
 
 

 

  
Abstract— In designing cellular manufacturing systems, cell 
formation is one of the most important steps which contains 
identification of machine cells and part families. This paper 
proposes a modified heuristic method for forming 
manufacturing cells. The proposed method includes two 
phases. The first phase is identification of initial machine cells 
by applying factor analysis to the matrix of similarity 
coefficients. In the second phase, an evolutionary algorithm is 
used to obtain the best component of machine cells and 
part-families. The designed method was applied to test 
problems from the literature in order to evaluate its 
performance. The results demonstrate that the designed 
method performs efficiently in with regard to some different 
criteria.  
 

Index Terms— Cellular manufacturing, Cell formation, 
Factor analysis, Group technology. 
 

I. INTRODUCTION 
Numerous studies related to Group Technology (GT) and 
Cellular Manufacturing (CM) have been performed. 
Reisman et al. [1] presented a statistical review of 235 papers 
concentrated on GT and CM. According to their report,  the 
literature dealing with GT/CM in early (1966-1975) 
appeared notably in books. The first material written about 
GT was that in Mitrofanov [2], and the first journal paper 
dealing with CM appeared in 1969 (Opitz et al., [3] ). 
Moreover, Reisman et al. [1] reviewed these 235 paper on a 
five-point scale, ranging from pure theory to practical 
applications.  

Implementation of a CM system involves different aspects 
such as technology, human, organization, education, 
management. Unfortunately, merely a few papers 
corresponding to these areas have been published so far. 
However, the problem involved in justification of CM 
systems has attracted an increasing attention. Most of the 
researches were concentrated on the performance 
comparison between cellular layout and functional layout. 
Some researchers support the relative performance 
excellence of cellular layout over functional layout. Agarwal 
and Sarkis [4] presented a review and analysis of 
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comparative performance researches on functional and CM 
layouts. Shambu and Suresh [5] focused on the performance 
of hybrid CM systems through a computer simulation 
investigation. 

CM system design involves a number of research areas. In 
designing a cellular manufacturing system, Cell Formation 
(CF) is the first, most researched topic. A large number of 
approaches and methods have been introduced to solve this 
problem. Among these methods, Production Flow Analysis 
(PFA) is the first one which was applied by Burbidge [6]. 
Several review papers have been published to assort and 
assess various methods of CF. Among various CF models, 
those based on the Similarity Coefficients based Method 
(SCM) have more flexibility in incorporating manufacturing 
data into the machine-cells formation process[7].  

In this paper, first, we use a mathematical approach to 
find the number of cells in section II.A, which was proposed 
by Albadawi et al. [8]. Following this, to find the best 
component of machine cells and part-families an 
evolutionary algorithm in section II.B, which was developed 
by Goncalves & Resende [9]. Finally, by solving some 
sample problems from the literature, and comparing the 
obtained results with the results of some referenced papers, 
especially [8] and [9], the performance of the proposed 
approach is demonstrated. 

One of the advantages of the proposed approach is that we 
don't need to produce randomly digits to find the number of 
cells that has been applied in the evolutionary algorithm used 
by Goncalves & Resende. Determining the number of cells 
with a random approach increases the runtime. Moreover, 
this new method is superior to the analytical approach for 
large-scale problems in aspect of time, because it does not 
need to jump from one software to another. 

II. THE PROPOSED APPROACH 

A. Phase 1: determining initial machine cells using factor 
analysis 
As cell formation can be considered as a dimension reduction 
problem in which a large number of correlated machines are 
grouped into a smaller set of independent cells, the proposed 
method uses factor analysis, which is a dimension reduction 
technique, to the part-machine matrix to determine the initial 
strong multivariate analysis tool applied to analyze 
interrelationships among a large number of variables to 
reduce their number into a smaller set of independent 
variables named factors. 
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The input data in factor analysis must be in the form of 
correlations, and different methods are used to draw out a 
small number of factors from a sample correlation matrix. 
Principal Component Analysis (PCA) is the most popular 
method in factor analysis. In this method, all the principal 
components are generated in a way that they are orthogonal 
to each other so that the correlation between them is zero. 

Using a sequenced manner with decreasing contributions 
to the variance, the principal components are extracted, that 
is, the first principal component explains most of the 
variation existing in the original data. Therefore, the first 
principal component can be considered as the best summary 
of the linear relationships which is present in the original 
data set. The second principal component can be considered 
as the second best representative of the linear relationships 
among the variables when the second principal component is 
orthogonal to the first. To be orthogonal to the first principal 
component, the second principal component must explain 
that proportion of the variance, which is not explained by the 
first principal component. Therefore, the second principal 
component can be defined as the linear combination of 
variables, which explains the maximum variance after 
removing the effect of the first principal component from the 
data. The rest of the principal components are defined 
similarly until all the variance in the data is accounted for. 
The full set of the principal components is as large as the 
original set of variables; however, the variances of the first 
few principal components are usually higher than 80% of the 
total variance of the original data. This implies that the data 
points can be precisely categorized into different clusters 
when projected into a space spanned by the first few principal 
components, called factors.  

The materials on factor analysis mentioned above only 
features the most important characteristics of this approach. 
The readers are referred to the relevant literature such as that 
of Kleinbaum et al. [11] and Rummel [10] for detailed 
description of this approach. 

The following major steps are taken to apply factor 
analysis to the cell formation problem: (1) producing a 
similarity coefficient matrix of the machines (2) forming the 
initial cells applying the PCA method.These steps are 
explained below using an illustrative example of a simple 
machine cell formation problem provided by Kusiak and Cho 
[12]. 

As depicted in the table in Figure 1, the initial 
machine-part matrix of this problem contains six machines 
(labeled 1-6 in rows) and eight parts (labeled 1-8 in 
columns).  

 

 

 

 
 

 
 

A1. Generation of the matrix of similarity coefficients 
As mentioned earlier, the correlation matrix of the initial 
data set is required in order to implement factor analysis. The 
similarity coefficient matrix of the machines can be applied 
as a similarity coefficient matrix. Each element of this matrix 
is calculated as follow. This similarity is called Jacard 
similarity measure in the literature.  
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Where 

ijS  : Similarity coefficient between machines i and j 

ijkx  : Equals 1 if operation on part k is performed on both 

machine i and j, otherwise 0. 

iky : Equals 1 if operation on part k is performed on machine 
i, otherwise 0. 

jkz : If operation on part k is performed on machine j 

This coefficient depicts maximum similarity when the two 
machines process the same part type, 1=ijS , and maximum 

unlikeness when the two machines do not process the same 
part type, 0=ijS . 

The matrix of similarity coefficients shown in Figure 2 is 
obtained by applying Equation (1) to the initial machine-part 
matrix shown in Figure 1. For instance, the similarity 
coefficient between machines 2 and 5, 25S , is calculated as 
follows:  
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A2. Extraction of the initial cells 
Considering the machines as the original set of variables, and 
the similarity coefficient matrix as an acceptable estimate of 
the correlation matrix which accounts for the correlations 
between each pair of machines, we keep on using the PCA  in 
order to group the machines into separate independent 
factors generating the initial cells. 
The PCA method applies eigenvalue-eigenvector analysis of 
the similarity coefficient matrix  to draw out the initial cells 
as shown in Equation (2)  

( ) )2(,...,10 PiYIS i ==− λ  

where, S is an PP ×  similarity coefficient matrix, I is the 
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Fig 1. An example of machine-part matrix 

1.00 0.25 0.00 0.67 0.00 0.67 

0.25 1.00 0.43 0.13 0.71 0.13 
0.00 0.43 1.00 0.00 0.60 0.00 
0.67 0.13 0.00 1.00 0.00 1.00 
0.00 0.71 0.60 0.00 1.00 0.00 
0.67 0.13 0.00 1.00 0.00 1.00 
 

Fig 2. Similarity matrix corresponding to machine-part matrix 
shown in Fig 1. 
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identity matrix, iλ s are the characteristic roots 

(eigenvalues), and   iY s  are the corresponding eigenvectors. 
Given in the following, Equation (3) is an 

eigenvalue-eigenvector equation where the terms 

pλλλ ≥≥≥ ...21   are the real, nonnegative roots of the 

determinant polynomial of degree P. 
)3(0=− λIS  

This system of equations is solved for iλ , and then iY can 

be determined, having the values of iλ  in Equation (2). It is 
proven that the eigenvectors computed in this way represent 
the unique set of P independent principal components 
(factors) of the data set, which maximize the variance [13].  
Moreover, the elements of these eigenvectors stand for the 
degree of correlation between each factor and the machine, 
and are called the ‘factor loadings’ of the machines on the ith 
factor. Each of the P independent principal components 
indicates a cell. The corresponding eigenvalues and 
eigenvectors for the similarity matrix given in Figure 2 are 
shown in Figures 3 and 4. 

The user has two options in order to determine the number 
of cells needed to group the machines, either to determine the 
required number of cells in advance or to consider it as a 
dependent variable. In both cases, the cells must be ranked in 
a descending order based on the percentage of the total 
variance accounted for by each cell. The total variance of 
each cell is the sum of the variances of all machines in the 
cell, or the eigenvalue corresponding to that cell [13]. If the 
number of cells is identified by the user, then the cells with 
the highest eigenvalues are to be chosen. Otherwise, the cells 
whose eigenvalues are greater than or equal to one should be 
selected [14]. Both criteria assure that a high percentage of 
the variance is explained. The calculated eigenvalues for the 
matrix given in Figure 2 are ranked in a descending order in 
Table 1. Based on Kaiser’s criterion, only the first two cells 
are required to group the machines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 illustrates the initial data for each cell. The total 
variance accounted for by each cell is given in the column 
labeled eigenvalues. The next column includes the 
percentage of the total variance related to each cell. The 
percentage of the total variance represented by each factor is 
used to decide on the number of cells. The last column 
demonstrates the cumulative percentage, which is the 
percentage of variance related to each cell and the cells that 
precede it in the table.  
As shown in Table 1, nearly 79% of the total variance is 
related to the first two cells. The remaining four cells 
together, explain just 21% of the total variance. A major 
benefit of this method is the possibility of obtaining the 
optimum number of cells by considering the cells with the 
greater percentages of the total variance.  

Table 2 indicates the initial machine-cell matrix generated 
by the PCA. This table includes the elements of the two 
chosen eigenvectors related to the highest eigenvalues. The 
absolute values of the elements of the eigenvectors represent 
the associations between the machines and the celles. For 
instance, based on Table 2, machine 1(m1) can be formulated 
as:   249.0113.01 FFm += , so the value of the loadings 
that state association of machine 1 to the cells 1 and 2 are, 
respectively, 0.13 and 0.49 . This implies that machine 1 has 
a stronger relationship with cell 2 than cell 1.  

Consequently, machine 1 is assigned to cell 2 because it has 
greater absolute loading factor value. This rule is followed to 
assign other machines to predetermined cells.  
So the initial machine set is: 

( ) ( ){ }641532 ,,,,,1 mmmmmmM =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Phase 2: Evolutionary algorithm 
The evolutionary algorithm contains an improvement 
procedure which is applied in an iterative scheme. Each 
iteration k of the procedure begins with an initial set of 
machine cells called INITIALl

KM  ; and generates a set of 

product families called INITIAL
KP  ; and a set of machine cells 

called FINAL
KM , Two block-diagonal matrices can be 

achieved by combining INITIAL
KM  with FINAL

KP  and 
FINAL
KM  with INITIAL

KP  . Then, from these matrices, the 
one with the highest grouping efficacy is selected as the 

0.000 0 0 0 0 0 

0 0.211 0 0 0 0 
0 0 0.424 0 0 0 
0 0 0 0.601 0 0 
0 0 0 0 2.118 0 

0 0 0 0 0 2.646 

Fig 3. Eigenvalue matrix corresponding to the matrix shown in Fig 2. 

0.000 -0.3208 0.7320 -0.3092 0.1323 0.4982 

0.0000 0.5966 -0.0617 -0.5566 -0.5102 0.2649 
0.0000 0.2064 0.3993 0.7148 -0.5203 0.1279 
-0.7071 0.0779 -0.3047 0.1970 0.2066 0.5653 
0.0000 -0.6974 -0.3394 -0.0783 -0.6051 0.1616 
0.7071 0.0779 -0.3047 0.1970 0.2066 0.5653 

Fig 4. Eigenvector matrix corresponding to the matrix shown in Fig 2. 

Table 1. Percentage of variance associated with each cell 

Cells Eigenvalues % of total variance Cumulative percentage (%) 

1 2.646 44.10% 44.10% 
2 2.118 35.30% 79.40% 
3 0.601 10.02% 89.42% 
4 0.424 7.07% 96.48% 
5 0.211 3.52% 100.00% 
6 0.000 0.00% 100.00% 

 
Table 2. Elements of two selected eigenvectors. 

Machines cell 1 cell 2 
1 0.1323 0.4982 
2 -0.5102 0.2649 
3 -0.5203 0.1279 
4 0.2066 0.5653 
5 -0.6051 0.1616 
6 0.2066 0.5653 
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resulting block-diagonal matrix of the iteration k. The 
procedure halts if FINAL

KM = INITIAL
KM  or if the grouping 

efficacy of the block-diagonal matrix obtained from iteration 
k is not greater than the grouping efficacy of the 
block-diagonal matrix resulting from the earlier iteration 
k-1, (for 2≥k ). Otherwise, the procedure sets 

INITIAL
KM = FINAL

KM  and keeps on to iteration 1+k . Each 
iteration k of the evolutionary algorithm contains the two 
following steps: 
 
B1. Generating the set of product families:  
Products are assigned to machine cells one at a time. A 
product is allocated to the cell that maximizes an estimate of 
the grouping efficacy, that is, a product is allocated to the 
machine cell C*, given by  
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where  
argmax : the argument which maximizes the expression. 

1N :total number of 1s in matrix A . 
out

cN ,1 : total number of 1s outside diagonal block if part is 

allocated to cell C. 
in

cN ,1  : total number of 0s  inside diagonal block if part is 

allocated to cell C. 
 

In this step, the algorithm produces a set of product 
families FINAL

KP . 
 

B2. Generating the set of machine families  
Machines are allocated to product families, one at a time. A 
machine is allocated to the product family which maximizes 
an estimate of the grouping efficacy, that is, a machine is 
allocated to the product family F*, given by  
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F NN
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where  

1N :total number of 1s in matrix A . 
out

FN ,1 : total number of 1s outside diagonal block if part is 

allocated to machine F. 
in

FN ,1  : total number of 0s  inside diagonal block if part is 

allocated to machine F. 
 
In this step, the local algorithm produces a new set of 
machine cells FINAL

KM . 
 
 
B3. A numerical example of phase 2 

Iteration 1: 
Following the example in section A, the parts are assigned to 
predetermined machine groups as shown in Table 3. 

Table 3 indicates the value of  










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+

−
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C

Out
C

c NN
NN

,01

,11µ    for 

each product and each machine cell. A product is allocated to 
the cell with the highest value of   cµ   (selected cells are bold 
in Table 3). 
If for some parts, the value of  cµ   for machine groups with 

highest cµ   values are equal, one of the machine groups is 
randomly selected. According to Table 3, following set is 
obtained. ( ) ( ){ }742865311 ,,,,,,, ppppppppP INITIAL =  
Iteration 2: 

In this iteration based on INITIALP1 , FINALM 1  is generated 

as shown below. Following machine groups  are extracted  

From the Table 4 .  

( ) ( ){ }6415321 ,,,,, mmmmmmM FINAL =  

The algorithm is terminated because FINALINITIAL MM 11 = . 

The final machine-part matrix is reached as shown in Figure 

5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. calculation of cµ  for each product and each machine cell 

Parts Product 
machines 

Machine groups 

(m2, m3, m5) (m1, m4, m6) 

cµ  

1 M2 , M5 (22-0)/(22+1)=95.6% (22-2)/(22+3)=80.0% 
2 M1 , M2 (22-1)/(22+2)=87.5% (22-1)/(22+2)=87.5% 
3 M2 ,M3 , M5 (22-0)/(22+0)=100% (22-3)/(22+3)=76.0% 
4 M1 , M4 , M6 (22-3)/(22+3)=76.0% (22-0)/(22+0)=100% 
5 M2 , M5 (22-0)/(22+1)=95.6% (22-2)/(22+3)=80.0% 
6 M2 ,M3 , M5 (22-0)/(22+0)=100% (22-3)/(22+3)=76.0% 
7 M1,M2,M4,M6 (22-3)/(22+2)=79.1% (22-1)/(22+0)=95.4% 
8 M2 , M3 , M5 (22-0)/(22+0)=100% (22-3)/(22+3)=76.0% 

 

  PARTS 
M 
A  1 3 5 6 8 2 4 7 
C 2 1 1 1 1 1 1 0 1 
H 3 0 1 0 1 1 0 0 0 
I 5 1 1 1 1 1 0 0 0 
N 1 0 0 0 0 0 1 1 1 
E 4 0 0 0 0 0 0 1 1 
S 6 0 0 0 0 0 0 1 1 

 
Fig 5. final machine-part matrix 

Table 4.  calculation of INITIALM1 

M
achines 

Machine 
products 

Machine groups 

(p2,p4,p7)   (p1,p3,p5,p6,p8) 

1 p2 , p4 , p7 (22-0)/(22+0)=100% (22-3)/(22+5)=70.3% 
2 p1,p3,p5,p6,p8 (22-5)/(22+3)=68.0% (22-0)/(22+0)=100% 
3 p3 , p6 , p8 (22-3)/(22+3)=76.0% (22-0)/(22+2)=91.6% 
4 p4 , p7 (22-0)/(22+1)=95.6% (22-2)/(22+5)=74% 
5 p1,p3,p5,p6,p8 (22-5)/(22+3)=68.0% (22-0)/(22+0)=100% 
6 p4 , p7 (22-0)/(22+1)=95.6% (22-2)/(22+5)=74.0% 
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III. EVALUATION OF PERFORMANCE 

In this section we define four performance indicators that 
have been developed in literature. Each indicator should 
consider two criterions: the number of 1s outside the final 
blocks and the number of  0s inside the final block. 

A. Approximation of group efficiency 
This indicator is defined in last section and its higher value 
presents a better parts-machines component. It considers 
both criterions previously explained. 

100×=
operationsofnumbertotal

elementslexceptionaofnumberPE  

B. Machine utilization 
Machine utilization is defined by Chandrasekharan and 
Rajagopalan [15]  as  

∑ =

= Q

k kk pm
NMU
1

 

Where N is number of 1s in blocks , k is number of cells , 

km  is number of machines in k th cell and kp  is number of 
parts in k th cell. 

C. Group efficiency 
Grouping efficiency (GE) is an integrated measure, which 
considers both the number of exceptional elements and 
machine utilization. Chandrasekharan and Rajagopalan [15] 
defined GE as: 
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NE  : number of exceptional elements 

NM × : size of part-machine matrix 

α : weight coefficient (commonly is considered 0.5) 

IV. COMPUTATIONAL RESULTS 
The evolutionary algorithm was tested on 12 GT instances 
from the literature to demonstrate the performance of the 
designed algorithm. The selected matrices vary in 
dimension 10040_75 ×× , and includes well-structured, as 
well as unstructured matrices. Table 5 is used to present the 
matrix sizes and their sources. We compare the grouping 
efficacy our algorithm with the grouping efficacies from the 
following eight approaches:  

1)Evolutionary algorithm [9];  2)Mathematical approach 
[8];  3)ZODIAC [16]; 4)GRAFICS [17];  5)MST [18];  
6)GATSP [19];  7)GA [20];  8)GP [21]; 

V. CONCLUSION 
In this paper a novel two-phase approach is proposed for the 
problem of cell formation in cellular manufacturing. The 
first phase which is based on factor analysis determines the 
number of cells. In the second phase structure of each cell 
including machine families and part families is obtained 
using an existing evolutionary algorithm in the literature. 
Computational results demonstrate the efficiency of the 
proposed algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Experimental results 
 

Problems Group Efficiency 
Average 

Improvement 

Problem
 N

um
ber 

Source Size 

Other Approaches O
ur A

pproach 
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G
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A
FIC
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M
ST 

G
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TSP 

G
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G
A

 

M
ath. 

M
ethod 

Evol. M
ethod 

Ave Max 

1 King and Nakomchai (1982) 5×7 73.68 73.68 - - - - 73.68 73.68 73.68 0.00% 0.00% 

2 Seifdoni (1989) 5×18 77.36 - - 77.36 - 77.36 77.36 79.59 79.59 1.78% 2.23% 

3 Chandrasekharan and Rajagopalan (1986) 8×20 85.24 85.24 85.24 85.24 85.24 85.25 55.2 85.25 85.25 3.76% 30.05% 

4 Chan and Milner (1982) 10×15 92 92 92 92 - - 92 92 92 0.00% 0.00% 

5 Srinivasan et al. (1990) 16×30 67.83 67.83 67.83 - - - 68.31 67.83 68.31 0.24% 0.48% 

6 Carrie (1973) 18×24 41.84 48.91 44.2 - - - 56.44 54.46 57.43 5.16% 15.59% 

7 Carrie (1973) 20×35 75.14 75.14 75.14 75.28 - 66.3 76.14 76.22 76.22 1.77% 9.92% 

8 Chandrasekharan and Rajagopalan (1986) 24×40 100 100 100 100 100 100 100 100 100 0.00% 0.00% 

9 Chandrasekharan and Rajagopalan (1986) 24×40 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 0.00% 0.00% 

10 Chandrasekharan and Rajagopalan (1986) 24×40 73.51 73.51 73.51 73.03 73.51 73.03 71.9 73.51 73.51 0.32% 1.61% 

11 Chandrasekharan and Rajagopalan (1986) 24×40 20.42 43.27 51.83 49.37 - 37.62 46.79 51.97 51.97 7.82% 31.55% 

12 Chandrasekharan and Rajagopalan (1986) 40×100 83.66 83.92 83.92 84.03 84.03 83.9 84.21 84.03 84.21 0.25% 0.31% 
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