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Abstract—This paper describes a Parallel Grammatical
Evolution (PGE) that can evolve complete circuits using a
variable length of linear genome to govern the mapping of a
Backus Naur Form grammar definition. In order to increase
the efficiency of Grammatical Evolution (GE) the influence of
backward processing and an influence of several fitness
functions were tested. PGE with backward processing can also
take advantage of progressive crossover and mutation
operators. The algorithm is internally parallel and consists of
three different interconnected populations. A new non-tree
structure of GE was tested.

Index Terms—grammatical evolution, circuit optimization,
parallel evolution.

I. INTRODUCTION

    Grammatical Evolution (GE) [1] can be considered as a
form of grammar-based genetic programming (GP). In
particular, Koza’s genetic programming has enjoyed
considerable popularity and widespread use. Unlike a
Koza-style approach, there is no distinction made at this
stage between what he describes as function (operator in
this case) and terminals (variables). Koza originally
employed Lisp as his target language. This distinction is
more of an implementation detail than a design issue.
Grammatical evolution can be used to generate programmes
in any language, using Backus Naur Form (BNF). BNF
grammars consist of terminals, which are items that can
appear in the language, i.e. +, -, sin, log etc. and non-
terminal, which can be expanded into one or more terminals
and non-terminals. A non-terminal symbol is any symbol
that can be rewritten to another string, and conversely a
terminal symbol is one that cannot be rewritten.
    The major strength of GE with respect to GP is its ability
to generate multi-line functions in any language. Rather
than representing the programs as parse tree, as in GP, a
linear genome is used [1]-[3]. A genotype-phenotype
mapping is employed such that each individual’s variable
length byte strings, contains the information to select
production rules from a BNF grammar.
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    The grammar allows the generation of programs, in an
arbitrary language that are guaranteed to be syntactically
correct. The user can tailor the grammar to produce
solutions that are purely syntactically constrained, or they
may incorporate domain knowledge by biasing the grammar
to produce very specific form of sentences.
    Because, GE mapping technique employs a BNF
definition, the system is language independent, and
theoretically can generate arbitrarily complex functions.
There is quite an unusual approach in GEs, as it is possible
for certain genes to be used two or more times if the
wrapping operator is used. BNF is a notation that represents
a language in the form of production rules. It is possible to
generate programs using the Grammatical Swarm
Optimization (GSO) technique [2] with a performance,
which is similar to the GE. The relative simplicity, the small
population sizes, and the complete absence of a crossover
operator synonymous with program evolution in GP or GE
are main advantages of GSO. In the grammatical evolution
GE the different approach to the genotype and phenotype is
used. GE evolves a sequence of rule numbers that are
translated, using a predetermined grammar set, into a
phenotypic tree.
    Our approach uses a parallel structure of GE (PGE). A
population is divided into several sub-populations that are
arranged in the hierarchical structure [4]. Every sub-
population has two separate parts: a “male” group and a
“female” group. Every group uses quite a different type of
selection. In the first group a classical type of GA selection
is used. Only different individuals can be added to the
second group.  This strategy was inspired by harem system
in Nature that solves problem of an adaptation of a complex
organisms to microorganisms [5]. The biologically inspired
strategy increases an inner adaptation of PGE. This analogy
would lead us one step further, namely, to the belief that the
combination of GE with 2 different selections that are
simultaneously used can improve an adaptive behaviour of
GE [5], [6], [7]. On the principle of two selections we can
create a parallel GE with a hierarchical structure.

II. PARALLEL GRAMMATICAL EVOLUTION

     The PGE is based on the grammatical evolution GE [1], where
BNF grammars consist of terminals and non-terminals. Terminals
are items, which can appear in the language. Non-terminals can be
expanded into one or more terminals and non-terminals. Grammar
is represented by the tuple {N,T,P,S}, where N is the set of non-
terminals, T the set of terminals, P a set of production rules which
map the elements of N to T, and S is a start symbol which is a
member of N. For example, the BNF is used for our problem
below:

N = {expr, fnc}
T = {sin, cos, +, -, /, *, X, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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S = <expr>
and P can be represented as 4 production rules:
1. <expr> := <fnc><expr>

<fnc><expr><expr>
<fnc><num><expr>
<var>

2. <fnc> := sin
cos
+
*
-
U-

3. <var> := X
4. <num> := 0,1,2,3,4,5,6,7,8,9

The production rules and the number of choices associated
with them are in Table 1. The symbol U- denotes an unary
minus operation.

    Table 1: The number of available choices for every
production rule

rule no choices
1 4
2 6
3 1
4 10

     There are notable differences when compared with [1].
We don’t use two elements <pre_op> and  <op>, but only
one element <fnc> for all functions with n arguments. There
are not rules for parentheses; they are substituted by a tree
representation of the function. The element <num> and the
rule <fnc><num><expr> were added to cover generating
numbers. The rule <fnc><num><expr> is derived from the
rule <fnc><expr><expr>. Using this approach we can
generate the expressions more easily. For example when
one argument is a number, then +(4,x) can be produced,
which is equivalent to (4 + x) in an infix notation. The same
result can be received if one of <expr> in the rule
<fnc><expr><expr> is substituted with <var> and then with
a number, but it would need more genes.
There are not any rules with parentheses because all
information is included in the tree representation of an
individual. Parentheses are automatically added during the
creation of the text output.
    If in the GE solution is not restricted anyhow, the search
space is too large and can have infinite number of solutions.
For example the function cos(2x), can be expressed as
cos(x+x); cos(x+x+1-1); cos(x+x+x-x); cos(x+x+0+0+0...)
etc. It is desired to limit the number of elements in the

expression and the number of repetitions of the same
terminals and non-terminals.

III. BACKWARD PROCESSING OF THE GE

    The chromosome is represented by a set of integers filled
with random values in the initial population. Gene values
are used during chromosome translation to decide which
terminal or nonterminal to pick from the set. When
selecting a production rule there are four possibilities, we
use gene_value mod 4 to select a rule. However the list of
variables has only one member (variable X) and gene_value
mod 1 always returns 0. A gene is always read; no matter if
a decision is to be made, this approach makes some genes
in the chromosome somehow redundant. Values of such
genes can be randomly created, but genes must be present.
     The Fig. 1 shows the genotype-phenotype translation
scheme. The individual body is shown as a linear structure,
but in fact it is stored as a one-way tree (child objects have
no links to parent objects). In the diagram we use
abbreviated notations for nonterminal symbols: f - <fnc>, e
- <expr>, n - <num>, v - <var>.

IV. PROCESSING THE GRAMMAR

Fig. 1  Relations between genotype and phenotype in the
GE with backward processing [6]

     The processing of the production rules is done
backwards – from the end to the beginning of the rule (Fig.
2). Then production rule <fnc><expr1><expr2> is
processed as <expr2><expr1><fnc>. We use <expr1> and
<expr2> at this point to denote which expression will be the
first argument of <fnc>.
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Fig. 2 Proposed backward notation of a function tree
structure

Fig. 3. Crossover in GE with backward processing [6]

    The main difference between <fnc> and <expr>
nonterminals is in the number of real objects they produce
in the individual’s body. Nonterminal <fnc> always
generates one and only one terminal; on the contrary
<expr> generates an unknown number of nonterminal and
terminal symbols. If the phenotype is represented as a tree
structure then a product of the <fnc> nonterminal is the
parent object for handling all objects generated by <expr>
nonterminals contained in the same rule. Therefore the rule
<fnc><expr1><expr2> can be represented as a tree (Fig. 4).

Fig. 4  Production rule shown as a tree

    To select a production rule (selection of a tree structure)
only one gene is needed. To process the selected rule a

number of n genes are needed and finally to select a specific
nonterminal symbol again one gene is needed. If the
processing is done backwards the first processed terminals
are leafs of the tree and the last processed terminal in a rule
is the root of a subtree. The very last terminal is the root of
the whole tree. Note that in a forward processing
(<fnc><expr1><expr2>) the first processed gene codes the
rule, the second gene codes the root of the subtree and the
last are leafs.
     When using the forward processing and coding of the
rules described in [1] it’s not possible to easily recover the
tree structure from genotype. This is caused with <expr>
nonterminals using an unknown number of successive
genes. The last processed terminal being just a leaf of the
tree. The proposed backward processing is shown in Fig. 1.

4.1  Phenotype to genotype projection
    Using the proposed backward processing system the
translation to a phenotype subtree has a certain scheme. It
begins with a production rule (selecting the type of the
subtree) and ends with the root of the subtree (in our case
with a function). In the genotype this means that one gene
used to select a production rule is followed by n genes with
different contexts which are followed by one gene used to
translate <fnc>. Therefore a gene coding a production rule
forms a pair with a gene coding terminal symbol for <fnc>
(root of the rule). Those genes can be marked when
processing the individual. This is an example of a simple
marking system:

BB – Begin block (a gene coding a production
rule)
IB – Inside block
EB – End block (a gene coding a root of a subtree)

    The EB and BB marks are pair marks and in the
chromosome they define a block (Fig. 1G). Such blocks can
be nested but they don’t overlap (the same way as
parentheses). The IB mark is not a pair mark, but it is
always contained in a block (IB marks are presently
generated by <num> nonterminals). Given a BB gene a
corresponding EB gene can be found using a simple LIFO
method.
    A block of chromosome enclosed in a BB-EB gene pair
then codes a subtree of the phenotype. Such block is fully
autonomous and can be exchanged with any other block or
it can serve as completely new individual.
    Only BB genes code the tree of individual’s body, while
EB and IB genes code the terminal symbols in the resulting
phenotype. The BB genes code the structure of the
individual, changing their values can cause change of the
applied production rule. Therefore change (e.g. by
mutation) in the value of a structural gene may trigger
change of context of many, or all following genes.
    This simple marking system introduces a phenotype
feedback to phenotype; however it doesn’t affect the
universality of the algorithm. It’s not dependent on the used
terminal or nonterminal symbols; it only requires the result
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to be a tree structure. Using this system it’s possible to
introduce a progressive crossover and mutation.

4.2  Crossover
    When using grammatical evolution the resulting
phenotype coded by one gene depends on the value of the
gene and on its context. If a chromosome is crossed at
random point, it is very probable that the context of the
genes in second part will change. This way crossover causes
destruction of the phenotype, because the newly added parts
code different phenotype than in the original individual.
    This behaviour can be eliminated using a block marking
system. Crossover is then performed as an exchange of
blocks. The crossover is made always in an even number of
genes, where the odd gene must be BB gene and even must
be EB gene. Starting BB gene is presently chosen
randomly; the first gene is excluded because it encapsulates
(together with the last used gene) the whole individual.
     The operation takes two parent chromosomes and the
result is always two child chromosomes. It is also possible
to combine the same individuals, while the resulting child
chromosomes can be entirely different.

Given the parents:
1) cos( x + 2 ) + sin( x * 3 )
2) cos( x + 2 ) + sin( x * 3 )
The operation can produce children:
3) cos( sin( x * 3 ) + 2 ) + sin( x * 3 )
4) cos( x + 2 ) + x

    This crossover method works similar to direct combining
of phenotype trees, however this method works purely on
the chromosome. Therefore phenotype and genotype are
still separated. The result is a chromosome, which will
generate an individual with a structure combined from its
parents. This way we receive the encoding of an individual
without backward analysis of his phenotype. To perform a
crossover the phenotype has to be evaluated (to mark the
genes), but it is neither used nor know in the crossover
operation (also it doesn’t have to exist).

4.3  Mutation
    Mutation can be divided into mutation of structural (BB)
genes and mutation of other genes. Mutation of one
structural gene can affect other genes by changing their
context therefore structural mutation amount should be very
low. On the other hand the amount of mutation of other
genes can be set very high and it can speed up searching an
approximate solution.

Given an individual:
sin( 2 + x ) + cos( 3 * x )
and using only mutation of non-structural genes, it is
possible to get:
cos( 5 – x ) * sin( 1 * x )
    Therefore the structure doesn’t change, but we can get a
lot of new combinations of terminal symbols. The divided
mutation allows using the benefits of high mutation while
eliminating the risk of damaging the structure of an
individual.

4.4  Population model
   The system uses three populations forming a simple tree
structure (Fig. 5). There is a Master population and two
slave populations, which simulate different genders. The
links among the populations lead only one way - from
bottom to top.

Fig. 5 The population model

4.5 Female population
    When a new individual is to be inserted in a population a
check is preformed whether it should be inserted. If a same
or similar individual already exists in the population then
the new individual is not inserted. In a female population
every genotype and phenotype occurs only once. The
population maintains a very high diversity; therefore the
mutation operation is not applied to this population.
Removing the individuals is based on two criterions. The
first criterion is the age of an individual - length of stay in
the population. The second criterion is the fitness of an
individual. Using the second criterion a maximum
population size is maintained. Parents are chosen using the
tournament system selection.

4.5  Fitness function
    Around the searched function there is defined an
equidistant area of a given size. Fitness of an individual’s
phenotype is computed as the number of points inside this
area divided by the number of all checked points (a value in
<0,1>). This fitness function forms a strong selection
pressure; therefore the system finds an approximate solution
very quickly.

4.6   Logical function XOR as test function
Input values are two integer numbers a and b; a, b 2< 0, 1

>. Output number c is the value of logical function XOR.
Training data is a set of triples (a, b, c):

P = {(0, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1,0)}.
Thus the training set represents the truth table of the

XOR function. The function can be expressed using _, ^, ¬
functions:

a + b = (a ^ ¬b) _ (¬a ^ b) = (a _ b) ^ (¬a _ ¬b) = (a _ b)
^ ¬(a ^ b)

The grammar was simplified so that it does not contain
conditional statement and numeric constants, on the other
hand three new terminals were added to generate functions
_, ^, ¬. Thus the grammar generates representations of the
XOR functions using other logical functions.

function xxor($a,$b) {
$result = "no_value";
$result = ($result) | (((~$b & ($a & ($a & ~$b))) & $a) |
(~$a & $b));
return $result;
Number of generations: 53
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    The objective is to generate the structure of a
combinatorial logic circuit performing as full binary adder.
Binary adder can be represented with the following
equations:

1−⊕⊕= iiii cxys ���

11 −− ⋅+⋅+⋅= iiiiiii cycxyxc ���

The circuit has three inputs xi, yi, ci-1 and two output
variables si, ci, where si is the actual sum result, ci is carry
bit, xi, yi are the actual binary inputs and ci-1 is carry bit
from previous addition. The truth table of binary adder has
16 output values, where equations (1) and (2) each define
eight of them.

��� ����	
�

The parallel grammatical evolution with backward
processing was used to solve the problem. The core of the
method is a genetic algorithm extended with several
supporting algorithms. The main extension added to the
genetic algorithm is a translation layer inserted between the
chromosome and the actual solution which is formed by a
processor of context-free grammar. The main advantage of
such extension is the ability to create generic tree structures
and retrieve them in reusable format. Grammatical
evolution with backward processing can also take
advantage of progressive crossover and mutation operators.
The system is internally parallel as it consists of three
different interconnected populations.

Tab. 1  Production rules

    The production rules that are shown in Tab.1 are the
most generic ones, allowing any syntactically correct
solution to be generated. This can however be adjusted in
case we would like to use specific sets of gates. For
example we can define a rule so that first input of a gate is
connected to OR gate and the other is connected to AND
gate.
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Fig. 6  Example of a found solution

These principles mean that it is only possible to generate
tree structures. Logic circuits cannot however be
represented as a simple tree. A signal from si output can use
the same gates as the output signal of ci. At this point we
have chosen to accept this limitation and test overall
performance of grammatical evolution applied to this
problem. This means that the generated solutions can never
reach the optimal number of building blocks – since it is not
possible to reuse existing blocks. For the binary adder
circuit it should be possible to reach the optimal time-delay,
although with a more complicated circuit. Also it is
necessary to note that many of possible optimal solutions
are ruled out simply because reusing of gates is prohibited;
this makes finding the optimal time-delay solution more
difficult. However we are confident that this limitation of
the algorithm can be overcome and it would be possible to
generate truly parallel structures.

��� �����		 
������

There are several options how to compute fitness and
compare different hypotheses produced by genetic
algorithm. As the main criterion we choose the number of
matches against the input truth-table of combinations.
However this criterion alone is insufficient, since there are
only 16 output values, there are also only 16 values of
fitness. The number of possible solutions either correct or
incorrect is only limited by arbitrary size of the search
space, which can be adjusted by the length of the
chromosome (in the experiments set so that the effective
maximum of elements in the structure is approximately 70).

A fitness value for n-th individual is then defined as:
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where MS = 1 if the j-th output value of variable si matches
the desired value in truth table and similarly MC = 1 if the
value of variable ci is matched. C is the count of nodes in
the generated structure. CS is the count of nodes in the tree
branch responsible for computing output of variable si, and
CS is the complexity of the ci branch

���� � ���� �����������	
� 
� ��� �
��	
� 
� �	���� �

    It is important to note that the arbitrary chromosome size
does not limit the solution size reliably, using the crossover
operator the algorithm can bypass the limitation and
generate solutions with up to approximately 1000 elements.
Therefore the fitness consisting of only 16 values is
inappropriate since it does not value lower complexity of
the solution. The simplest solution – to compute fitness
value as a weighted sum of matches and complexity of an
individual didn’t fit our needs and led to premature
convergence. This problem was solved replacing scalar
fitness value by a vector of fitness. It allows evaluating
individuals with a finer granularity then number of matched
values alone. To compare the vector fitness values a
hierarchical set of rules was used.

Optimiz ation
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Fig. 8  Two step optimization process

    Once the algorithm is adapted to vector fitness a vast
number of definitions of fitness arise. As the qualitative
characteristics the number of matches and solution
complexity were chosen. Another possible choice would be
the maximum time-delay of the circuit. In our case where
the output variable paths are not interconnected the time-
delay is correlated with complexity of each path and thus
makes no difference to convergence of the algorithm. The

choice of complexity above time-delay was therefore driven
only by implementation. Complexity of a solution is defined
as number of terminals in the string representation of the
structure, this is slightly higher than the actual number of
gates. Figure 7 shows the tree representation of a solution
shown on Fig.6. The complexity is defined as number of
nodes in the tree. The first approach was to simply use both
the sum of matches and complexity of both tree root
branches.

VI. CONCLUSION
PGE has proved successful for circuit optimization.

Parallel GEs with hierarchical structure can increase the
efficiency and robustness of systems, and thus they can
track better optimal parameters in a changing environment.
From the experimental session it can be concluded that
modified standard GEs with only two sub-populations can
create PGE much better than classical versions of GEs.

The parallel grammatical evolution can be used for the
automatic generation of circuit structures. We are far from
supposing that all difficulties are removed but first results
with PGEs are very promising.

Although we are at early stages of experiments it seems
that it is possible to use parallel grammatical evolution with
backward processing to generate combinatorial logic
circuits. The grammatical algorithm can be outperformed
with algorithms, which are designed specifically for this
purpose.
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