

Abstract—While mobile devices own limited storages and low

computational resources, the volumes of spatial data are
tremendous and spatial operations are time-intensive. Therefore,
it is necessary to study a spatial index which is small and
efficiently filter out the candidate objects of a spatial operation as
well in order to processing spatial operations efficiently in the
vector map service based on mobile devices such as PDA, phone,
telematics terminals, etc.

This paper proposes a hash based spatial index for the mobile
map service. The index has a simple structure for storage
utilization and uses a hashing technique for search efficiency. Our
experimental tests show that the proposed index is appropriate for
mobile devices in terms of the volume of index, the number of the
MBR comparisons, the filtering efficiency and the execution time
of spatial operations.

Index Terms—ITS(Intelligent Transportation System), LBS
(Location Based Service) Spatial Index, Mobile Application,
Hash, Frameworks.

I. INTRODUCTION
 The PDAs lead the popularization of the portable

information terminals and their application areas are various
such as wireless internet, remote education, wireless game,
portable video phone, etc. Especially the mobile map service
will be a main application of the PDA in the near future.
Therefore, an efficient spatial data retrieval and indexing
method for the mobile map service have to be studied.

The volume of spatial data and the computational cost of
spatial operations are very tremendous, but on the other hand
the mobile devices own a limited memory and a low
computational capacity than the PC. Therefore, a spatial index
for the mobile devices should be small and achieve good
filtering efficiency as well. The existing spatial indices based
on the PC, such as R-tree, are not applicable to the mobile
devices based on memories. In the mobile device’s
applications, since the data transmitted from servers always
reside in the memory of the mobile devices and disk accesses
are not required for data retrievals, the working mechanism of
an index for the mobile devices is quietly different from that of
the existing indices. The indices based on disks hold a node
structure for paged I/O and use clustering techniques in order to

Heang-Kon Kim is with the Department of Computer Engineering, Catholic
University of Daegu KyungSan, Daegu, 712-702, Korea (corresponding author
to provide phone: 053-850-2743; fax: 053-850-2740;
 e-mail: hangkon@ cu.ac.kr).

reduce the number of disk seeks. On the other hand, because
search operations in the indices based on the memory are
irrelevant to disks accesses, the node structure and the
clustering which are important factors of performance
improvements of the existing indices maybe yields contrary
results in the mobile devices. Also, the great volume of the
existing spatial indices is not appropriate for the mobile
devices. For example, the index volumes of R-tree and its
variants, which are considered as one of the best spatial indices
so far, are about 16%~20% of source data[9].

In addition to that, the storage utilization of each node of the
existing indices is less than 70% due to the property of dynamic
update. Because the applications of the mobile devices are
mostly bounded to retrieval, not update, the property of
dynamic update of the R-tree is an obstacle of performance
improvements in the mobile devices. The update is generally
processed by servers in the mobile map service periodically.

The size of spatial objects in a relation varies extremely. In
order to deal with such large objects and at the same time to
preserve spatial locality in pages, spatial access methods
organize only approximations of objects as an index instead of
the exact representation. The minimum bounding
rectangle(MBR) of an object is a very common approach for an
approximation. A region query is processed in two steps, called
filter and refinement step[6]. The filter step finds all candidate
objects whose MBR intersects the query region. The
refinement step checks whether they really fulfill the query
condition for those objects.

Because the refinement step applies the exact representation
to check procedures, it is very time-consuming. Therefore, it is
had better cut down the number of candidate objects in the filter
step if possible.

In this paper, we propose a spatial index structure for the
mobile devices, which is so simple and small that shows good
storage utilization and filtering efficiency as well. We take the
small memory and low computing capacity of the mobile
devices into consideration. The proposed spatial index uses
multiple-hashing techniques and achieves small number of the
MBR comparisons in the filter step of a spatial query.

In order to evaluate the performances of the proposed spatial
indexing method and the MBR compression schemes in
comparison with R*-tree, several experiments are conducted on
the Sequoia 2000 benchmark data[11]. The items of the
performance evaluations are the volume of each spatial index,
the number of MBR comparison in the filter step, filtering
efficiency and the total operation time. The results of the

Frameworks of Indexing Mechanism for
Mobile Applications

Haeng-Kon Kim

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

experiments clearly show that we can decide a suitable spatial
index for the mobile devices and the proposed methods are also
expected to be important technology for the mobile map
services to be wide used recently.

The rest of this paper is organized as follows. In section 2,
we investigate the related works on spatial index based on disks
and memories respectively. In section 3, we propose a spatial
index structure based on memory for the sake of the mobile
map services. In section 4, the results of experiments are
presented and analyzed. Finally, we give conclusions in section
5.

II. RELATED WORKS ON SPATIAL INDICES
Spatial indices are used for the efficient processing of the

filter step. Many researches on spatial indices have been
studied so far. The index in these literatures, however, is almost
based on the disks[1], [2], [3], [6], [10], [12]. The R*-tree called
a representative spatial index based on disks is studied in [1].

A node of R*-tree is designed for one page of disks, and each
node tends to cluster the objects located in the extent(Xmin,
Ymin, Xmax, Ymax) of the node. Besides, the R*-tree also
shows outstanding query performances on non-uniformly
distributed data. The properties of R*-tree, such as a balanced
tree and a large number of fan-out, achieve an efficient data
retrieval, but we should endure the low storage utilization
reported by several literatures [9]. The low utilization may be a
fatal defect in the mobile devices with limited storages. In spite
of these drawbacks, the good performance of the R*-tree is
derived from a paged I/O and natural clustering which reduce
the number of seek operations.

There have been many works on indices of main memory
database systems recently [4], [5], [7], [8], [10]. The T-tree[5]
is the binary tree of which each node maintains several number
of data and just two number of link fields in order to maximize
storage utilization. It can accommodate text data, but it is
impossible for T-tree as an index to hold multidimensional
spatial data.

The CR-tree[4] based on main memory is the
cache-conscious version of the R-tree. To pack more entries in
a node, the CR-tree compresses MBRs. While the QRMBR
proposed in CR-tree saves memory, it yields low filtering
efficiency which is a fatal drawback in the mobile devices as
described above.

The literature [13], [14] proposed a clustering-based map
compression method which adapts a dictionary to a given
dataset. The proposed method achieves lower error than a static
dictionary compression such as the one used by the FHM
algorithm[15].

There have been many previous works on spatial joins such
as join indices[22], join z-ordering[23], and hash join[24]. The
most recent works focus on developing spatial index structures
like R-tree and its variants[17], [18], PMR Quad-tree[19], Grid
Files[16], Seeded-tree[21], and Filter-tree[20].

Furthermore, the spatial indices for moving objects have

been increasingly studied recently. 3DR-tree[27] based on
R-tree is desirable for trajectory query. TPR-tree[25] attempts
to represent the current and future position of the moving
objects by a function of the speed and orientation of moving
objects. LUR-tree[26] aims at performance improvements of
the spatial index for moving objects with the minimization of
update operation of the spatial index.

The previous works on the spatial access methods have not
studied the index for the mobile devices and not also conducted
experiments for performance evaluations. In this paper, we
propose a new spatial index structure using a MBR
compression scheme and hashing technique for the mobile map
service with desirable properties, such as high storage
utilization, filtering efficiency and quick response time.

III. A HASH BASED SPATIAL INDEX
Because the mobile devices own limited storages and low

computational resources, the spatial index for the mobile
devices should possesses the following properties.

First, small volume and simple structure. R-tree and its
variants are comparatively big volume and complicated
multi-level indices, and so they are unsuitable for PDA.

Second, quick response time for spatial queries(a simple
display operation). Because the main operation of mobile map
services is not update but simple search, the index for mobile
map service should makes small number of MBR comparisons
and high efficiency in the filter phase of basic spatial queries
such as point query and region query.

Third, easy to load a region partitioned regularly in order to
display full screen image of PDA. Generally speaking, spatial
indices with regular decomposition scheme, such as grid file,
are able to load easily all objects of a rectangle region, whereas
spatial indices with irregular decomposition scheme, such as
R*-tree, search multiple node for the sake of bulk loading
because each node may be overlapped.

Fourth, easy to manage non-uniformly distributed data.
R*-tree is efficient for any data distribution, whereas Grid File
delivers a fatally degraded search performance at non uniform
data.

Therefore, both R*-tree and Grid File which are
representative indices based on disks are unsuitable for PDA
spatial indices. We propose a new spatial index to obey above
four requirements. This index delivers high storage utilization
due to its simple structure, and it also has small number of the
MBR comparison due to the hash-based indexing technique.
Although it takes regular decomposition, it manages
non-uniformly distributed data very well.

A. Index Structure
The proposed index hashes the overall space on the basis of

X and Y coordinates of each object. The hash functions are as
follows.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

 Hx(x) = int[(x - Xmin)/(Xmax-Xmin)*Nx]

Nx is the number of buckets of X axis
 Hy(y) = int[(y - Ymin)/(Ymax-Ymin)*Ny]

Ny is the number of buckets of Y axis

The hash table is two dimensional structure and the
second(or subsequent) hashing is executed to prevent a bucket
overflows as shown in Fig. 1. Even though the data distribution
is non-uniformed and skewed, therefore the reasonable
response time is guaranteed without severe delay for spatial
queries.

Hx(X)

Hy(Y)

0 0.25 0.5 0.75 1

1

0.75

0.5

0.25

0

Overflow
(2nd hashing)

Fig. 1. Hash Table

The second hash function is similar to the first hash function

except for the min and max values of the extents. The min and
max values in the second function are changed the extent of
entire data space into the extent of the overflowed bucket. The
third or more hashing is executed successively until no longer
overflows. We assume that the Nx and Ny of second or more
hashing are a half of those of first hashing respectively. The
capacity(M) of a bucket is determined by the combinations of
the whole number of the objects, the desired volume of the
index and the desired search time. The volume of the index is in
reverse proportion to the M and the number of the MBR
comparison operations in the filter step.

The Nx, Ny and M are the consideration points in the index
design. Large Nx, Ny and small M bring about low
performance due to excessive subsequent hashing and the
redundancy of objects caused by multiple assignment
policy[16]. Also, small Nx, Ny and large M bring about low
performance due to extended search space. That is to say, when
the values of Nx, Ny and M are almost equal, the performance
of the proposed index is enhanced.

The 100 percent cell utilization can be possible in the text
data and uniform distributed spatial data, but it is not probable
in the non-uniformly distributed spatial data due to frequent
overflow and sub hashing. Therefore, we assume the cell
utilization to be about 65 ~75%. The cell utilization is defined
as follows.

 Cell_Utilization ≈ #_of_Obj / [(Nx*Ny)*M]

where Nx, Ny and M are equal.

The header of the index consists of an extent of entire map

and the number of buckets of both X and Y axes as shown as in
Figure 2.

Bucket(1,1) Bucket(1,Ny)

Bucket(Nx,1) Bucket(Nx,Ny)• • • •

• • • • • • • • • • • •

• • • •

Map Extent Nx Ny

#of Obj. Pointer to Bucket

Xmin Ymin Xmax Ymax

Fig. 2. Header Format

A bucket entry holds the number of objects and the pointers
to indicate each object in data file. The pointer is classified by
the number of objects as follows.

 [# of Obj. = 0] Empty Bucket Condition :

 Pointer = NULL;
 [# of Obj. 1~M] Normal Condition :

 Pointer to indicate each bucket
 [# of Obj. > M] Overflow Condition :

Pointer to sub hash table

Each bucket holds MBRs and Pointers of own objects as

follows

 <MBR of Object, Pointer to Object> * # of Obj.

One of the most important characteristics of GIS data in view
of the mobile device is that the volume of spatial data is
tremendous. To filter efficiently candidate objects, spatial
indices usually use MBRs organized by the coordinates of low
left corner and upper right corner as the approximation of each
spatial object. The 16 byte MBR is generally used for
two-dimensional key because a coordinate of each axis takes a
4 byte float number. The existing spatial indices are usually too
big to use in the mobile devices. The MBR keys also occupy
almost 80% of their indices. Therefore, we focus on the MBR
compression scheme for the sake of a small index.

The MBR compression scheme proposed in this paper takes
the hybrid representation scheme that makes use of the merit of
not only reasonable storage utilization but also good filtering
efficiency. The low left corner of the compressed MBR is
represented by relative position, but the upper right corner of
the compressed MBR is represented by the lengths(width,
height) of MBR as follows.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

 Compressed MBR =

Xmin(2byte, relative position)
Ymin(2byte, relative position)
Width(1byte, real or quantized)
Height(1byte, real or quantized)

In order to represent the width and height of MBR by means

of 1 byte respectively, a following method is introduced. To
begin with, if the length of MBR is smaller than threshold
value(β), the length is represented by actual value just as it is. If
not, the length is represented by a quantized value.

The β is determined by quantization level. The β is 255-n,
where n is quantization level. Therefore, the unit length(δ) of a
quantum is [length of bucket’s extent / n] and so the length by
quantized value is [β + (length of MBR) / δ].

When we use the proposed MBR compression schemes,
several decompression algorithms are generally necessary for
executing the spatial queries. However, we transform a given
query input coordinates into the compressed MBR coordinate
system instead of decompression of compressed MBR and so
the overheads caused by compression are easily lessen.

B. Procedures for Spatial Operation
In the following, we introduce the procedures of a point

query and a region query used frequently in the map service
applications. The input parameters of the point query procedure
are the header pointer of the index and X, Y coordinates
pointed by mouse. The return values are selected objects.

Procedure Point_Query()

Input : Header, Point
Output : selected objects

Read Extent from Header
X = Hx(Point.x);
Y = Hy(Point.y); // Hash X,Y
Read Information of Bucket(X,Y)
CASE(# of Obj.)
 [0] : “Not Found”
 [> M] : Bucket_Header = Pointer_to_Bucket;

Point_Query(Bucket_Header, Point) // Recursive Call
 [1~M] :S = Pointer_to_Bucket;
 FOR(all Obj. ∈ S) // from 1 to # of Obj.

IF(Obj.MBR ∩ Point ≠ ∅)
Result += Obj.

end of Procedure

The input parameters of the region query procedure are the

header pointer of the index and a query region which consists
of Xmin, Xmax, Ymin and Ymax. The return values are also
selected objects like point query.

Procedure Region_Query()

Input : Header, Region
Output : selected objects

Read Extent from Header
Xlow = Hx(Region.Xmin); Xmax = Hx(Region.Xmax);
Ylow = Hy(Region.Ymin); Ymax = Hy(Region.Ymax);
FOR(X = Xlow ~ Xmax)

 FOR(Y = Ylow ~ Ymax)
 {
 Read Information of Bucket(X,Y)
 CASE(# of Obj.)
 [0] : Continue
 [> M] : Bucket_Header = Pointer_to_Bucket;
 Region_Query(Bucket_Header, Region)
 // Recursive Call
 [1~M] : S = Pointer_to_Bucket;
 FOR(all Obj ∈ S) // from 1 to # of Obj.
 IF(Obj.MBR ∩ Region ≠ ∅)

Result += Obj.
 }
end of Procedure

The point and region query in the index is resolved by simple

hashing. In particular, to load all the objects located in a
rectangle area for simple display is straightforward because the
index decomposes data space regularly. In addition to that, the
query for skewed areas is easily executed by smaller number of
recursive calls. The impacts of the skews will be examined in
chapter 4.

IV. PERFORMANCE EVALUATION

A. Environments for Performance Evaluation
The test data for performance evaluation are Sequoia 2000

which is widely used as benchmark data. The data set consists
of several polygons in which each of them represents objects of
38 layers such as GIRAS Land use, Land cover, etc. Fig. 3
display these layers with overlapped and non-uniformed
distribution.

Fig. 3. Test Data Sequoia 2000

The H/W platform is Compaq iPAQ PDA with 32 Mbyte
memories for data area and the developing tool is Microsoft
embedded visual C++. The point query and region query are
carried out 1000 times respectively.

B. Volume of Index
Fig. 4 graphs the volumes of the two indices, R*-tree and the

proposed index, with the proposed MBR compression scheme.
The node size of R*-tree is 512 bytes and the bucket capacity of
top level of the proposed index is 50, the capacities of second

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

and more levels are assigned a value decreased by 5 compared
with that of previous level. The quantization level of the
compressed MBR is 50. The Nx and Ny of the proposed index
are both 50. The M_INDEX means the proposed index in Fig.
4. The C_MBR also means the compressed MBR in Fig. 4.

0

500

1000

1500

2000

2500

3000
KByte

R* 2932 1493

M_Index 1522 797

MBR C_MBR

Fig. 4. Size of Spatial Indices

The following results are obtained from Fig. 4. First, the
M_INDEX outperforms the R*-tree in the storage utilization
aspect when an identical MBR representation scheme is used
by each index. While the M_INDEX has very simple structure,
the R*-tree has complicated multi-level structure and the
property of the tree-balance which makes R*-tree yield the low
storage utilization.

Second, compared with the volume of spatial index
according to the MBR compression schemes, Fig. 4 tells us that
C_MBR also achieves a good compression effect.

C. Number of MBR Comparison in Filter Step
Fig. 5 depicts the number of the MBR comparison operations

which means search performance in the filter step of point
query. The M_INDEX generally outperforms the R*-tree. More
precisely, the M_INDEX with either C_MBR requires almost
50% of MBR comparison of R*-tree.

40

60

80

100

120

140
of MC

R* 83.58 112.42

M_INDEX 61.56 62.86

MBR C_MBR

Fig. 5. Number of MBR Comparison Operations

D. Filtering Efficiency of MBR Compression Scheme
The aim to use spatial indices is to execute efficiently filter

step as well as to minimize the candidate objects participated in
the refinement step. If the low computational resource of the
mobile devices is taken into consideration, the number of the
candidate objects is strongly related to overall execution time
of spatial operations. Table 2 summarizes the average number

of candidate objects after filter step of point and region query.
The areas of the query region are 0.1%, 0.4 and 1% of the
whole data space respectively. The experimental results
indicate that the number of candidate objects is almost
irrelevant to the kind of spatial indices, but the number of
candidate objects depends on the MBR compression schemes.
Even though C_MBR uses the quantization technique, the
number of the candidate objects in C_MBR is almost identical
with that of normal MBR because this quantization is only used
for big objects in C_MBR.

TABLE 2. NUMBER OF CANDIDATE OBJECTS

Query Region
MBR Rep.

PointQuer
y 0.1% 0.4% 1%

MBR 3.2 187.4 521.3 1038.9

CMBR 3.5 201.3 553.8 1052.0

E. Query Execution Time
In the following, the performances of M_INDEX are

evaluated. Table 3 describes the average execution time of the
spatial queries. Generally, M_INDEX improves the
performance of about 15% and more percents in comparison
with R*-tree. The results obtained from experiments coincide
with what was expected. Table 3 also shows that the query
execution time have nothing to do with the area of query region
mostly.

TABLE 3. QUERY EXECUTION TIME(UNIT : MS)

Query
MBR Rep. Point Query 0.1% 0.4% 1%

R*-tree
(C_MBR) 69.1 543.8 881.2 1215.2

M_INDEX
(C_MBR) 46.8 451.8 782.9 1103.0

F. Data Loading Time with Various Data Distribution
Table 4 summarizes the time to load the results of point and

region queries of M_INDEX and R*-tree without refinement
step. The query region is occupied with 1% of entire data space.
Each query is performed in random area and skewed area
respectively. We define the skewed area as where to hash 3 or
more times subsequently. The results clearly show that the
M_INDEX generally outperforms the R*-tree for the simple
display to load all the objects in a rectangle region. Far from
one’s anticipation, the M_INDEX carries out region queries
well in case of skewed area. Moreover, the performance of
point query of M_INDEX is also superior to that of R*-tree
regardless of data distribution.

TABLE 4. DATA LOADING TIME(UNIT : MS)

 M_INDEX
(C_MBR)

R*-tree
(C_MBR)

Random Area(1%) 313.5 427.9

Skewed Area(1%) 1805.2 1814.8

Point(Random) 32.0 53.7

Point(Skewed) 44.3 56.2

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

G. C MBR : Impacts of Bucket Capacity
In case of sequoia 2000 benchmark data and above

condition, the proper numbers of Nx, Ny and M are about 50.
Fig. 6 and 7 show that this seems to be a realistic assumption.
Fig. 6 depicts the volume of M_INDEX with various bucket
capacities(M). The Nx and Ny are assumed to be 50. As M
increases, the volume of M_INDEX with C_MBR decreases.

700
750

800
850

900
950

1000
1050

1100

20 30 40 50 60 70
Bucket Capacity

Vol.(Kb)

Fig. 6. Volume of M_INDEX

Fig. 7 depicts the number of MBR comparison in filter step

with various M. The number of MBR comparison in filter step
shows different aspects. As M decreases from 50 to 20, the
number of MBR comparison of the region query rapidly
increases. Also, as M increases from 50 to 70, the number of
MBR comparison of the region query increases to some degree.
In case of point query, there is nearly no deviation of the
number of MBR comparison except 70 bucket capacity.
Therefore, when the Nx, Ny and M are 50, the volume of index
and the number of MBR comparison are improved as expected.
As the purpose of this paper is concerned, we will leave the
detailed discussion of cell utilization and bucket capacity for
further researches.

0

50

100

150

200

250

300

20 30 40 50 60 70
Bucket Capacity

#of MC

Point Query

Region
Query(0.1%)

Fig. 7. Number of MBR Comparison

V. CONCLUSIONS
In this paper, a new spatial index is proposed. We would like

to propose a reliable spatial index for the mobile map service.
The requirements of this are high storage utilization, quick
response time and easy simple display. The proposed index has
simple structure for storage efficiency and uses a hashing
technique, which is direct search method, for search efficiency.

The experimental results indicate that the R*-tree, one of the

most efficient spatial index based on disk, is possible to be
inefficient in memory based mobile device system. On the
contrary, the proposed index outperforms R*-tree due to the
proposed index’s high storage utilization and retrieval
efficiency. The proposed MBR compression scheme requires
small storages and achieves high filtering efficiency. The
proposed index consumes about 50% less memory space in
comparison with R*-tree, and the number of MBR comparison
in filtering step of the compressed MBR is about 50% less than
that of R*-tree. In the MBR compression aspects, the spatial
index with the compressed MBR requires about 50% smaller
than the spatial index with normal MBR.

In summary, it seems reasonable to conclude that the
proposed spatial index structure is appropriate for the spatial
index in the mobile devices with small memory space and low
processing capacity.

Furthermore, the index is expected to be useful for mobile
map service, ITS(Intelligent Transportation System),
LBS(Location Based Service) to have been increasingly
studied recently.

REFERENCES
[1] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “R*-tree : An Efficient

and Robust Access Method for Points and Rectangles”, Proc. of Int. Conf. on
ACM SIGMOD, 1990, pp. 322-331.

[2] A. Guttman, “R-trees: A dynamic index structure for spatial searching”, Proc.
of Int. Conf. on ACM SIGMOD, 1984, pp. 47-57.

[3] E.G. Hoel, H. Samet, “A Qualitative Study of Data Structures for Large Line
Segment Databases”, Proc. of Int. Conf. on ACM SIGMOD, 1992, pp.
205-214.

[4] K.H. Kim, S.K. Cha, K.J. Kwon, “Optimizing multidimensional index trees for
main memory access”, Proc. of Int. Conf. on ACM SIGMOD, 2001.

[5] T.J. Lehman, M.J. Carey, “A Study of index structures for main memory
database management system”, Proc. of Int. Conf. on VLDB, 1986, pp.
294-303.

[6] H. Lu, B.C. Ooi, “Spatial Indexing : Past and Future”, IEEE Data Engineering
Bulletin, Vol. 16, No. 3, 1993, pp 16-21.

[7] J. Rao, K.A. Ross, “Cache conscious indexing for decision-support in main
memory”, Proc. of Int. Conf. on VLDB, 1999, pp. 78-89.

[8] J. Rao, K.A. Ross, “Making B+-trees cache conscious in main memory”, Proc.
of Int. Conf. on ACM SIGMOD, 2000, pp. 475-486.

[9] H. Samet, “The Design and Analysis of Spatial Data Structures”, Addison
Wesley, 1990, pp. 507.

[10] A. Shatdal, C. Kant, J.F. Naughton, “Cache conscious algorithms for
relational query processing”, Proc. of Int. Conf. on VLDB, 1994, pp. 510-521.

[11] M. Stonebraker, J. Frew, K. Gardels, J. Meredith, “The SEQUOIA 2000
Storage Benchmark”, Proc. of Int. Conf. on ACM SIGMOD, 1993, pp. 2-11.

[12] K.Y. Whang, R. Krishnamurthy, “The Multilevel Grid Files – a Dynamic
Hierarchical Multidimensional File Structure”, Proc. of Int. Conf. on
Database Systems for Advanced Applications, 1991, pp. 449-459.

[13] S. Shekhar, Y. Huang, J. Djugash, “Dictionary Design Algorithms for Vector
Map Compression”, Proc. of Data Compression Conf(Abstract), 2002, pp.
471.

[14] S. Shekhar, Y. Huang, J. Djugash, C. Zhou, “Vector Map Compression : A
Clustering Approach”, Proc. of 10th ACM int. Symposium on Advances in
GIS, 2002, pp. 74-80.

[15] P.W. Wong, J. Koplowitz, “Chain Codes and Their Linear Reconstruction
Filters”, IEEE Trans. On Information Theory, Vol. 38, No. 2, 1992, pp.
268-280.

[16] X. Zhou, D. J. Abel, David Truffet, “Data Partitioning for Parallel Spatial Join
Processing”, Proc. of Int. Conf. on SSD, 1997, pp. 178-196.

[17] T. Brinkhoff, H.-P. Kriegel, R.Schneider, B. Seeger, “Efficient Processing of
Spatial Joins Using R-trees”, Proc. ACM SIGMOD Conf., 1993, pp. 237-246.

[18] T. Brinkhoff, H.-P. Kriegel, R.Schneider, B. Seeger, “Multi-Step Processing
of Spatial Joins”, Proc. ACM SIGMOD Conf., 1994.

[19] E.G. Hoel, H. Samet, “Data-Parallel Spatial Join Algorithms”, Int. Conf. On
Parallel Processing, 1994, pp. 227-234.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

