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Abstract—Dense subgraphs of Protein-Protein In-
teraction (PPI) graphs are assumed to be potential
functional modules and play an important role in
inferring the functional behavior of proteins. PPI
graphs are known to be scale free, and this property
makes the process of isolation of dense subgraphs very
hard. This paper describes a new graph theoretic
clustering algorithm, that detects densely connected
regions in large PPI graph. The method is based on
finding bounded diameter subgraphs around a seed
node. The algorithm has the advantage over other
graph clustering methods of being very simple and
efficient. This algorithm is tested on yeast PPI graph
and the results are compared with some of the exist-
ing algorithms.
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1 Introduction

Proteins are important components of life. It is known
that proteins do not act individually. In fact, to fully
understand the cell machinery, simply listing, identify-
ing and determining the function of proteins in isola-
tion is insufficient [1]. Biological processes are performed
by groups of proteins rather than by an individual pro-
tein. The interactions between proteins are important
for many biological functions. Protein-protein interac-
tions (PPI) are fundamental for virtually every process
in a living cell. Information about these interactions im-
proves our understanding of diseases and can provide the
basis for new therapeutic approaches. An investigation
of PPI mechanisms begins with the representation and
characterization of the PPI graph structure. The sim-
plest representation is a graph, with proteins as nodes and
two nodes are connected if and only if the corresponding
proteins interact physically [17]. Since the information
about protein interactions predominantly originates from
experimental data, different experimental environments
may result in different outputs. Hence, we can consider
the reliability of each interaction as the edge weight of
the interaction graph. In a weighted graph model, the
weight of each edge is a positive number between 0 and
1. The closer to 1, the more reliable is the interaction.
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The PPI graph is a scale free network, which means the
degree distribution follows a power law [11, 15, 16, 26].
Hence, most proteins participate in few interactions, and
few proteins participate in a large number of interactions.
The topology of the PPI graph consist of a few central
cores of proteins while a significant amount of interac-
tions and the rest of the proteins are either disconnected
or connected to a small number of proteins. Moreover,
nodes with high degrees are usually not connected to each
other [20].

1.1 Clustering PPI networks

The goal of clustering a graph is to find a set of nodes
that share some common properties. Similarly, clustering
in biological networks is being applied to identify some
biological relevant functions. Specifically, in PPI graphs
the goal is to find proteins with similar functionalities.
Proteins in a highly connected subgraph of PPI usually
share a common function [5]. Therefore, a highly con-
nected subgraph like clique or near clique in a PPI graph
can be used to predict the function of uncharacterized
proteins [7]. Finding a clique with a maximum size is a
NP-complete problem. Hence, some approximation algo-
rithms have been developed to give some near optimal
solutions.

Spirin and Mirny [23] proposed an enumeration method
to count the number of complete subgraph of a given
graph. In general, listing all complete subgraphs of given
graph is NP-complete. However, they used the fact that
if a subgraph is not a clique none of its supergraphs are
cliques. The process starts with a small size clique and
adds new nodes to enlarge the clique as much as possi-
ble. This approach has several drawbacks. First, it is
just finding all fully connected subgraphs; however, in re-
ality, we may possibly have a near clique and not a fully
connected subgraph. Second, the enumeration method is
very slow, especially when the graph has a large number
of nodes and edges. To overcome these problems, they
introduced a new approach for finding highly connected,
but not necessarily fully connected subgraphs. In their
later approach they formulated the problem as an opti-
mization problem to identify a set of n nodes that maxi-
mize the object function 2m

n(n−1) , where m is the number
of edges in the induced graph over n nodes. Hence, when
the objective function is 1, the subgraph is a clique. A
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Monte Carlo approach is used to optimize the procedure.
Samanta and Liang [21] used a statistical method to find
proteins that share a significantly large number of com-
mon neighbors. Subsequently, they found the statistical
significance of each pair of proteins, and combined the
pairs of proteins with least value. Bader and Hogue [2]
described a clustering algorithm based on vertex weight-
ing by local neighborhood density and outward traversal
from a locally dense seed protein to isolate the dense re-
gions according to given parameters. Yu and et al. [1, 27]
introduced a soft clustering method. This method softly
assigns data to clusters in a probabilistic way. A hierar-
chical clustering derived in this method merges the low
level clusters into high level ones. Cui et al. [7] intro-
duced an algorithm for finding cliques and near cliques
in PPI network. They proved that their method results in
clusters that share at least one common function. Bader,
Christopher and Higue [2] presented a clustering algo-
rithm, MCODE. The molecular complex detection algo-
rithm, MCODE, consists of three phases: vertex weight-
ing, complex prediction and optimal post processing step.
The weighting of nodes in based on the core clustering
coefficient instead of standard clustering coefficient to in-
crease the weight of heavily interconnected vertices. Once
the weights are computed, the algorithm traverses the
weighted graph in a greedy fashion to isolate densely con-
nected regions. The post processing step filters or adds
proteins based on connectivity criteria.

So far, one of the most successful clustering proce-
dures used in deriving complexes from protein interac-
tion networks seems to be the Markov Cluster algorithm,
MCL[9]. Unlike most hierarchical clustering procedures,
this algorithm considers the connectivity properties of the
underlying network. Recently, in a novel promising clus-
tering procedure termed Affinity Propagation, AP, was
proposed [10]. Affinity propagation identifies represen-
tative examples within the dataset by exchanging real-
valued messages between all data points. Points are then
grouped with their most representative exemplar to give
the final set of clusters. Vlasblom and Wodak [25] com-
pared the performance of the AF and MCL procedures.
Their analysis shows that the MCL procedure is signifi-
cantly more tolerant to noise and behaves more robustly
than the AP algorithm. MCL thus remains the method
of choice for identifying protein complexes from binary
interaction networks.

There is another type of clustering which was proposed
by Girvan-Newman [12]. The Girvan and Newman algo-
rithm is a methods used to detect modules in complex
systems. The notion of a module is related to clustering,
though it isn’t quite the same. A module consists of a
subset of nodes within which the node-node connections
are dense, and the edges to nodes in other modules are
less dense [12]. The original Girvan-Newman algorithm
does not include a clear definition of module. Several def-

inition of modules based on different criteria have been
proposed. Lue and et al. defined a module in a network
as a subgraph that has more internal edges than external
edges [19]. They also provided an algorithm to find the
modules in a PPI graph.

As we mentioned above, many network cluster identifi-
cation algorithms have been developed. However, each
algorithm might dissect a network from a different as-
pect that may provide different insight on the network
partition. Dong, Bing and Han [8] evaluated the per-
formance of different cluster detection algorithms. They
compared the biological coherence of the network clus-
ters by different algorithms. In particular, they evaluated
the clusters found by the algorithms MCL, MCODE and
Girvan-Newman. The comparison of the resulting net-
work clusters indicated that clusters found by MCL and
MCODE have a higher biological coherence than those
by the Girvan-Newman algorithm.

1.2 Our Contribution

Accumulating results suggest that proteins with smaller
hop distance in PPI are most likely to have similar func-
tionalities.In this paper we present a new method of clus-
tering. The goal of the algorithm is to find clusters that
the distance of any two proteins within the cluster is
bounded. The Bounded Diameter algorithm, BD, is a
recursive algorithm that finds a maximal bounded diam-
eter subgraph of PPI graph. The algorithm recursively
calls a subroutine that take a maximal bounded diameter
subgraph of diameter d and returns a maximal bounded
diameter subgraph of diameter d + 1. Finally, the results
of our method on Yeast PPI are compared against the
results of MCODE and MCL algorithms. Based on [25]
and [8] the clusters found by MCL and MCODE have a
higher biological coherence.

2 Clustering Algorithm

The classic computational approach to find protein com-
plexes is based on the connections in the network. The
common principal in this method is that proteins that
lie closer to one another in PPI graph are more likely to
have similar functions. As it can be seen in Figure 1,
there is a high correlation between the similarity of two
proteins and their hop distance in PPI graph [22]. Hence,
the closer the two proteins are in the network the more
similar are their function.

One of the simplest methods to predict the function of
a protein is based on the known function of its direct
neighbors. Although this method is very simple, it is not
effective as it does not assign very significant values. One
of the reasons for this could be that the topology of the
network is not fully considered. Experiments with pro-
teins suggest that dense subgraphs of PPI graph represent
a biological meaningful unit such as functional module or
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protein complex. In literature, density of a graph is being
measured by different methods. Mostly, a graph is called
dense if the number of edges is close to the total number
of edges in a complete graph with the same number of
nodes. Considering that a complete graph over n node
has n(n−1)

2 edges, it is natural to consider the density fac-
tor of a graph G to be 2m

n(n−1) , where m is the number of
edges in G. Finding all subgraphs of a given graph with
a fix density factor is an NP-complete problem.

As we mentioned previously in this paper, there are a lot
of algorithms proposed to find approximately maximum
dense subgraphs. To the best of our knowledge, none of
these algorithms consider a bounded diameter near clique
subgraphs. As Figure 1 suggested, proteins with similar
functionalities are usually within two hop distance from
each other. This is the main motivation of our algorithm.

2.1 Definition and Notations

Let G = (V,E) be an undirected graph, and H be a
subset of V . We define degH(v) to be the number of
neighbors of v in H, and deg(v) = degG(v). N(v) is the
set of direct neighbors of node v and NH(v) = N(v)∩H.
We define N(S) = ∪v∈SN(v) where S ⊆ V . Similarly
we can define NH(S). We note diam(K) as diameter of
subgraph K of G. A graph is 2-connected if there does
not exist any node whose removal disconnects the graph.

2.2 Algorithm for Finding Near Complete
Subgraph

In this section a new recursive algorithm is presented to
identify clusters of bounded diameters within a protein
interaction network. The Bounded Diameter Clustering
algorithm starts at single point in the network as seed
node. This algorithm recursively calls a subroutine to
compute a maximal bounded diameter subgraph of the
network. The theoretical foundations for this algorithm
are as follow.

Lemma 1. Let H = (VH , EH) be a subgraph of G =
(V,E) of diameter d. Suppose u is a node in V − VH

such that diameter of H + u increases to d + 1. Let v be
another node in V −VH . diam(H +u+v) = diam(H +u)
if ∅ �= NH(v) ⊆ NH(u).

Proof. It can be easily observed that the length of the
shortest path from each node in H to v is at most d + 1.
Since NH(v) ⊂ NH(u), dist(u, v) ≤ 2. Hence diam(H +
u + v) = diam(H + u).

Lemma 2. Let H be a maximal subgraph of G of diam-
eter d. Let {v1, · · · , vl} be a set of nodes in G − H. If
∩l

i=1NH(vi) �= ∅ then diam(H + {v1, · · · , vl}) = d + 1.

Proof. H is a maximal subgraph of G of diameter d.
Adding any node to H will increase the diameter of the

new graph. Let v ∈ ∩l
i=1NH(vi). For any node u in H,

d(u, vi) ≤ d(u, v) + d(v, vi) ≤ d + 1, i = 1, · · · , l.

Algorithm 1 Bounded Diameter maximal Sub-
graph(H,G)
Input: graph G = (V,E) and a subgraph H = (VH , EH)
of diameter d
Output: a maximal subgraph of G containing H and of
diameter d + 1
1: S = N(VH), T = VH , P = VH

2: while S and P are nonempty do
3: let v be a node with maximum degT

4: if degS(v) �= 0 then
5: T = T ∪ {v}, P = P ∩ NH(v), S = S ∩ NS(v)
6: elseP = P − {v}
7: end if
8: end while
9: Return G[T ]

The input of the algorithm 1 is a maximal subgraph of
diameter d and the output is a maximal subgraph of di-
ameter d + 1. The algorithm starts with the set of all
neighbors of all nodes in the input graph, S. T is the
set of all nodes in the output graph. T = VH grantees
that the output graph contains the input graph as a sub-
graph. The first node that is selected to be in T is a node
of highest degree in S. A node could be a candidate node
for the next step selection, if and only if adding it to the
graph found in previous step does not increase the diam-
eter. The set of candidate nodes, in initial step, is the
same as set S. After each node selection, set P will be
updated to P ∩ NH(V ). This satisfies the conditions of
Lemma 2. Therefore, the diameter of the output graph
will not exceed d+1. The algorithm stops when there are
no more nodes that can be added to the output graph.
This happens either if there are no more nodes left in S
or adding any other node will increase the diameter of the
graph to more than d+1. This algorithm is a subroutine
of algorithm 2.

Algorithm 2 Bounded Diameter Clustering Algo-
rithm(d)
Input: seen node v of graph G(V,E) and diameter d
Output: a maximal subgraph of G of diameter d contain-
ing the seed node and
1: pivot = v
2: for i = 1 to d do
3: pivot = Bounded − Diameter − Maximal −

Subgraph(pivot, G)
4: end for
5: Return pivot

The running time of algorithm 2 is O(dn), where n is the
number of nodes in the graph G. The algorithm starts at
a seed node, and returns a maximal subgraph of diameter
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Figure 1: Correlation between protein functional distance and network distance. x-axis: distance in network. y-axis
average functional similarity of protein pairs that lie at the specified distance. The functionality of two proteins is
measured using the semantic similarity of their gene ontology categories. (This figure is from a paper by Sharan,
Ulitsky and Shamir 17)

d. Line 3 of the algorithm recursively calls the algorithm
1 as a subroutine. The diameter of the output graph, d,
is determined by the user. However, Figure 1 suggests
that the best value is 2. Later, we will test BD algorithm
for d = 2.

Theorem 1. The output of algorithm 2 is a maximal
subgraph of diameter d and containing the input graph.

Algorithm 2 is very fast in theory, and has several ad-
vantages over all other existing algorithms. Most other
fast and efficient algorithms need also several extra steps
including, preprocessing of inputs and postprocessing of
the results. For example, MCODE post processes the
results to filter complexes that do not contain at least
a graph of minimum degree 2. In this algorithm a new
node is added to a cluster if some predefined parameters
are above the threshold.

As we stated before, dense subgraphs of a PPI net-
work are usually carrying important information regard-
ing common functionalities and complexes. The density
factor of a subgraph is a measure to show how close the
subgraph is to the complete graph. Here we will show
that the density of subgraphs found by algorithm 2 are
always larger than a threshold, which is a function of the
diameter and the number of nodes in the subgraph. Be-
lotserkosky [3] showed that there is a relation between
the number of edges in a 2-connected subgraph and its
diameter.

Theorem 2. Let G = (V,E) be a 2-connected graph of
diameter d. If |V | is sufficiently large compared to d, then
|E| ≥ �(dn − 2d − 1)/(d − 1)�, where |V | = n.

In this paper we are just considering subgraphs of diam-
eter at most 2. The reason is that the average functional
similarity will decrease to less than half for PPI subgraphs
of diameter more than 2. The output of algorithm 2 may
not be a 2-connected graph. In fact, the graph may con-
tain several leaf nodes. However, based on the way that

the algorithm is choosing nodes, all leaf nodes have the
same parent in the subgraph. Hence, the result has a
2-connected block, and a set of leaf nodes connected to
one of the nodes in the 2-connected block.

Theorem 3. Suppose G = (V,E) be an output subgraph
of algorithm 2 of diameter 2. The density factor of G is
at least 4

n−1 .

Proof. Let V1 and V2 be the set of nodes in a 2-connected
block and leaf nodes, respectively. Let E1 be the set of
edges in the induced subgraph G[V1] and E2 be the rest
of edges. Then |E| = |E1| + |E2|. Lemma 2 implies
that |E1| ≥ 2|V1| − 5. Hence, |E| ≥ 2|V1| + |V2| − 5 =
|V |+|V1|−5. The density of the graph G can be computed
as follows,

2|E|
|V |(|V | − 1)

≥ 2(|V | + |V1| − 5)
|V |(|V | − 1)

≥ 2
|V | − 1

+
2|V1|

|V1|(|V | − 1)
≥ 4

|V | − 1
.

3 Results and Discussions

Identifying hidden topological structures of protein inter-
action networks often unveil biologically relevant func-
tional groups and structural complexes. We have devel-
oped an efficient algorithm for finding bounded diame-
ter subgraphs in protein interaction networks. Here, we
compare the BD algorithm with two algorithms com-
monly utilized for extracting functional modules from
PPI graphs, MCODE and MCL. A recent study [4] com-
pared these algorithms (among others) showed that the
MCL algorithm, in particular, was very efficient in iden-
tifying protein complexes from protein interaction net-
works.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



3.1 Comparison of BD and MCODE

We tested the algorithm on a dataset with 14131 interac-
tions among 4623 yeast proteins, which is the combined
data of Ito et al. [13], and Uets et al. [24]. In this section
we compare the results of our algorithm and MCODE.
We analyze the highest ranked clusters by MCODE and
the corresponding BD algorithm clusters using the Cel-
lular Component ontology to compare the effectiveness
of these algorithms, in terms of identifying protein com-
plexes. The first best scoring cluster in MCODE is com-
posed of 26 proteins that all belong to the known com-
plex, anaphase promoting complex (GO:31145). BD al-
gorithm did capture the same complex with exact same
set of proteins as one of its clusters.

We use gene ontology, GO, level as a measure of cluster
function. The gene ontology is structured as directed
acyclic graphs with exactly one source node, all. We can
define the GO level of a gene as the length of the longest
path from a specific gene to all. If a gene is connected
to all via a relatively short path, the gene is common
among a relatively large class of proteins. Hence we can
consider it as less specific. On the other hand, if the
length of the path is relatively large, the gene is listed
in a smaller number of proteins. Figure 2(left) illustrates
the GO level of protein clusters found by MCODE and
BD. As this figure is suggesting clusters found by BD
represent more specific information regarding the gene
function of the cluster.

The p-values give a good indication about the promi-
nence of a given functional category. Figure 2(right)
shows that the p-value of both algorithms are in the same
range. Another factor we tested was the similarity fac-
tor of each cluster. The similarity factor of each clus-
ter can be defined as This factor shows how similar the
nodes in a cluster are, in term of functionality. Obvi-
ously, the desire is to capture protein clusters with high
similarity factors. Figure 3(a) shows that the similarity
factor of clusters founded by MCODE and BD are very
close. However, some of the clusters that are found by
MCODE are cliques in the PPI network, which are sup-
posed to show a higher rate of similarity among their
proteins. Figure 3(b) is showing the relation of similar-
ity factor of non-clique clusters found by MCODE verses
the similarity factor of clusters founded by BD. As this
figure illustrates, BD algorithm achieves a better result
in terms of similarity.

3.2 Comparison of BD and MCL

Next, we compared the clusters obtained by the MCL
algorithm with the ones from BD. The two-hybrid inter-
actions of the budding yeast (Saccharomyces cerevisiae)
[13], [14] is being used for this comparison. This dataset
contains 4549 interactions among 3282 proteins. This
dataset contains extra information such as literature shar-

ing score, which has been used as the edge weight for
MCL algorithm. Like previous section we compare the
clusters based on p-value distribution, GO level and sim-
ilarity factor.

4 Conclusion

Identifying protein clusters within a biological systems is
essential for understanding of the high-level organization
of the cell. In this study, we implied the fact that proteins
with small hop distance in PPI network usually have sim-
ilar functionalities [22]. A new recursive algorithm was
designed to capture clusters of bounded diameters from
protein interaction networks. Our new approach is based
on the topological characteristics of the network. In the
proposed algorithm, first a maximal clique is identified
around the seed node in PPI network. Then by adding
nodes progressively the clique is extended to maximal
subgraph of diameter d, where d is a user defined value.
We compared BD with MCODE and MCL. Computer
experiments showed that BD has a superior precision in
complex prediction.
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