

Abstract—This paper discusses a new hybrid ant colony

optimization algorithm and its characteristics are as follows. (1)
A greedy mechanism is combined to ACO in order to reduce
calculation time, and new hierarchical constraints are proposed
for combining it to ACO. (2) A new pheromone update rule is
introduced to consider intensification and diversification.
Experimental results using benchmark data prove the validity
of the proposed algorithm, in comparison with the conventional
ACO, of which the proposed algorithm improves the processing
time.

Index Terms—Ant Colony Optimization, Hierarchical hybrid
approach, High speed processing.

I. INTRODUCTION
 Combinational optimization problem can be applied to

various engineering fields. However, most of these problems
are classified into non-deterministic polynomial time
(NP)-hard. In practical applications of the combinational
optimization problem, many cases need semi-optimal
solution. Semi-optimal solution is enough accuracy in many
cases of practical applications of the combinational
optimization problem.

Ant Colony Optimization (ACO) [1],[2] is an algorithm
which can find such the semi-optimal solutions efficiently.
Especially, the searching performance of ACO is superior to
other algorithms, such as Genetic Algorithm (GA) [3]-[5]
and Simulated Annealing (SA) [6], if it is applied to
Traveling Salesman Problem (TSP) [7]. The search
mechanism of ACO is based on positive feedback using
pheromone communication among ants. All ants mark their
own trails using pheromone, when the ants move. Figure.1
shows an example of placed pheromone on the route. In this
example, there are two routes that pheromone was placed.
Route B has more pheromone than route A. Because the
pheromone amount that is marked by an ant is the same, and
the evaporation speed of pheromone is also the same.
Therefore, the following ants select route B, and positive
feedback works as reinforcement. Thus, ACO realizes to find
the shortest route using pheromone communication.
However, ACO has the inherent problem of substantial
processing time, because it requires a lot of repetitive
calculation to obtain the semi-optimal solutions.

This work was supported in part by the Telecommunication Advancement

Foundation (TAF) in JAPAN. The authors would like to thank their supports.
Masaya Yoshikawa and Tomohiro Taguchi are with Department of

Information Engineering, Faculty of Science and Engineering, Meijo
evolution_algorithm@ yahoo.co.jp).

(1) Examples of two routes

(2) Reinforcement by feedback
Fig.1 Example of Ant Colony Optimization

In this paper, we propose a new hybrid ACO algorithm to

achieve high-speed processing. The characteristics of the
proposed algorithm are as follows: (1) A greedy mechanism
is combined to ACO in order to reduce calculation time, and
new hierarchical constraints are proposed for combining it to
ACO. (2) A new pheromone update rule is introduced to
consider intensification (exploitation of the previous
solutions) and diversification (exploration of the search
space). Experimental results using benchmark data prove
effectiveness, in comparison with the conventional ACO, of
which the proposed algorithm improves the processing time.
This paper is organized as follows. Section 2 briefly surveys
ACO and explains the searching mechanism of ACO. The
proposed algorithm is discussed in Section 3. Section 4
reports the experimental results. We conclude this study in
section5.

II. RELATED WORK
ACO is a general term of the algorithm that imitates the

behavior of which ants gather of food. Ant System that is
proposed by Dorigo [1] is the basic model of these
algorithms.

Hierarchical Hybrid Ant Colony Optimization
for High Speed Processing

Masaya Yoshikawa, Tomohiro Taguchia

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Many ACOs [8]-[14] applied to TSP are based on AS. Ant
Colony System (ACS) [2] is the expanded algorithm of AS,
and it is reported that ACS is one of the best algorithms when
applying to TSP. Therefore, we adopt ACS as a base
algorithm, hereafter in this paper, ACO represents ACS.
ACO utilizes two kinds of evaluation. One is static evaluation,
and the other is dynamic one. The static evaluation depends
on the target problem, and usually adopts a reciprocal of
distance when applying ACO to TSP. That is, the short
distance is evaluated higher than the long distance in the
static evaluation.

On the other hand, the dynamic evaluation adopts
pheromone amount as an evaluation. ACO has two kinds of
pheromone update rules. One is the local update rule, and is
applied when ants move. It is defined as follows.

(1)

Where, ψ is a decay parameter in local update rule, τ(i,j) is

a pheromone amount one the route between city i and city j,
τ0 is the initial value of pheromone. Thus, local update rule
adds the pheromone to the selected route between two points,
when the ant moves.

The other is the global update rule, and is applied to the
shortest tour when all ants complete their tours. It is defined
as follows.

(2)

Where, T+ is the best tour, and L+ is the distance of the best

tour. Regarding the selection of ant’s move, the concretely
procedure is as follows. First, the random number q between
from 0 to 1 is generated. Next, q is compared with benchmark
(parameter) q0. When q is smaller than q0, the city that has the
largest value of the product is selected. Otherwise, ant k in
city i selects the move to city j according to probability pk and
it is defined as follows.

(3)

η(i,j) is a reciprocal of the distance between city i and city

j, β is a parameter which controls the balance between static
evaluation value and dynamic one, and nk is a set of un-visit
cities. Therefore, the selection probability is proportional to
the product of the static evaluation and the dynamic one as
shown in Fig.2.

III. HYBRID ANT COLONY OPTIMIZATION
The processing of which each ant selects the move requires

the most computing time. In the selection procedure of ant's
move, the product is calculated as shown in section 2. Here,
the static evaluation is constant while optimizing.

Fig.2 Selection mechanism in ACO

That is, calculations of pheromone amount cause the long

computing time. It is necessary to calculate the local update
rule and the product of the static evaluation and the dynamic
one when each ant selects each city.

To reduce computing time, the proposed algorithm
introduces greedy mechanism that utilizes only static
evaluation that is constant while optimizing. The greedy
mechanism can reduce the number of calculation steps,
however, it is easily trapped at local optima.

In order to prevent form trapping at local optima, the
proposed algorithm limits a period of which the greedy
mechanism is applied. Specifically, the greedy mechanism is
introduced at an early phase of optimizing. Figure.3 shows an
example of the phase of which the greedy algorithm is
introduced. In Fig.2, iteration represents a period that each
ant completes each a tour.

Moreover, the greedy mechanism is applied to only the
first half of the iteration. Figire.4 shows an example of the
procedure to complete a tour. It is important to achieve the
well-balanced of the trade-off between intensification and
diversification to improve the searching performance. The
greedy mechanism functions as intensification.

Regarding the diversification, the proposed algorithm
applies the global update rule to the second shorter tour, in
addition to the shortest tour. Thus, the proposed algorithm
considering intensification and diversification achieves the
hybrid optimization with greedy algorithm effectively.

Fig.3 Example of the phase of which the greedy algorithm is
introduced

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Fig.4 Example of the procedure to complete a tour

IV. EXPERIMENTS AND DISCUSSION
In order to evaluate the proposed algorithm, we conduct

several experiments using TSP.LIB benchmark data. All
experiments are executed ten times.

First, we compare the proposed algorithm with
conventional ACO. Experimental results are shown in
Tables.1, 2, and 3. In these experiments, parameter q is
different. The parameters of Tables.1, 2, and 3 are 0.25, 0.50,
and 0.75 respectively. Each value of tour distance and
processing time in these tables is calculated as the average
value of 10 trials.

TABLE.1
 RESULTS OF q = 0.25

Algorithm # iteration Distance Time (s)
Conventional N/A 22049 37.84

200 22439 37.62
400 22456 37.52
600 22609 35.05 Proposed

800 22492 35.86

TABLE.2
 RESULTS OF q = 0.50

Algorithm # iteration Distance Time (s)
Conventional N/A 21876 38.69

200 22005 38.24
400 21983 36.15
600 22307 35.38 Proposed

800 22365 32.85

TABLE.3
RESULTS OF q = 0.50

Algorithm # iteration Distance Time (s)
Conventional N/A 21768 38.43

200 21821 38.48
400 21810 37.48
600 21845 35.13 Proposed

800 21970 34.27

In these tables, #iteration represents the timing that it
switches ACO without greedy mechanism from ACO with
one. That is, 200 in #iteration indicates that ACO is applied
until 200 iterations and then Greedy is applied from the 201
iteration. Similarly, 400 in #iteration indicates that ACO is
applied until 400 iterations and then Greedy is applied from
the 401 iteration. Thus, the application frequency of Greedy
increases when the number of #iteration in these tables grows.
The proposed algorithm achieved high speed processing
compared with conventional ACO as shown in these tables.
That is, Greedy reduces calculation cost to obtain a solution
effectively. Moreover, the proposed algorithm maintains the
quality of solutions.

Next, we evaluate how to the greedy mechanism to
combine with ACO. Experimental results are shown in tables,
4, 5, and 6. “Greedy + ACO” represents the approach that the
greedy mechanism is introduced in the first half of the
iterations. In contrast, “ACO + Greedy” represents the
approach that the greedy mechanism is introduced in the
latter half of the iterations.

On the other hand, “Greedy => ACO” represents the
method that the greedy mechanism is introduced in the first
half of composing a tour. In contrast, “ACO => Greedy”
represents the method that the greedy mechanism is
introduced in the first latter of composing a tour. The greedy
mechanism enables to reduce the processing time even it is
only included, as shown in these tables. The proposed
approach shows the best performance in comparison with the
other hybrid approaches.

TABLE.4
COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM

 (q = 0.25)

(1) “ACO + Greedy” and “Greedy => ACO”

iteration Distance Time (s)
200 23008 35.49
400 22798 36.00
600 22733 35.97
800 22641 39.18

(2) “ACO + Greedy” and “ACO => Greedy”

iteration Distance Time (s)
200 22520 33.37
400 22512 37.75
600 22627 38.65
800 22513 38.55

(3) “Greedy + ACO” and “Greedy => ACO”

iteration Distance Time (s)
200 22520 33.37
400 22512 37.75
600 22627 38.65
800 22513 38.55

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

TABLE.5

COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM
 (q = 0.50)

(1) “ACO + Greedy” and “Greedy => ACO”

iteration Distance Time (s)
200 22473 32.59
400 22303 36.77
600 22169 36.96
800 22128 36.64

(2) “ACO + Greedy” and “ACO => Greedy”

iteration Distance Time (s)
200 22289 36.33
400 22243 36.31
600 21973 35.41
800 21973 36.67

(3) “Greedy + ACO” and “Greedy => ACO”

iteration Distance Time (s)
200 21938 38.64
400 22057 37.54
600 22002 36.79
800 22253 35.78

TABLE.6
COMPARISON OF THE DIFFERENT TECHNIQUES FOR GREEDY MECHANISM

 (q = 0.75)

(1) “ACO + Greedy” and “Greedy => ACO”

iteration Distance Time (s)
200 21998 34.13
400 21924 35.03
600 21853 37.64
800 21818 36.98

(2) “ACO + Greedy” and “ACO => Greedy”

iteration Distance Time (s)
200 21926 36.50
400 21936 37.21
600 21825 37.80
800 21757 38.04

(3) “Greedy + ACO” and “Greedy => ACO”

iteration Distance Time (s)
200 21798 38.29
400 21743 37.74
600 21939 37.49
800 21970 36.85

Lastly, we evaluate the diversification performance of the

proposed algorithm. Experimental results are shown in
Tables.7, 8, and 9. In these tables, “Best + Better” represents
the proposed algorithm without greedy algorithm phase.

TABLE.7

COMPARISON OF DIVERSIFICATION (q = 0.50)
Global update rule Distance Time (s)

Best 22049 37.84
Best + Better 22353 37.83

TABLE.8

COMPARISON OF DIVERSIFICATION (q = 0.50)
Global update rule Distance Time (s)

Best 21876 38.69
Best + Better 22109 38.52

TABLE.9

COMPARISON OF DIVERSIFICATION (q = 0.50)
Global update rule Distance Time (s)

Best 21768 38.43
Best + Better 21709 36.78

That is, it modifies the conventional ACO for applying the

global update rule to not only the shortest tour but also the
second shorter tour. The proposed algorithm enables not only
to reduce the processing time, but also to explore the search
space as shown in Table.9.

V. CONCLUSION
In this paper, we proposed a new hybrid ACO algorithm.

The proposed algorithm combined the greedy mechanism to
ACO in order to reduce calculation time, and new
hierarchical constraints were proposed for combining it to
ACO. Moreover, a new pheromone update rule enabled to
achieve the well-balance between intensification and
diversification. Experimental results using benchmark data
proved effectiveness, in comparison with the conventional
ACO, of which the proposed algorithm improves the
processing time.

Regarding future work, experiments using large-scale data
are the most important priority. We will also introduce a new
hybrid technique for diversification.

REFERENCES
[1] M.Dorigo, V.Maniezzo, A.Colorni, “Ant system: optimization by a

colony of cooperating agents”, IEEE Transactions on Systems, Man
and Cybernetics, Part B, Vol.26, No.1, pp.29-41, 1996.

[2] M.Dorigo, L.M.Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem”, IEEE Trans.
Evolutionary Computation, Vol.1, No.1, pp.53-66, 1997.

[3] Holland, Adaptation in Natural Artificial Systems, the University of
Michigan Press (Second edition ; MIT Press)(1992).

[4] Goldberg,D.E, Genetic algorithms in search optimization, and machine
learning; Addison Wesley,(1989)

[5] M.Yoshikawa, H.Terai, “Bus-Oriented Floor- planning Technique
Using Genetic Algorithm”, WSEAS Transactions. on Circuits and
System, Issue2, Vol.6, pp.253-258, 2007.

[6] R.A. Rutenbar, “Simulated annealing algorithms: an overview, IEEE
Circuits and Devices Magazine”, Volume 5, Issue 1, pp.19-26, 1989.

[7] J.Grefenstette et al., Genetic Algorithm for the Traveling Salesman
Problem, Proc. of 1st Int. Conf. on Genetic Algorithms and their
applications, pp.160-168, 1985.

[8] M.Yoshikawa: Hardware-oriented Ant Colony Optimization
Considering Intensification and Diversification, Witold Bednorz (ed.),

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Greedy Algorithms, I-Tech Publisher, Vienna, Austria, Chapter 19,
pp.359-368, 2008.

[9] M.Yoshikawa, H.Terai, Route Selection Algorithm based on Integer
Ant Colony Optimization, Proc. of IEEE International Conference on
Information Reuse and Integration, pp.17-21, 2008.

[10] M.Yoshikawa, H.Terai, “A Hybrid Ant Colony Optimization
Technique for Job-Shop Scheduling Problems”, Proc. of IEEE / ACIS
International Conference on Software Engineering Research,
Management & Applications, pp.95-100, 2006.

[11] H.M.Rais, Z.A.Othman, A.R.Hamdan, “Improved Dynamic Ant
Colony System (DACS) on symmetric Traveling Salesman Problem
(TSP)”, Proc. of International Conference on Intelligent and Advanced
Systems, pp.43-48, 2007.

[12] J.Ouyang, G.R.Yan, “A multi-group ant colony system algorithm for
TSP”, Proc. of International Conference on of Machine Learning and
Cybernetics, pp.117-121. 2004.

[13] Chengming Qi, “An Ant Colony System Hybridized with Randomized
Algorithm for TSP”, Proc. of Eighth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, vol.3, pp.461-465, 2007.

[14] Z.Cai, “Multi-Direction Searching Ant Colony Optimization for
Traveling Salesman Problems”, Proc. of International Conference on
Computational Intelligence and Security, pp.220 -223, 2008.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

