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Abstract— There are many accidents in traffic inter-
sections because of complicated situations. In order
to prevent the accidents, collisions between vehicles
should be predicted and drivers should be alerted by
in-car systems as soon as possible. Our research view-
point is to detect possible collisions by predicting ve-
hicle behaviors. We propose a region-based approach
that uses “attainable region” for predicting the be-
haviors. In our method, traffic situations are observed
by analyzing video streams of the scenes. Vehicle be-
haviors are transformed into the scene plane as spa-
tial regions. With attainable regions, possible colli-
sions between vehicles can be estimated by checking
overlaps between regions. Through evaluation exper-
iments, we show the feasibility of prediction with at-
tainable regions.

Keywords: visual surveillance, traffic monitoring sys-

tem, behavior prediction, collision prediction, attain-
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1 Introduction

In traffic scenes, there are many participants such as ve-
hicles, motorbikes, bicycles and pedestrians. Their be-
haviors influence each other, and various chains of events
can lead to traffic accidents. Especially in traffic intersec-
tions, many accidents are caused by drivers’ carelessness.
Drivers must pay attention to all the other participants
in the scene, the drivers bear heavy loads to recognize
situations. In order to reduce such loads, it is effective
that in-car systems help drivers’ recognition to provid-
ing useful information. Our research is the first step to
construct the system which reduces the number of par-
ticipants that drivers must pay attention to, and lessens
drivers’ loads. The system focuses on a certain vehicle in
the scene and divides all the other participants into two
groups: dangerous participants and the others. In order
to estimate whether the participant is dangerous for the
target vehicle, it is necessary to predict future behavior of
the participants. To predict future behaviors of the par-
ticipants is, therefore, our objective. Although all types
of traffic participants must be considered, only vehicles
are considered as participants for simplification.
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Dangerous vehicles for the target vehicle are defined as
the vehicles which will collide the target vehicle in a few
seconds. It requires that the system estimates possible
collisions. Collisions can be defined as an observational
situation in which occupied regions of two vehicles overlap
each other. Future occupied regions are important factors
to estimate possible collisions between the target vehicle
and others.

In this paper, we introduce a concept of attainable regions
for representing future behaviors. In our method, vehicle
behaviors are transformed into the scene plane as spatial
regions for representing future behaviors of vehicles. By
representing physical elements as spatial elements, future
collisions between vehicles are estimated effectively. An
attainable region means a spatial range where a vehicle
can attain in the near future. Our method can easily es-
timate possible collisions by checking whether the regions
overlap each other.

We develop a vision-based system for predicting future
behaviors of vehicles as attainable regions. Our system is
a kind of traffic monitoring applications in the research
area of visual surveillance. We assume the environment
where a traffic monitoring camera is set in high points and
overlooks the intersection. Traffic situations are observed
from the video stream captured by the camera.

This paper is organized as follows: Section 2 briefly re-
views the related work of behavior prediction. Section
3 describes our approach and system framework. Sec-
tion 4 introduces a method for tracking vehicles in the
scenes. Section 5 presents our method for modeling the
scenes based on trajectory clustering. Section 6 covers
our method for predicting vehicle behaviors as attainable
regions. Section 7 describes experimental results. The
last section summarizes our paper.

2 Related Works

Traffic monitoring systems have been addressed by many
researchers in visual surveillance [1]. For example,
anomaly detection [2] and collision prediction [3, 4] are
the major applications. The researchers aim to develop
driver warning systems for assisting drivers.

Recent works in predicting behaviors of vehicles are lim-
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Figure 1: Attainable regions of a certain vehicle. Dashed
arrows mean possible directions of the vehicle. Gray
eclipses represent attainable regions.

ited in some ways. Atev, et al. [3] presented a vision-
based system that issues warnings about imminent col-
lisions on the assumption that velocities of vehicles stay
constant. Although this assumption is reasonable in case
of short-term prediction, it is unreasonable in case of
long-term prediction. It is because the velocity and accel-
eration of vehicle are changeable at each frame. Saleemi,
et al. [5] proposed a method for modeling and learning
the scene activity based on Kernel Density Estimation
(KDE) to obtain a priori knowledge in the scene. Future
positions of vehicles are estimated based on their veloc-
ities and a priori knowledge. This approach, however,
ignores the sizes of vehicles and is not appropriate for pre-
dicting possible collisions between moving vehicles. Hu,
et al. [6] developed a method for anomaly detection and
behavior prediction based on statistical learning. The
system predicts the moving directions of vehicles as mul-
tiple candidate trajectories. This method enables proba-
bilistic prediction of vehicle behavior. However, since the
system cannot predict positions of vehicles, it is difficult
to predict future scenes concretely.

3 Our Region-based Approach

Our approach is to use attainable regions for represent-
ing future behaviors of vehicles. An attainable region is
defined as a region where a vehicle can attain in a few
seconds. Figure 1 shows the attainable regions of a cer-
tain vehicle. In this figure, the vehicle is about to enter
the intersection. There are three major possibilities of
vehicle’s behavior: turn right, turn left, and go straight.
All of the possibilities must be represented, therefore, the
attainable regions reflect the possibilities. The attainable
regions also depend on information about the vehicle in a
certain time stamp. The information includes positions,
velocities, accelerations, and sizes. If the vehicle goes
straight, it can be considered to attain farther because its
velocity and acceleration probably become greater. Thus,
the attainable region in front of the vehicle is larger than
others.

In our approach, future behaviors of vehicles are pro-
jected to the scene plane. If attainable regions of two
vehicles overlap each other, it means that the vehicles
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Figure 2: Our framework.

may collide each other in a few seconds. By estimating
attainable regions of all vehicles in the scene and com-
paring all pairs of them, the system can predict possible
collisions in the scene.

In order to predict the behaviors in a particular scene, fre-
quent behavioral patterns provide useful knowledge. The
patterns represent a priori knowledge about the scene.
The future behavior of the vehicle can be considered to
be similar to some of frequent behavioral patterns. The
patterns are obtained by learning behavioral patterns of
vehicles statistically. In addition, observed information
is also important to predict future behaviors. The infor-
mation includes positions, velocities, accelerations, sizes,
and so on. Future behaviors of vehicles are represented
as attainable regions by combining observed information
and the priori knowledge.

The framework for our system is shown in Figure 2. It
is divided into two phases: training phase and predicting
phase. In the training phase, frequent behavioral pat-
terns are calculated by learning vehicle behaviors in a
target scene statistically. Outputs of this phase are stored
in a database and are used in the predicting phase. In
the predicting phase, future behaviors of vehicles are es-
timated by integrating the frequent behavioral patterns
with observed information. Both phases have the observ-
ing step in which vehicles in the scene are tracked at each
frame.

4 Vehicle Tracking

In both of the training phase and the predicting phase,
the system must obtain information such as positions,
velocities, accelerations, sizes, and so on. We introduce
the traditional visual tracking method into our system.
A flow of the observing step is shown in Figure 3.

In our situation, there are complex backgrounds in the
scene. Therefore, we employ a FG/BG detector proposed
by Li, et al. [7] and it is capable for our situation. The
blob detection is developed using a connected component
tracker [8]. For tracking objects in the scene, the object
position and size are provided frame-by-frame. We use a
hybrid object tracker proposed by Chen, T.P., et al. [9] in
our system. It consists of two components: a connected-
component tracker, and mean-shift and particle filtering
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Figure 4: Training step.

based tracker. Choice of two components is dependent
on existence of overlap between blobs.

Positions and sizes of objects are acquired from the track-
ing result directly. Velocities, accelerations, and di-
rections are estimated by comparing each frame with
its previous frame. Therefore, observed information
consists of time stamps, positions, velocities, acceler-
ations, directions, and sizes. The information of ve-
hicle i at frame n is defined as 8-dimensional vector
Oi = (tn, xn, yn, vn, an, θn, width, height). tn is the time
stamp at frame n, xn and yn are the local coordinates
of vehicle i, vn is the velocity, an is the acceleration, θn

is the direction, and width and height are the size of
vehicle i. Time-series location trails, called trajectories,
are generated by storing all positions of the same vehicle.
Trajectory vectors Ti are, then, obtained from observed
vectors Oi in the following definition:

Ti = {(xb, yb), (xb+1, yb+1), · · · , (xe, ye)} (1)

Here, b is the frame index at which the vehicle i entered
the scene, and e is the frame index at which the vehicle i
exited the scene.

5 Learning Scene Model

In this section, we discuss a priori knowledge of traffic
scenes and propose a model for learning behavioral pat-
terns of vehicles in the training phase. Figure 4 shows
the flow of the training step.

5.1 Modeling a Target Scene

In order to predict future behavior, frequent behavioral
patterns in a target scene must be considered. They are
defined as patterns which are often observed in the scene.
The patterns also reflect a constraint about the scene such
as road alignment, traffic regulation, and so on. We focus
on the patterns of vehicles as a priori knowledge of the

scene. Our system obtains this information by training
trajectories of vehicles.

Hu, et al. [6] proposed an algorithm for learning trajec-
tories using fuzzy K-means clustering. Each cluster has
a centroid which means a representative trajectory. The
system can detect anomaly in the scenes and predict be-
haviors of vehicles by using these cluster centroids. This
related research is based on the assumption that general
behavior of vehicles can be represented by multiple rep-
resentative trajectories. The system allows anomaly de-
tection and behavior prediction by clustering trajectories
of moving vehicles and using representative trajectories.
The representative trajectory of each cluster reflects road
alignment and traffic regulation (includes “no U-turns al-
lowed”, “contraflow”, and so on). Automatic scene mod-
eling reduces labor hour about environment settings for
system administrators and contributes an adaptive traffic
monitoring system. In our method, the system learns a
traffic scene model by clustering trajectories, and obtains
a priori knowledge.

5.2 Calculating Similarities between Trajec-
tories

For clustering trajectories, similarities between Ti and
Tj must be calculated. It is important to choose dis-
tance function between two trajectories. The Euclidean
distance is widely used for measuring similarity between
two time-series data. However, the distance cannot be
applied to our problem because it can be used only if two
time-series data are of equal length. More generalized
similarity measurements include Dynamic Time Warping
(DTW), the Longest Common Subsequence (LCSS) [10],
Edit Distance on Real sequences (EDR) [11], and the
Sequence Weighted Alignment (Swale) [12]. Swale can
achieve greater accuracy than DTW, LCSS, and EDR.
Moreover, Morse, et al. [12] have presented the Fast Time
Series Evaluation (FTSE) method which can be used for
evaluating LCSS, EDR, and Swale quickly. Therefore, we
employ Swale as distance function for clustering trajec-
tories and FTSE as a speed-up algorithm.

5.3 Estimating Frequent Behavioral Pat-
terns

The group-average clustering method [13] which is a kind
of aggregative hierarchical clustering methods was used
in our method. The method enables effective clustering
when only similarities between vehicles can be observed
and cluster centroids cannot be calculated. All trajec-
tories are clustered with Swale [12] hierarchically based
on this method. A medoid obtained in the training step
indicates a representative trajectory in each cluster and
is used in the predicting step. Each medoid represents
a representative trajectory which reflects a priori knowl-
edge in the scene. The medoid of cluster c is defined as
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Figure 5: Predicting step.

follows:

mc = arg max
i∈Vc

Σ
j∈(Vc−{i})

Swale(Ti, Tj) (2)

We express the vehicle index which represents medoid in
cluster c as mc. Vc is a set of vehicles included in cluster
c. These medoids are acquired a training phase and used
in the predicting phase as representative trajectories.

For accurate clustering, we divide a target scene into
some zones. In group-average clustering, two clusters
are combined only if both the entrance and the exit of
each cluster’s representative trajectory are the same. It
reduces incorrect calculation of similarity and improves
clustering accuracy.

6 Behavior Prediction

In this section, we explain a method for estimating at-
tainable regions from representative trajectories and ob-
served vectors (defined in Section 4) in the predicting
step. Figure 4 shows the flow of the predicting step.

6.1 Calculating Similarities between Trajec-
tories and Frequent Behavioral Patterns

When a target vehicle and a starting time of prediction
are determined, the system acquires a partial trajectory
from the time when the vehicle entered the scene to the
starting time of prediction. Once a target vehicle is de-
termined, a partial trajectory P of the vehicle from frame
b to frame curr is obtained in Equation (3).

P = {(xb, yb), (xb+1, yb+1), · · · , (xcurr, ycurr)} (3)

We define a current frame index at a starting time point
of prediction as curr and a frame index at time point
when the vehicle entered the scene as b. The partial
trajectory P is, then, compared with all representative
trajectories. Only representative trajectories whose simi-
larity to P exceeds a threshold are selected as candidates
of future trajectory. In the predicting step, the point is
not dissimilarity but similar segments between two se-
quences. When two sequences are compared, one is an
incomplete trajectory and the other is a complete trajec-
tory. If we employ Swale, dissimilar segments between

Algorithm 1 Build Rectangle List
Ensure: Rectangle List L

i← curr;
j ← arg min dist(pi, cj);
proceed← 0;
while proceed < proceedMax do

move← cj+1 − cj ;
pi+1 ← pi + move;
proceed← proceed + move;
if proceedMin < proceed < proceedMax then

Obtain recti+1 from pi+1, width, height, and θn;
Insert recti+1 into L;

end if
i← i + 1;
j ← j + 1;

end while

two sequences gets gap cost and a value of Swale becomes
larger improperly. The number of similar segments be-
tween two sequences should be counted up. LCSS is,
therefore, a better choice than DTW, EDR, and Swale.

6.2 Selecting Candidate Trajectories

An index set CP of the candidate trajectories is given in
Equation (4).

CP = {mc | LCSS(P , Tmc) > threshold} (4)

In order to compare a partial trajectory with each rep-
resentative trajectory accurately, we use zone informa-
tion in this calculation. Only if the entrance of two
trajectories is the same, the candidate trajectory is em-
ployed. Note that multiple candidate trajectories can be
obtained. They represent possibilities of vehicle behav-
iors which depend on prediction. The candidate trajec-
tories are used to determine future moving direction of
vehicles. Occupied regions of vehicles at future frames
can be calculated based on the trajectories.

6.3 Estimating Future Occupied Regions

The technique used to obtain future occupied regions
of vehicles is shown in Algorithm 1. P is the par-
tial trajectory of the target vehicle, C is the candidate
trajectory, pi is the i-th element included in P , cj is
the j-th element included in C, curr is the frame in-
dex at which the current element of the target vehi-
cle is, θn is the direction, and width and height are
the size of vehicle. In this algorithm, dist(a, b) =√

(bx − ax)2 + (by − ay)2. proceedMax and proceedMin
are calculated based on predicting time tp and pre-
determined variable ∆a which means a maximum chang-
ing rate of acceleration. proceedMax and proceedMin
represent the range of the moving distance which depends
on prediction. Each attainable region is calculated as a
set of rectangle lists along the candidate trajectories.
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7 Experiments

In the following, some samples of our method are first
demonstrated. Performance of the algorithm for estimat-
ing attainable regions is then evaluated. In this experi-
ment, we use the Next Generation Simulation (NGSIM)
[14] data sets. We define tp as the time range from a start-
ing point of prediction to the target future time stamp.

7.1 Successful Examples

In the training phase, we used the video stream data
between 8:30am and 8:45am. 1504 trajectories were
learned and 96 clusters were calculated. In the predict-
ing phase, we used the video stream data between 8:45am
and 9:00am. In this case, predicting time tp was 1 sec.
and acceleration changing rate was 0.3 pixel/frame.

Successful examples of experimental results are shown in
Figure 6. In these examples, future behaviors of vehicles
are predicted accurately using attainable regions. Vehi-
cle position, velocity, acceleration, shape, and trajectory
are reflected in the prediction result. However, some fail-
ures still remain, and accuracy of whole predictions is
not good because the tracking module often mistakes.
In this case, observed information of vehicles is not ac-
quired. Moreover, discontinuity of a vehicle trajectory
causes that the system cannot learn vehicle behavioral
patterns accurately.

7.2 Performance Evaluation

In order to break down the influence of tracking errors
and evaluate the predicting algorithm purely, we use the
vehicle trajectory data sets [14] which have been already
tracked and contains vehicle position, velocity, accelera-
tion, and so on. In the training phase, we used the vehicle
trajectory data between 8:30am and 8:45am. Trajectories
of 1210 vehicles were learned and then 270 clusters were
calculated. In the predicting phase, we used the vehicle
trajectory data between 8:45am and 9:00am.

We use an area ratio of the actual occupied region in
predicted attainable regions as an evaluation function.
If whole of the actual occupied region of the vehicle is
included in the attainable regions, the area ratio is 1.

We show the performance of predicting behaviors of 100
arbitrary vehicles. The average area ratio is shown in
Table 1. As the value of tp is set shorter, the area ra-
tio becomes greater. Our method had the best perfor-
mance in case of tp = 0.5. When tp increased from
0.5, recall value did not decrease greatly. It shows the
possibility for developing a long-term prediction system
by using attainable regions. However, there are some
prediction failures. These failures are mainly caused
by three factors: incorrect clustering, error in estimat-
ing proceedMin/proceedMax, and abnormal behaviors
of vehicles. Clusters should be allocated to each lane

Table 1: Average area ratio.
tp(sec) Average area ratio

0.5 0.72
1.0 0.67
2.0 0.63
3.0 0.56

in the training phase. In the experimental result, how-
ever, there were negative examples including one cluster
which crosses lanes. More detailed information than zone
information may enable correct clustering. Moreover, ac-
curacy about estimating moving distances of vehicles is
insufficient. Our method is sensitive to tracking noises,
we have to reduce the noises by using some filters. Addi-
tionally, abnormal behaviors are not able to be estimated
by using our method in principle. Therefore, the abnor-
mal behaviors should be detected and the system provides
information about abnormal vehicles to the drivers.

8 Conclusion

In this paper, we proposed the method for predicting ve-
hicle behavior with attainable regions. This method re-
flects frequent behavioral patterns of vehicles in the tar-
get scene. Experimental results showed the feasibility of
prediction with attainable regions. We should solve the
existing problems and improve our method.
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