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Abstract−A number of heuristic algorithms for 
producing near minimal sum-of products realization of 
multiple valued logic (MVL) functions have been 
introduced in the literature. In particular, the direct cover 
(DC) algorithms have been used effectively for synthesis 
of MVL functions for implementation using 2-level 
programmable logic arrays (PLAs). In this paper, a hybrid 
ant colony (ACO) algorithm and DC technique to 
synthesize MVL functions is introduced. The results are 
compared to other techniques found in the literature. A 
benchmark set of 50000 randomly generated 2-varaible 4-
valued functions is used to test the results obtained using 
the proposed algorithm. It is shown that the results 
obtained using the introduced hybrid ACO-DC technique 
are superior to those produced by existing techniques in 
terms of the average number of product terms needed for 
synthesis of a given MVL function.  
 
Index Terms−Ant Colony, Direct Cover Algorithms, 
Multiple-Valued Logic, Functional Synthesis. 
 

I.  INTRODUCTION  

   Application of multi-valued (non-binary) digital 
signals can provide considerable relief for a number of 
problems faced using the binary systems. Increased 
information density and processing efficiency of circuits 
could theoretically be substantially increased without any 
drastic increase in the cost of the underlying fabrication 
technology through the use of Multiple-Valued Logic 
(MVL). The use of non-binary data storage (ROM, RAM, 
Flash Memory) has led to reduction in on-chip physical 
space as compared to the use of binary data storage.  
 
   It should however be noted that the MVL synthesis 
problem is more involved compared to its binary 
counterpart. Consider, for example, synthesis of 2-
variable 4-valued functions. There are 324)( 24

2
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such functions. A number of heuristic algorithms for 
producing near-minimal sum-of products (PLA) 
realization of MVL functions have been introduced [1-8]. 
In addition, a number of proposed MVL PLA realizations 
have also been proposed [9-12]. Iterative heuristics offer 
the possibility of exploring larger solution space in 
arriving at near-optimal solutions. A number of these 
techniques have been reported in the literature [13-17]. 
In this paper, a hybrid of ACO-DC algorithm to 
synthesize MVL functions is introduced. To achieve 
further reduction to the number of gates needed to 

represent the function, an additional logic level is added at 
the output of circuits’ structure. The proposed technique 
works by decomposing a given MVL function using ACO 
and synthesizing a simpler circuit using a selected DC 
algorithm. A benchmark set of randomly generated 2-
varaibale 4-valued function has been used to test the 
results obtained using the proposed hybrid ACO-DC 
algorithm and o compare the obtained results with those 
obtained using existing techniques in terms of the average 
number of product terms needed for synthesis of a given 
MVL function. 
  
   This paper is organized as follows. Some background 
material on MVL, and direct cover techniques are 
presented in Section 2. The proposed technique is 
introduced in Section 3. Section 4 describes the 
experiments, results and comparison with other 
techniques. Section 5 concludes the paper. 
 

II. BACKGROUND MATERIAL 
 
An  n-variable r-valued function, f(X), is defined as a 

mapping f:Rn→R where R={0,1,…,r-1} is a set of r logic 
values with r ≥ 2 and X={x1,x2,…,xn} is a set of n  r-
valued variables.  
 
Definition 1: A tsum (truncated sum) operator is defined 
as tsum(a1,…,an) = a1 ⊕⋅⋅⋅⊕ an, = min(a1,+…+ an, r-1), 
where ai ∈R.□ 
 
Definition 2: A window literal axb of an MVL variable x is 
equal to r-1 if a ≤ x ≤ b & 0 otherwise, a,b∈R and a≤ b. □ 
 
Definition 3: A product term (PT), P(x1,…,xn) is defined 
as the minimum of a set of window literals on variables 
x1,…,xn, i.e. P(x1,…,xn) = c • a1x1

b1 •⋅⋅⋅• anxn
bn = 

min(c,a1x1
b1,anxn

bn), where ai ,bi∈R and ai≤ bi.and c ∈ 
{1,2,…, r-1}. □ 
 
   In the above definition, c is called the value of the PT. 
 
Definition 4: For an MVL function f(x1,…,xn), an 
assignment of values to variables x1=a1,…, xn=an is called 
a minterm, iff: f(a1,…,an) ≠ 0, where ai ∈{0,1,…,r-1}. □ 
  
   A minterm is a special case of a product term consisting 
of literal and min operators where the PT is dependent on 
all variables and a1=b1 ,…, an=bn. Consider, for example, 
the 4-valued 2-variable function shown in Fig. 1. Some of 
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the minterms are 1•3X1
3•0X2

0, 2•1X1
1•0X2

0 and 3•2X1
2•1X2

1. 

 
Fig. 1: A tabular representation of f(x1,x2). 

 
 
Definition 5: An implicant of a function f(x1,…,xn), is a 
PT, I(x1,…,xn), such that f(x1,…,xn) ≥ I(x1,…,xn) ≥  for all 
assignments of xi’s. □ 
 
   In Fig. 1, 3•2X1

2•0X2
1 and 2•1X1

2•0X2
1 are examples for 

implicants. 
 
   Direct cover (DC) approaches for synthesis of MVL 
functions consist of the following main steps:  
1) choose a minterm,  
2) identify a suitable implicant that covers that minterm, 
3) obtain a reduced function by removing the identified 

implicant, and 
4) repeat steps 1 to 3 until no more minterms remain 

uncovered. 
 
   The DC approaches reported in the literature differ in 
the way step 1 and 2 are achieved. For example, the 
algorithm due to Armstrong [3] selects minterms 
randomly and selects the implicant which results in the 
largest number of zero minterms (LRZ). The algorithm 
due to Besslich [1] uses what is known as the isolation 
weight (IW) for selecting minterms and selects the 
implicant that leads to minimizing the cost of the resulting 
function. The algorithm due to Dueck & Miller [2] uses 
what is called the isolation factor (IF) for selecting 
minterms and selects implicant having minimum Relative 
Break Count (RBC). 
    
   In a joint publication, the author of this paper [5, 6] has 
achieved improvement in the performance of the DC 
techniques by aggregating and/or ordering the above 
mentioned criteria. A new way of synthesizing a given 
MVL function by injecting pseudo minterm(s) in the 
representation of a given function has also been proposed 
in [7, 8]. In these techniques the authors showed 
significant improvement compared to existing techniques 
in terms of the average number of product terms required 
to synthesize a given MVL function at the expense of an 
additional MVL MUX at the circuit’s output.  
 
 

III. PROPOSED APPROACH 
 
   A number of iterative heuristics algorithms have been 
used for synthesis of MVL functions [13-17]. Although 
these techniques showed some encouraging results, the 
execution times for synthesizing a given MVL function 
will be much longer compared to any DC techniques. In 
this paper, we try to get some benefit of the randomness 
nature of these iterative heuristics and the faster execution 
times of the deterministic techniques. This can be 
achieved by a calculated blend of these techniques. 
  
   The Ant Colony Optimization (ACO) algorithm [18] is 
a meta-heuristic that has a combination of distributed 
computation, autocatalysis (positive feedback) and 
constructive greediness to find an optimal solution for a 
number of combinatorial optimization problems. This 
algorithm tries to mimic the ant’s behavior in the real 
world. We believe that the constructive nature of ACO 
algorithm is suitable with the technique that we are 
targeting.  
 
   The basic idea of our approach is to use the ant to 
decompose the given function to a number of levels and 
then synthesize a hopefully simpler circuit using the best 
DC techniques found in the literature [6]. Working from 
the circuit’s output, the proposed algorithm proceeds as 
follows: 
 
1. place a certain gate type at this level, 
2. decompose using ACO, and 
3. synthesize the (sub)-functions 
 
   Steps 2 and 3 can be performed repeatedly to create a 
multi-level structure. However, only 3-level synthesis is 
performed in this paper. In addition, we limit the 
application of the proposed algorithm to the case of 2- 
input tsum gate (see Definition 1) at the output of the 
circuit’s last level. We opted to use the DC algorithm 
proposed in [6] since it represents the best baseline DC 
technique available in the literature. 
 
   From definition 4, we know that a minterm with value 0 
can only be decomposed into two minterms each having 0 
values. In this paper, this is written as D(0)  {(0,0)}. 
However, there are different possible decompositions for 
minterm with value 2: D(2)  {(0,2), (1,1), (2,0)}. For 4-
valued functions, table that summarizes the different 
possible decomposition of values is shown in Table 1. 
 
   In the proposed algorithm an ant will travel through the 
truth table of the given function and select one 
combination out of the possible decompositions shown in 
Table 1 for each position in the truth table. 
   The selection process itself is a stochastic process 
influenced by the pheromone dropped by the previous 
ants. The probability of selecting a possible 
decomposition is calculated as p = τd / Σ τd, where τd. is 
the pheromone value of dth possible decomposition. After 
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the ant finishes selecting a possible decomposition for all 
positions in the table, the best ant will update the 
pheromone on the selected combination. The amount of 
pheromone dropped is proportional to its fitness and 
calculated as follow: ∆τ = PW • Ff, where PW is the 
pheromone weight and Ff = (100-Ng)/100 is the functional 
fitness. Note that in the last formulae, Ng is the number of 
gates used. Using such fitness function calculation; the 
representation that has least number of gates will have the 
highest Ff.  

 
TABLE 1: Decomposition table 

Val. Possible decompositions 
0 (0,0) 
1 (0,1), (1,0) 
2 (0,2), (1,1), (2,0) 
3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), 

(3,0), (3,1), (3,2), (3,3) 
 
     In addition to Ff, we introduce an additional criterion 
in selecting the best representation called balance, B. 
Balance is calculated as the different in the number of 
gates between the two sub-functions generated by the 
ant’s decomposition process. The lesser the different is 
the better the selection. We believe that having a balanced 
circuit is desirable. The proposed algorithm will try to 
find the circuits representation that uses the least number 
of gates. Out of those representations, the one that has the 
best balance will be selected. Thus, we can say that 
having the highest value of Ff is necessary but not 
sufficient to have a good representation while it is 
sufficient but not necessary to have a good B. 
 
Example: Consider the example shown in Fig. 1, if we 
scan through the truth table row-wise and enumerate 
them, the possible path for ants to travel through the 
example shown in Fig. 1 is shown in Table 2.  
 
   Let us assume that an ant selects the following path: 
((0,0), (2,0), (2,1), (0,1), (0,0), (2,0), (2,1), (1,1), (0,0), 
(0,0), (0,1), (2,1), (0,0), (0,0), (0,0), (0,0)). This is shown 
in Fig. 2. From this figure, it is easy to see that F1 can be 
synthesized using 3 literal gates while F2 requires only 
one literal gate (see Definition 2). This makes the total 
number of gates needed to realize the function in Fig. 1 to 
be 5 gates, including the tsum combining both F1 and F2.  
 
   The Ff value of this representation is equal to (100-
5)/100 = 0.95 while the balance is equal to 2. Suppose 
that any other ant managed to get a representation with 
higher Ff, then the representation of the later will be used. 
The algorithm will iterate until a certain stopping criteria 
such as the number of iterations is met.  
 

IV. EXPERIMENTAL RESULTS 
 
  The proposed approach is tested against 50000 randomly 
generated 2-variables 4-valued functions. This set of 

benchmark functions is used evaluate the performance of 
the proposed algorithm as well as other existing 
techniques found in literature. Comparison is made based 
on the results obtained in terms of the average number of 
product terms needed to realize a given function. 
 
 

TABLE 2:  Possible Ants paths in Fig. 1 
Minterm Possible path Pos. Val. 

0 0 (0,0) 
1 2 (0,2), (1,1), (2,0)  
2 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), 

(3,0), (3,1), (3,2), (3,3)  
3 1 (0,1), (1,0) 
4 0 (0,0) 
5 2 (0,2), (1,1), (2,0) 
6 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), 

(3,0), (3,1), (3,2), (3,3) 
7 2 (0,2), (1,1), (2,0) 
8 0 (0,0) 
9 0 (0,0) 
10 1 (0,1), (1,0) 
11 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), 

(3,0), (3,1), (3,2), (3,3) 
12 0 (0,0) 
13 0 (0,0) 
14 0 (0,0) 
15 0 (0,0) 

 

 
Fig. 2: Decomposed function of example 1 

 
   The ACO parameters used in the experiments are as 
follows:  
(a) number of runs = 10,  
(b) number of iterations = 200, 
(c) number of ants = 30.  
 
   The MAX-MIN ant system is used to maintain the range 
of pheromone values in any possible path within certain 
limit. In addition to that, if there is any stagnancy 
occurring during the iteration, the pheromone initial 
value, which is equal to 1, will be applied to all possible 
paths. This will hopefully force the ants to try to find 
solution in new areas in the search space. 
  
   In our first few experiments, we tried to find out the 
best value for PW, pheromone evaporation rate (ρ) and 
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pheromone range. Using the above parameters, we can 
see that the best performance (in terms of quality of 
solution and stability of exploration) of the algorithm can 
be achieved when 2 ≤ PW ≤ 3 and ρ is equal to 0.05. 
Then, throughout our experiments, we use PW = 2.5. 
 
   Table 3 shows a comparison of the proposed technique 
with the techniques proposed in [7, 8]. We choose to 
compare the proposed technique with these techniques 
because they also add an additional gate at the circuit 
output which is the MVL MUX. In our proposed 
technique we add a TSUM gat at the output.  
 

TABLE 3: Comparison with techniques proposed in [15]  
Algorithm # gates 
Minterm Injection [7] 7.09408 
2 Minterm Injection [7] 7.09276 
MCPM (PI_SM method) [8] 7.09064 
MCPM (PI_CM method) [8] 7.0705 
The proposed approach 7.02906 

 
   From Table 3, we can see that the proposed technique 
outperforms the techniques reported in [7] and [8] in 
terms of the average number of gates used to realize a 
given 2-variable 4-valued function. 
 

V. CONCLUDING REMARKS 
 
   A hybrid ACO and DC algorithm for multi-level 
synthesis of MVL functions is proposed in this paper. The 
main idea of the technique is to decompose a given MVL 
function into simpler (sub)-functions using ACO. The 
resulted (sub)-functions is then synthesized using DC 
technique. The proposed technique is tested against 50000 
randomly generated 2-variable 4-valued functions and 
compared against existing DC techniques. The results 
show that the proposed technique outperforms other 
existing techniques in terms of the average number of 
product terms needed to realize a given MVL function. 
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