters) governs the behavior similarity between the trained 

fuzzy ARTMAP network and the original system we are 

trying to imitate. We can see that the higher the number of 

categories obtained during training, the closer to the original 

system we will be. This means that the trained fuzzy 

ARTMAP network will respond to the error input it receives 

on ARTa module and generate a tracking action by ARTb 

module the same way the imitated system does.  

Increasing the number of categories however does not 

guarantee an improved system performance. This is apparent 

from table 1. As we increase ρ and we get more categories, 

MSE value of the controller starts to increase as well. This 

happens because the trained fuzzy ARTMAP network 

becomes closer and closer to the original eye-brain-hand 

system we want to imitate. If we consider all of the input 

patterns as categories –which is the case of ρ= 1, training 

would result in a fuzzy ARTMAP network whose behavior is 

exactly the same as the original system’s behavior. This 

means that original system that is not perfect would also result 

in a fuzzy ARTMAP controller that is not perfect too.  
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Fig. 20: Fuzzy ARTMAP controller’s output, PD control, ρ=0.9 

Fig. 21: Fuzzy ARTMAP controller tracking, PD control, ρ=0.9 

Table 1: Fuzzy ARTMAP proportional and proportional differential 

control system simulation results 
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