
 
 

 

  

Abstract— In this paper we developed a weighted 

probabilistic total cost function in a manufacturing center 

which supplies manufactured products to multiple customers, 

with a fixed-quantity at a fixed time-interval to each of the 

customers while total demand of the customers have a 

probabilistic behavior and maybe changes during planning 

horizon. A closed-form solution for the minimal total cost for 

the entire inventory-production system formulated. The 

algorithm considered as the solution finding procedure for 

multiple customer systems with probabilistic future demand 

rate. 

 
Index Terms— Probabilistic demand, Scenario based system, 

Single vendor-single buyer supply chain. 

 

I. INTRODUCTION 

Inventory plays a significant role in many of 

manufacturing systems. A large number of manufacturing 

facilities uses for carry large inventories of manufactured 

products at the supply docks. Newman [1] illustrated that for 

eliminating any delays in the delivery process when the 

buyers receive manufactured products based on JIT system. 

Yilmaz[2], Parlar and Rempala[3], Pan and Liao[4] and 

Ramasesh[5] developed optimal ordering policy and 

quantitative production models in the single-stage production 

system. Lu[6] formulated a one-vendor multi-buyer 

integrated inventory model.  Goyal[7], Goyal and Gupa[8], 

and Aderhunmu et al.[9] have developed some quantitative 

models for integrated  vendor-buyer policy in a just-in-time 

manufacturing process. Golhar and Sarker[10], Jamal and 

Sarker[11], and Sarker and Parija[12,13] documented some 

single-product models in a just-in-time production-delivery 

system. Banerjee[14] illustrated a lot sizing model with the 

concentration to the work-in-process in response to periodic 

and not probabilistic demands. Park and Yun[15] suggested a 

stepwise partial enumeration algorithm for solving 

fluctuating demand problems. Sarker and Parija[12,13] 

developed the model of Golhar and Sarker[10]. To take into 

account cyclic scheduling for a multi-product manufacturing 

system, Nori and Sarker[16] revised and improved the model 

of Sarker and Parija[13]. Robert et al.[18] considered a 

two-echelon supply chain. Liang-Yuh et al.[19] presented a 

single vendor-single buyer integrated system in which lead 

time for demand is deterministic and stochastic with 

permitted shortage. ManMohan S. et al. [20] analyzed supply 
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chain system under demand uncertainty with using stochastic 

programming. M.E. Seliaman et al.[21] considered the case 

of a three-stage non-serial supply chain system. With the 

review of the literature this is obvious that limited researches 

related to optimal ordering and production policies for the 

manufacturing systems with multiple customers, fixed 

time-intervals and probabilistic customer’s demands, has 

been taken. 

 

A. Logistic System 

In this paper we focused to a scenario based 

production-inventory system. A vendor supplies parts to 

manufactures and plays a significant role in the industries in 

the world, which, in turn, are delivered to several outside 

customers. While the total demand of the customer’s maybe 

changes according to their planning updates. To satisfy 

buyers demand in the different time-intervals, the 

manufacturing company has to regularly maintain its 

production rate for procuring parts at regular time intervals. 

Because each of the customer’s demand is not fix during 

production time horizon, and also these changes has a 

predictable rule or probabilistic function, therefore we should 

consider all of the alternatives and possibilities according to 

its probabilistic existence weights. 

A. Problem Definition 

A manufacturing company acquire its raw materials via 

outsourcing process, takes them under process to produce a 

manufactured product, stores them in a manufactured 

products inventory, and at last delivers manufactured 

products to several customers with a fixed quantities and 

intervals.  The annual demands of these customers are not 

known precisely and have a scenario based behavior but for 

each of the customers at the beginning of the planning 

process for each time horizon we can assume that it is a 

constant parameter. The raw material is non-perishable, and 

therefore it should be supplied instantaneously to the 

manufacturing facility. Shortage of manufactured products 

due to insufficient manufactured products production is not 

allowed. Demand is base on probabilistic function and 

according to company policy, instead of demand, average 

demand for planning time horizon takes into calculations. 

The supply chain system is described in section 2. A total cost 

model for the manufacturing system is developed in section 

3. A solution algorithm for this model explained in section 4. 

Finally, conclusions stated in the last section. 
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II. THE SUPPLY CHAIN SYSTEM 

To find an Economic Order Quantity (EOQ) for the raw 
materials and an Economic Manufacturing Quantity (EMQ) 
for the production run, two types of inventory holding costs 
are considered [17]: raw materials holding cost, H� , and 
manufactured products holding cost, H�. Order costs includes 
the ordering cost of the raw materials, K�  and the 
manufacturing setup cost for each batch, K� . Opportunity 
cost, OC� and extra sales cost, EC� considered for illustrating 
upper and lower demand situations costs. α, β, γ considered 
as demand probabilities for three different states of the 
customer’s demand. Following notation is used to model the 
system: 

A. Definitions and Notation 

Raw material related: 
�, ��, 
�, , �� and ��. 

Manufactured products related: 
� , 
�,� , f, �� , 
� , �� , P, ����, �� , �� , �� , �� , � , ��� , ��� , ��
�), α, β, γ, ��
� ). 

Cycle time related: ��,  ,  �,  ! and  ". 

Definitions: 


�  = total demand for manufactured products by all 
customers, units/year; 


�,� = total demand for manufactured products by 

customer # , units/year; 


� = total demand for raw materials by the production 
facility, units/year; 

$ = conversion factor of the raw materials to manufactured 
products, $ =
�/
�; 

��  = holding cost of manufactured products, $/unit/year; 

�� = holding cost of raw materials, $/unit/year; 


� = ordering cost of raw materials, $/order; 


� = manufacturing setup cost per batch, $/batch; 

�� = given time between successive shipments of 
manufactured products to customer # (# & 1,… , N*; 
�� = number of full shipments of manufactured products to 
customer # per cycle time ; 

+  = number of orders of raw materials during the uptime  !; 

,  = production rate, units/year; 

���� = average inventory of manufactured products per 

cycle, in units; 

��  = quantity of manufactured products manufactured per 
setup, units/batch; 

�-  = quantity of manufactured products inventory held at the 
end of uptime  !, in units; 

���.*  = manufactured products inventory on hand at 
time. ; ���.* &  ���.* /  ���.*  

���.*  = quantity of manufactured products in the inventory 
at time . , in units; 

�� = quantity of raw materials ordered each time, units/order; �� & ��/+ ; 

��  = quantity of raw materials required for each batch; �� & 012 & +��; 

��  = total quantity of manufactured products shipped, in 
units/cycle; 

���.*  = total quantity of manufactured products shipped by 
time . ; 

  = cycle time;  & 0131 & ����, While # ∈{1,...,N}; 

 � = production start time; 

 ! = manufacturing period (uptime);  ! & 015 ; 
 " = downtime;  " &  /  ! & �� 7 !

31 / !
89 ; 

�� = quantity of manufactured products shipped to customer #  at a fixed interval of time ��, units/shipment;  

�� & ���� & ��
� ,While # ∈ ?1, … , N@; 
�  = quantity produced during �� period; � = ��, & AB531 ; 
� / �� = (

5
31 / 1*��  

��� = opportunity cost for sale manufactured products when 
demand for manufactured products (
� ) is more than it’s 
calculated average ( ��
�* ), $/unit; 

��� = extra sale costs for sale manufactured products when 
demand for manufactured products �
�*  is less than it’s 
calculated average (��
�*), $/unit; 

��
�* = average total demand for manufactured products by 
all customers, units/year; 

��
�* = customer’s total demand probabilistic function; 

α = total customer’s demand probability when manufactured 
products demand �
�* is equal to average total demand for 
manufactured products ��
�*, (
� & ��
�**, 0≤α≤1;    

β = total customer’s demand probability when manufactured 
products demand �
�* is less than average total demand for 
manufactured products ��
�*, (
� C ��
�**, 0≤β≤1; 

γ = total customer’s demand probability when manufactured 
products demand �
�* is more than average total demand for 
manufactured products��
�*, (
� D ��
�**, 0≤γ≤1; 

α + β + γ = 1. 

B. The Supply Chain System 

Manufactured products inventory in this model, doesn't 
have equal behavior comparison with traditional economic 
batch quantity model with continuous demand [13]. As 
depicted in Fig. 1, to discourage the undesirable inventory 
buildup, raw materials in this model are ordered + times 
during the uptime. Because production rate, , , is 
considered to be higher than the consumption rate, the 
inventory will keep on building while the production (or 
uptime) continues. A fluctuating-demand (fixed quantity) of �� units of manufactured products at the end of every �� time 
units to customer # , ( # & 1,2, … , N* , is imposed to the 
manufacturer. This fluctuating demand decreases the 
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manufactured products inventory buildup instantaneously by ��  that makes as a result, an inventory buildup in an 
increasing triangular fashion during the production period  !.  �� units of manufactured products, to satisfy the demand of 
customer # at an interval of ��  time units, are delivered 
instantaneously that as a result remains � / F�  units at hand, 
where � &  ��, , the quantity that produced during �� time 
units at the rate of , units per unit-time. The delivery 
schedules of manufactured products and quantities shipped to 
customer # ,(# & 1,2, … , N*, are also shown in Fig. 1. For G customers �! C �" C H C �IJ! C �I  and all �K, ( # &1,2, … , N*, may not be equal and �K,(# & 1,2, … , N*, the 
number of full shipments to customer # , is a non increasing 
set of integer numbers (�!≥�" D H D �LJ! D �L* such 
that �!�! = �"�" & H & �LJ!�LJ! & �L�L &  . The 
on-hand manufactured products inventory at any time .  is 
the manufactured products produced by that time minus the 
total inventory delivered to all customers by time . . the 
on-hand manufactured products at the end of uptime period  ! , �N , decrease instantaneously by �K  units at a regular 
interval of �K time units (after the production run) till the end 
of the last shipment in a cycle are carried over to the next 
cycle, resulting in a shifted production schedule as reflected 
in Fig. 1.[17]  

 

 
Fig.1. Raw materials and manufactured products inventory 
[17] 

 

III. PRODUCTION COST MODEL 

We assume that �! C �" C H C �IJ! C �I .  and to be 
more confident in case of materials availability and proper 
delivery, we further assume that �� & , � ! /  �* & 
� & ∑ �K�KI�P!  and  & �K�K, While # ∈{1,2,…,N}. 

 
A. Total Cost Functions  

In the our model we assume that total future demand for 
manufactured products is equal to demand probability 
function expected value ��
�*. System has costs as below: 

 

A.1. Raw Material Costs 

In an inventory state where ��  = , � ! /  Q*  = 
�  = ∑ �K�KI�P! , there might be some manufactured products hands 

over to the next cycle after ∑ �KI�P!  shipments to all 
customers. A series of fluctuating deliveries of manufactured 
products inventory continues after  ! until the cycle repeats 
same as what that done before. Thus the total cost of raw 
materials, as stated with Sarker and Parija[13], is given by 

 �� & 73R0S9
� T 0S�UVJUW*"X ��.     (1) 

Now, if there are + replenishments of raw materials during 
the uptime period [ �,  !Y, and �� transports of manufactured 
products of size ��  to customer # ,(# & 1,2, … , N*, during 
the cycle time  , then, for �� , each batch required raw 
materials, we can write �� & ��/+  and ��  = � ! /  Q*, =  
� =  ∑ �KI�P! �K. therefore equation (1) could rewrite 
as below:  

 �� & 7Z3R0R 9
� T !
" 70RZ 9 7315 9��.     (2) 

 

A.2 Manufactured Products Costs 

Because of probabilistic changes that exist in the demand 
of manufactured products, three different demand states 
maybe arise during the planning time horizon. 

 

A.2.1 
� & ��
�* 
When manufactured products demand (
�*  is equal to 

expected value for manufactured products demand (��
�**, 
we have this state for system costs (when
� & ��
�* ). 

Since 
3R0R  = 

3101  and ��  = $��  for a conversion factor (or 

production process efficiency) of raw materials to 
manufactured products, $ , the total cost for manufactured 

products inventory for average inventory ���� at a holding 

cost ��  $/unit/year can also be written as[17]  �� & 3101 
� T ������ .     (3) 

and the entire cost of the system may be expressed as  

 �!��� , +* & 7Z3R0R 9
� T 3101 
� T !
" 70RZ 9 7315 9�� T������ .     (4) 

Therefore, with replacing ����  in equation (4) with the 

results from what that stated by Sarker and Parija [17]: 

 �!��� , +* & 7Z3R0R 9
� T 3101 
� T !
" 70RZ 9 7315 9�� T

[\!J]1^ _01
" T` AabBcV" T  �
�d�� .      (5) 

A.2.2 
� C ��
�* 
In this state manufactured products costs could formulate 

as below: 

  �� & 3101 
� T ������ T ������
�* / 
�).     (6) 

Therefore, replacing ����  in equation (6) with the results 

from Sarker’s study[17] and with regarding raw material 
costs from equation (2) in section 3.1.1 we have  
 

 �"��� , +* & 7Z3R0R 9
� T 3101 
� T !
" 70RZ 9 7315 9�� T

[\!J]1^ _01
" T` AabBcV" T  �
�d�� T ������
�* / 
�).     (7) 

 
A.2.3 
� D ��
�* 

In this state manufactured products costs could formulate as 
below: 

  �� & 3101 
� T ������ T ������
�* / 
�).     (8) 

Therefore, replacing ����  in equation (8) with the results 

from Sarker’s results[17] and with regarding raw material 
costs from equation (2) in section 3.1.1 we have 
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 �e��� , +* & 7Z3R0R 9
� T 3101 
� T !
" 70RZ 9 7315 9�� T

[\!J]1^ _01
" T` AabBcV" T  �
�d�� T ����
� / ��
�**.     (9) 

As mentioned, three different total cost functions as three 
different scenarios exists for different states of the entire 
system base on its total manufactured products demands. 

Now, if  ′ is a time such that  � C  ′ , then  �  must 
satisfy[17] � ′ /  �*, D ?`  f ′I

�P! /��Y��@ While ′ D  �.     (10) 

That is, the quantity of manufactured products produced in 
the time interval f �,  ′Y is sufficient to meet the demands 
(shipments) for each individual customer until the time  ′, at 

all times  ′, after the product begins at  �.  
 

Theorem 1. [17] 

If  � & Min i ′ / ∑ �KI�P! 7 Aa5 9j  
Subject to  ′ D �! ,  ′/�� ≥ �K D  ′/�� / 1  for  # &1,2, … , G , and  ′ : real, �K : integer, then  �  satisfies the 
inequality (10).     (11) 
The lower bound on the integer variable �K  will be very 
useful in actual computations. In theorem 1, illustrated that if  �  is chosen as stated, then meeting demands for all the 
products will guarantee. 
 

B. Start Time Determination[17] 

The production start time,  �, can be determined by solving 
the problem: 
(PST):  kl�  �, 

Subject to m  � ′ /  �*, D ?`  f ′I
�P! /��Y��@ , While ′ D � D 0.     (12) 

This means that we would like to delay starting the 
procurement and the production until it is absolutely 
necessary. The constraint in problem (PST) implies that, if  
i) The quantity of manufactured products produced in the 

interval f �,  ′Y is � ′ /  �*, ; 

ii) oU ′pBq is the number of shipments for customer # until time, 

 ′; l+r 

iii) oU ′pBq �� is the total shipment quantity to customer # until 

time  ′, 
Then the quantity produced in the interval f �,  ′Y is enough 

to meet the demands for all the customers until time ′. Note 
that the constraint in (PST) can be written as :  � C
t ′ / u`  vBABbBcV5 wx,    ′ D 0, ��=oU ′pBq D 0,     (13) which is 

equivalent to the inequality 

 � C Min t ′ / u`  vBABbBcV5 w│ U ′
pB D �� D U ′

pB / 1,  ′ D
0, �#≥0 and integer.   (14) 

The right-hand side of inequality (13) is a Mixed-Integer 
Programming (MIP) problem. Therefore, the upper bound on  � is the solution of the MIP in inequality (13). Hence, the 
optimal production start time T�� is given clearly by [17] 

T�� & Min t ′ / u`  vBABbBcV5 w│ U ′
pB D �� D U ′

pB / 1,  ′ D
0, �#≥0 and integer.     (15) 

IV. SOLUTION ALGORITHM 

Algorithm 1 as a strategy to arrive at a feasible solution for 
this problem could be use.  
Algorithm 1: solution algorithm �.�� 1. Compute  � by solving the MIP in (15) �.�� 2. Compute �!��� , +*,  �"��� , +* and  �e��� , +*. �.�� 3.  Obtain probabilistic weighted total cost function �,� � ��� , +** : ,� � ��� , +* & � � �!��� , +* T � �"��� , +* T � �e��� , +**/� �!��� , +*+  �"��� , +*+  �e��� , +*)     (15) �.�� 4.  Minimize ,� � ��� , +*  over �"  to obtain ( ��� , +�)  �.�� 5. Obtain a pragmatic solution: 
(a) Generate two feasible integer solutions in the 

neighborhood of ( ��� , +�). 
��� & max�∑  ����I�P! │���� & constant for all #,  #&1G �#�#≤ ���, �#:integer, 
�!� & max�∑  ����I�P! │ ���� & constant for all #,  #&1G �#�#≥ ���, �#:integer, +� = Integer n such that n minimizes │ (���/+* / � ���/+�) 
│, and  +! = Integer n such that n minimizes │ (�!�/+* / � ���/+�) 
│. �b* Choose the better of the two candidate solutions: 

Optimum ��� , +* =� ���/+� ) where k = arg min {PWTC 

(���/+�) , i = {0,1}} 

V. CONCLUSION 

The situation that developed in this paper was about 
demand behavior. In the previous research demand 
considered as a fix parameter that we manufacturer efforts to 
balance its raw materials and manufactured products 
inventory to achieve minimum total cost for the entire system 
but in this paper we focused on the behavior of demand and 
assumed that demand has a probabilistic scenario based 
behavior and for each alternative we have an specified total 
cost function that the goal of the model is to minimize the 
probabilistic weighted total cost function for the entire 
system Future researches can be directed to considering more 
probabilistic sub-systems and factors in the different 
combinations of inventory-production-sale or value chain 
systems. 
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