
 
 

 

  
Abstract—While mobile devices own limited storages and low 

computational resources, the volumes of spatial data are 
tremendous and spatial operations are time-intensive. Therefore, 
it is necessary to study a spatial index which is small and 
efficiently filter out the candidate objects of a spatial operation as 
well in order to processing spatial operations efficiently in the 
vector map service based on mobile devices such as PDA, phone, 
telematics terminals, etc. 

This paper proposes a hash based spatial index for the mobile 
map service. The index has a simple structure for storage 
utilization and uses a hashing technique for search efficiency. Our 
experimental tests show that the proposed index is appropriate for 
mobile devices in terms of the volume of index, the number of the 
MBR comparisons, the filtering efficiency and the execution time 
of spatial operations. 
 

Index Terms—ITS(Intelligent Transportation System), LBS 
(Location Based Service) Spatial Index, Mobile Application, 
Hash, Frameworks.  
 

I. INTRODUCTION 
 The PDAs lead the popularization of the portable 

information terminals and their application areas are various 
such as wireless internet, remote education, wireless game, 
portable video phone, etc. Especially the mobile map service 
will be a main application of the PDA in the near future. 
Therefore, an efficient spatial data retrieval and indexing 
method for the mobile map service have to be studied. 

The volume of spatial data and the computational cost of 
spatial operations are very tremendous, but on the other hand 
the mobile devices own a limited memory and a low 
computational capacity than the PC. Therefore, a spatial index 
for the mobile devices should be small and achieve good 
filtering efficiency as well. The existing spatial indices based 
on the PC, such as R-tree, are not applicable to the mobile 
devices based on memories. In the mobile device’s 
applications, since the data transmitted from servers always 
reside in the memory of the mobile devices and disk accesses 
are not required for data retrievals, the working mechanism of 
an index for the mobile devices is quietly different from that of 
the existing indices. The indices based on disks hold a node 
structure for paged I/O and use clustering techniques in order to 
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reduce the number of disk seeks. On the other hand, because 
search operations in the indices based on the memory are 
irrelevant to disks accesses, the node structure and the 
clustering which are important factors of performance 
improvements of the existing indices maybe yields contrary 
results in the mobile devices. Also, the great volume of the 
existing spatial indices is not appropriate for the mobile 
devices. For example, the index volumes of R-tree and its 
variants, which are considered as one of the best spatial indices 
so far, are about 16%~20% of source data[9]. 

In addition to that, the storage utilization of each node of the 
existing indices is less than 70% due to the property of dynamic 
update. Because the applications of the mobile devices are 
mostly bounded to retrieval, not update, the property of 
dynamic update of the R-tree is an obstacle of performance 
improvements in the mobile devices. The update is generally 
processed by servers in the mobile map service periodically.  

The size of spatial objects in a relation varies extremely. In 
order to deal with such large objects and at the same time to 
preserve spatial locality in pages, spatial access methods 
organize only approximations of objects as an index instead of 
the exact representation. The minimum bounding 
rectangle(MBR) of an object is a very common approach for an 
approximation. A region query is processed in two steps, called 
filter and refinement step[6]. The filter step finds all candidate 
objects whose MBR intersects the query region. The 
refinement step checks whether they really fulfill the query 
condition for those objects.  

Because the refinement step applies the exact representation 
to check procedures, it is very time-consuming. Therefore, it is 
had better cut down the number of candidate objects in the filter 
step if possible. 

In this paper, we propose a spatial index structure for the 
mobile devices, which is so simple and small that shows good 
storage utilization and filtering efficiency as well. We take the 
small memory and low computing capacity of the mobile 
devices into consideration. The proposed spatial index uses 
multiple-hashing techniques and achieves small number of the 
MBR comparisons in the filter step of a spatial query.  

In order to evaluate the performances of the proposed spatial 
indexing method and the MBR compression schemes in 
comparison with R*-tree, several experiments are conducted on 
the Sequoia 2000 benchmark data[11]. The items of the 
performance evaluations are the volume of each spatial index, 
the number of MBR comparison in the filter step, filtering 
efficiency and the total operation time. The results of the 
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experiments clearly show that we can decide a suitable spatial 
index for the mobile devices and the proposed methods are also 
expected to be important technology for the mobile map 
services to be wide used recently. 

The rest of this paper is organized as follows. In section 2, 
we investigate the related works on spatial index based on disks 
and memories respectively. In section 3, we propose a spatial 
index structure based on memory for the sake of the mobile 
map services. In section 4, the results of experiments are 
presented and analyzed. Finally, we give conclusions in section 
5. 

 

II. RELATED WORKS ON SPATIAL INDICES 
Spatial indices are used for the efficient processing of the 

filter step. Many researches on spatial indices have been 
studied so far. The index in these literatures, however, is almost 
based on the disks[1], [2], [3], [6], [10], [12]. The R*-tree called 
a representative spatial index based on disks is studied in [1].  

A node of R*-tree is designed for one page of disks, and each 
node tends to cluster the objects located in the extent(Xmin, 
Ymin, Xmax, Ymax) of the node. Besides, the R*-tree also 
shows outstanding query performances on non-uniformly 
distributed data. The properties of R*-tree, such as a balanced 
tree and a large number of fan-out, achieve an efficient data 
retrieval, but we should endure the low storage utilization 
reported by several literatures [9]. The low utilization may be a 
fatal defect in the mobile devices with limited storages. In spite 
of these drawbacks, the good performance of the R*-tree is 
derived from a paged I/O and natural clustering which reduce 
the number of seek operations.  

There have been many works on indices of main memory 
database systems recently [4], [5], [7], [8], [10]. The T-tree[5] 
is the binary tree of which each node maintains several number 
of data and just two number of link fields in order to maximize 
storage utilization. It can accommodate text data, but it is 
impossible for T-tree as an index to hold multidimensional 
spatial data. 

The CR-tree[4] based on main memory is the 
cache-conscious version of the R-tree. To pack more entries in 
a node, the CR-tree compresses MBRs. While the QRMBR 
proposed in CR-tree saves memory, it yields low filtering 
efficiency which is a fatal drawback in the mobile devices as 
described above.  

The literature [13], [14] proposed a clustering-based map 
compression method which adapts a dictionary to a given 
dataset. The proposed method achieves lower error than a static 
dictionary compression such as the one used by the FHM 
algorithm[15].  

There have been many previous works on spatial joins such 
as join indices[22], join z-ordering[23], and hash join[24]. The 
most recent works focus on developing spatial index structures 
like R-tree and its variants[17], [18], PMR Quad-tree[19], Grid 
Files[16], Seeded-tree[21], and Filter-tree[20]. 

Furthermore, the spatial indices for moving objects have 

been increasingly studied recently. 3DR-tree[27] based on 
R-tree is desirable for trajectory query. TPR-tree[25] attempts 
to represent the current and future position of the moving 
objects by a function of the speed and orientation of moving 
objects. LUR-tree[26] aims at performance improvements of 
the spatial index for moving objects with the minimization of 
update operation of the spatial index. 

The previous works on the spatial access methods have not 
studied the index for the mobile devices and not also conducted 
experiments for performance evaluations. In this paper, we 
propose a new spatial index structure using a MBR 
compression scheme and hashing technique for the mobile map 
service with desirable properties, such as high storage 
utilization, filtering efficiency and quick response time. 
 

III. A HASH BASED SPATIAL INDEX 
Because the mobile devices own limited storages and low 

computational resources, the spatial index for the mobile 
devices should possesses the following properties.  

First, small volume and simple structure. R-tree and its 
variants are comparatively big volume and complicated 
multi-level indices, and so they are unsuitable for PDA. 

Second, quick response time for spatial queries(a simple 
display operation). Because the main operation of mobile map 
services is not update but simple search, the index for mobile 
map service should makes small number of MBR comparisons 
and high efficiency in the filter phase of basic spatial queries 
such as point query and region query. 

Third, easy to load a region partitioned regularly in order to 
display full screen image of PDA. Generally speaking, spatial 
indices with regular decomposition scheme, such as grid file, 
are able to load easily all objects of a rectangle region, whereas 
spatial indices with irregular decomposition scheme, such as 
R*-tree, search multiple node for the sake of bulk loading 
because each node may be overlapped. 

Fourth, easy to manage non-uniformly distributed data. 
R*-tree is efficient for any data distribution, whereas Grid File 
delivers a fatally degraded search performance at non uniform 
data. 

Therefore, both R*-tree and Grid File which are 
representative indices based on disks are unsuitable for PDA 
spatial indices. We propose a new spatial index to obey above 
four requirements. This index delivers high storage utilization 
due to its simple structure, and it also has small number of the 
MBR comparison due to the hash-based indexing technique. 
Although it takes regular decomposition, it manages 
non-uniformly distributed data very well. 
 

A. Index Structure 
The proposed index hashes the overall space on the basis of 

X and Y coordinates of each object. The hash functions are as 
follows.  
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 Hx(x) = int[(x - Xmin)/(Xmax-Xmin)*Nx] 

Nx is the number of buckets of X axis 
 Hy(y) = int[(y - Ymin)/(Ymax-Ymin)*Ny] 

Ny is the number of buckets of Y axis 
 

The hash table is two dimensional structure and the 
second(or subsequent) hashing is executed to prevent a bucket 
overflows as shown in Fig. 1. Even though the data distribution 
is non-uniformed and skewed, therefore the reasonable 
response time is guaranteed without severe delay for spatial 
queries.  
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Fig. 1. Hash Table 

 
The second hash function is similar to the first hash function 

except for the min and max values of the extents. The min and 
max values in the second function are changed the extent of 
entire data space into the extent of the overflowed bucket. The 
third or more hashing is executed successively until no longer 
overflows. We assume that the Nx and Ny of second or more 
hashing are a half of those of first hashing respectively. The 
capacity(M) of a bucket is determined by the combinations of 
the whole number of the objects, the desired volume of the 
index and the desired search time. The volume of the index is in 
reverse proportion to the M and the number of the MBR 
comparison operations in the filter step. 

The Nx, Ny and M are the consideration points in the index 
design. Large Nx, Ny and small M bring about low 
performance due to excessive subsequent hashing and the 
redundancy of objects caused by multiple assignment 
policy[16]. Also, small Nx, Ny and large M bring about low 
performance due to extended search space. That is to say, when 
the values of Nx, Ny and M are almost equal, the performance 
of the proposed index is enhanced. 

The 100 percent cell utilization can be possible in the text 
data and uniform distributed spatial data, but it is not probable 
in the non-uniformly distributed spatial data due to frequent 
overflow and sub hashing. Therefore, we assume the cell 
utilization to be about 65 ~75%. The cell utilization is defined 
as follows.  

 
 Cell_Utilization ≈  #_of_Obj / [(Nx*Ny)*M] 

where Nx, Ny and M are equal. 

 
The header of the index consists of an extent of entire map 

and the number of buckets of both X and Y axes as shown as in 
Figure 2.  

 
 

Bucket(1,1) Bucket(1,Ny)

Bucket(Nx,1) Bucket(Nx,Ny)• • • • 

• • • • • • • • • • • • 

• • • • 

Map Extent Nx Ny 

#of Obj. Pointer to Bucket 

Xmin Ymin Xmax Ymax 
 

Fig. 2. Header Format 
 

A bucket entry holds the number of objects and the pointers 
to indicate each object in data file. The pointer is classified by 
the number of objects as follows. 

 
 [# of Obj. = 0] Empty Bucket Condition :  

  Pointer = NULL; 
 [# of Obj. 1~M] Normal Condition :  

  Pointer to indicate each bucket 
 [# of Obj. > M] Overflow Condition :  

Pointer to sub hash table 
 
Each bucket holds MBRs and Pointers of own objects as 

follows 
 
 <MBR of Object, Pointer to Object> * # of Obj. 
 

One of the most important characteristics of GIS data in view 
of the mobile device is that the volume of spatial data is 
tremendous. To filter efficiently candidate objects, spatial 
indices usually use MBRs organized by the coordinates of low 
left corner and upper right corner as the approximation of each 
spatial object. The 16 byte MBR is generally used for 
two-dimensional key because a coordinate of each axis takes a 
4 byte float number. The existing spatial indices are usually too 
big to use in the mobile devices. The MBR keys also occupy 
almost 80% of their indices. Therefore, we focus on the MBR 
compression scheme for the sake of a small index. 

The MBR compression scheme proposed in this paper takes 
the hybrid representation scheme that makes use of the merit of 
not only reasonable storage utilization but also good filtering 
efficiency. The low left corner of the compressed MBR is 
represented by relative position, but the upper right corner of 
the compressed MBR is represented by the lengths(width, 
height) of MBR as follows.  
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 Compressed MBR =  

Xmin(2byte, relative position) 
Ymin(2byte, relative position) 
Width(1byte, real or quantized) 
Height(1byte, real or quantized) 

 
In order to represent the width and height of MBR by means 

of 1 byte respectively, a following method is introduced. To 
begin with, if the length of MBR is smaller than threshold 
value(β), the length is represented by actual value just as it is. If 
not, the length is represented by a quantized value.  

The β is determined by quantization level. The β is 255-n, 
where n is quantization level. Therefore, the unit length(δ) of a 
quantum is [length of bucket’s extent / n] and so the length by 
quantized value is [β + (length of MBR) / δ].  

When we use the proposed MBR compression schemes, 
several decompression algorithms are generally necessary for 
executing the spatial queries. However, we transform a given 
query input coordinates into the compressed MBR coordinate 
system instead of decompression of compressed MBR and so 
the overheads caused by compression are easily lessen. 

B. Procedures for Spatial Operation 
In the following, we introduce the procedures of a point 

query and a region query used frequently in the map service 
applications. The input parameters of the point query procedure 
are the header pointer of the index and X, Y coordinates 
pointed by mouse. The return values are selected objects. 

 
Procedure Point_Query( )  

Input : Header, Point 
Output : selected objects 

Read Extent from Header 
X = Hx(Point.x);  
Y = Hy(Point.y); // Hash X,Y  
Read Information of Bucket(X,Y) 
CASE( # of Obj. ) 
 [ 0 ] :  “Not Found” 
 [ > M ] : Bucket_Header = Pointer_to_Bucket;  

Point_Query(Bucket_Header, Point) // Recursive Call 
 [ 1~M ] :S = Pointer_to_Bucket;  
  FOR( all Obj. ∈ S )   // from 1 to # of Obj. 

IF( Obj.MBR ∩ Point ≠ ∅)  
Result += Obj. 

end of Procedure 
 
The input parameters of the region query procedure are the 

header pointer of the index and a query region which consists 
of Xmin, Xmax, Ymin and Ymax. The return values are also 
selected objects like point query. 

 
Procedure Region_Query( ) 

Input : Header, Region 
Output : selected objects 

Read Extent from Header 
Xlow = Hx(Region.Xmin); Xmax = Hx(Region.Xmax); 
Ylow = Hy(Region.Ymin); Ymax = Hy(Region.Ymax); 
FOR( X = Xlow ~ Xmax ) 

   FOR( Y = Ylow ~ Ymax ) 
   { 
      Read Information of Bucket(X,Y) 
      CASE( # of Obj. ) 
        [ 0 ] : Continue 
        [> M] : Bucket_Header = Pointer_to_Bucket;  
 Region_Query(Bucket_Header, Region)  
  // Recursive Call 
        [1~M] : S = Pointer_to_Bucket;  
         FOR( all Obj ∈ S )    // from 1 to # of Obj. 
               IF( Obj.MBR ∩ Region ≠ ∅)  

Result += Obj. 
    } 
end of Procedure 

 
The point and region query in the index is resolved by simple 

hashing. In particular, to load all the objects located in a 
rectangle area for simple display is straightforward because the 
index decomposes data space regularly. In addition to that, the 
query for skewed areas is easily executed by smaller number of 
recursive calls. The impacts of the skews will be examined in 
chapter 4. 

IV. PERFORMANCE EVALUATION 

A. Environments for Performance Evaluation 
The test data for performance evaluation are Sequoia 2000 

which is widely used as benchmark data. The data set consists 
of several polygons in which each of them represents objects of 
38 layers such as GIRAS Land use, Land cover, etc. Fig. 3 
display these layers with overlapped and non-uniformed 
distribution.  

 

 
Fig. 3. Test Data Sequoia 2000 
 

The H/W platform is Compaq iPAQ PDA with 32 Mbyte 
memories for data area and the developing tool is Microsoft 
embedded visual C++. The point query and region query are 
carried out 1000 times respectively. 

B. Volume of Index 
Fig. 4 graphs the volumes of the two indices, R*-tree and the 

proposed index, with the proposed MBR compression scheme. 
The node size of R*-tree is 512 bytes and the bucket capacity of 
top level of the proposed index is 50, the capacities of second 
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and more levels are assigned a value decreased by 5 compared 
with that of previous level. The quantization level of the 
compressed MBR is 50. The Nx and Ny of the proposed index 
are both 50. The M_INDEX means the proposed index in Fig. 
4. The C_MBR also means the compressed MBR in Fig. 4. 
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Fig. 4. Size of Spatial Indices 
 

The following results are obtained from Fig. 4. First, the 
M_INDEX outperforms the R*-tree in the storage utilization 
aspect when an identical MBR representation scheme is used 
by each index. While the M_INDEX has very simple structure, 
the R*-tree has complicated multi-level structure and the 
property of the tree-balance which makes R*-tree yield the low 
storage utilization.  

Second, compared with the volume of spatial index 
according to the MBR compression schemes, Fig. 4 tells us that 
C_MBR also achieves a good compression effect. 

C. Number of MBR Comparison in Filter Step 
Fig. 5 depicts the number of the MBR comparison operations 

which means search performance in the filter step of point 
query. The M_INDEX generally outperforms the R*-tree. More 
precisely, the M_INDEX with either C_MBR requires almost 
50% of MBR comparison of R*-tree. 
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Fig. 5. Number of MBR Comparison Operations 

D. Filtering Efficiency of MBR Compression Scheme 
The aim to use spatial indices is to execute efficiently filter 

step as well as to minimize the candidate objects participated in 
the refinement step. If the low computational resource of the 
mobile devices is taken into consideration, the number of the 
candidate objects is strongly related to overall execution time 
of spatial operations. Table 2 summarizes the average number 

of candidate objects after filter step of point and region query. 
The areas of the query region are 0.1%, 0.4 and 1% of the 
whole data space respectively. The experimental results 
indicate that the number of candidate objects is almost 
irrelevant to the kind of spatial indices, but the number of 
candidate objects depends on the MBR compression schemes. 
Even though C_MBR uses the quantization technique, the 
number of the candidate objects in C_MBR is almost identical 
with that of normal MBR because this quantization is only used 
for big objects in C_MBR. 

 
TABLE 2. NUMBER OF CANDIDATE OBJECTS 

Query Region 
MBR Rep. 

PointQuer
y 0.1% 0.4% 1% 

MBR 3.2 187.4 521.3 1038.9 

CMBR 3.5 201.3 553.8 1052.0 

E. Query Execution Time 
In the following, the performances of M_INDEX are 

evaluated. Table 3 describes the average execution time of the 
spatial queries. Generally, M_INDEX improves the 
performance of about 15% and more percents in comparison 
with R*-tree. The results obtained from experiments coincide 
with what was expected. Table 3 also shows that the query 
execution time have nothing to do with the area of query region 
mostly. 

 
TABLE 3. QUERY EXECUTION TIME(UNIT : MS) 

Query 
MBR Rep. Point Query 0.1% 0.4% 1% 

R*-tree 
(C_MBR) 69.1 543.8 881.2 1215.2 

M_INDEX 
(C_MBR) 46.8 451.8 782.9 1103.0 

F. Data Loading Time with Various Data Distribution 
Table 4 summarizes the time to load the results of point and 

region queries of M_INDEX and R*-tree without refinement 
step. The query region is occupied with 1% of entire data space. 
Each query is performed in random area and skewed area 
respectively. We define the skewed area as where to hash 3 or 
more times subsequently. The results clearly show that the 
M_INDEX generally outperforms the R*-tree for the simple 
display to load all the objects in a rectangle region. Far from 
one’s anticipation, the M_INDEX carries out region queries 
well in case of skewed area. Moreover, the performance of 
point query of M_INDEX is also superior to that of R*-tree 
regardless of data distribution. 

 
TABLE 4. DATA LOADING TIME(UNIT : MS) 

 M_INDEX 
(C_MBR) 

R*-tree 
(C_MBR) 

Random Area(1%) 313.5 427.9 

Skewed Area(1%) 1805.2 1814.8 

Point(Random) 32.0 53.7 

Point(Skewed) 44.3 56.2 
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G. C MBR : Impacts of Bucket Capacity 
In case of sequoia 2000 benchmark data and above 

condition, the proper numbers of Nx, Ny and M are about 50. 
Fig. 6 and 7 show that this seems to be a realistic assumption. 
Fig. 6 depicts the volume of M_INDEX with various bucket 
capacities(M). The Nx and Ny are assumed to be 50. As M 
increases, the volume of M_INDEX with C_MBR decreases.  
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Fig. 6. Volume of M_INDEX 

 
Fig. 7 depicts the number of MBR comparison in filter step 

with various M. The number of MBR comparison in filter step 
shows different aspects. As M decreases from 50 to 20, the 
number of MBR comparison of the region query rapidly 
increases. Also, as M increases from 50 to 70, the number of 
MBR comparison of the region query increases to some degree. 
In case of point query, there is nearly no deviation of the 
number of MBR comparison except 70 bucket capacity. 
Therefore, when the Nx, Ny and M are 50, the volume of index 
and the number of MBR comparison are improved as expected. 
As the purpose of this paper is concerned, we will leave the 
detailed discussion of cell utilization and bucket capacity for 
further researches. 
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Fig. 7. Number of MBR Comparison 
 

V. CONCLUSIONS 
In this paper, a new spatial index is proposed. We would like 

to propose a reliable spatial index for the mobile map service. 
The requirements of this are high storage utilization, quick 
response time and easy simple display. The proposed index has 
simple structure for storage efficiency and uses a hashing 
technique, which is direct search method, for search efficiency.  

The experimental results indicate that the R*-tree, one of the 

most efficient spatial index based on disk, is possible to be 
inefficient in memory based mobile device system. On the 
contrary, the proposed index outperforms R*-tree due to the 
proposed index’s high storage utilization and retrieval 
efficiency. The proposed MBR compression scheme requires 
small storages and achieves high filtering efficiency. The 
proposed index consumes about 50% less memory space in 
comparison with R*-tree, and the number of MBR comparison 
in filtering step of the compressed MBR is about 50% less than 
that of R*-tree. In the MBR compression aspects, the spatial 
index with the compressed MBR requires about 50% smaller 
than the spatial index with normal MBR.  

In summary, it seems reasonable to conclude that the 
proposed spatial index structure is appropriate for the spatial 
index in the mobile devices with small memory space and low 
processing capacity.  

Furthermore, the index is expected to be useful for mobile 
map service, ITS(Intelligent Transportation System), 
LBS(Location Based Service) to have been increasingly 
studied recently. 
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