
 Manuscript received May 13, 2009. This work is financially
supported by Kuwait University under Research Grant # WI 02/07.
The author gratefully acknowledge such support.
 Mostafa Abd-El-Barr is with the Department of Information
Science, CFW, Kuwait University, Mostafa@cfw.kuniv.edu

Ant Colony Direct Cover Technique for Multi-Level Synthesis of Multiple-Valued
Logic Functions

Mostafa Abd-El-Barr, Senior Member, IEEE

Abstract−A number of heuristic algorithms for
producing near minimal sum-of products realization of
multiple valued logic (MVL) functions have been
introduced in the literature. In particular, the direct cover
(DC) algorithms have been used effectively for synthesis
of MVL functions for implementation using 2-level
programmable logic arrays (PLAs). In this paper, a hybrid
ant colony (ACO) algorithm and DC technique to
synthesize MVL functions is introduced. The results are
compared to other techniques found in the literature. A
benchmark set of 50000 randomly generated 2-varaible 4-
valued functions is used to test the results obtained using
the proposed algorithm. It is shown that the results
obtained using the introduced hybrid ACO-DC technique
are superior to those produced by existing techniques in
terms of the average number of product terms needed for
synthesis of a given MVL function.

Index Terms−Ant Colony, Direct Cover Algorithms,
Multiple-Valued Logic, Functional Synthesis.

I. INTRODUCTION

 Application of multi-valued (non-binary) digital
signals can provide considerable relief for a number of
problems faced using the binary systems. Increased
information density and processing efficiency of circuits
could theoretically be substantially increased without any
drastic increase in the cost of the underlying fabrication
technology through the use of Multiple-Valued Logic
(MVL). The use of non-binary data storage (ROM, RAM,
Flash Memory) has led to reduction in on-chip physical
space as compared to the use of binary data storage.

 It should however be noted that the MVL synthesis
problem is more involved compared to its binary
counterpart. Consider, for example, synthesis of 2-
variable 4-valued functions. There are 324)(24

2

==
nrr

such functions. A number of heuristic algorithms for
producing near-minimal sum-of products (PLA)
realization of MVL functions have been introduced [1-8].
In addition, a number of proposed MVL PLA realizations
have also been proposed [9-12]. Iterative heuristics offer
the possibility of exploring larger solution space in
arriving at near-optimal solutions. A number of these
techniques have been reported in the literature [13-17].
In this paper, a hybrid of ACO-DC algorithm to
synthesize MVL functions is introduced. To achieve
further reduction to the number of gates needed to

represent the function, an additional logic level is added at
the output of circuits’ structure. The proposed technique
works by decomposing a given MVL function using ACO
and synthesizing a simpler circuit using a selected DC
algorithm. A benchmark set of randomly generated 2-
varaibale 4-valued function has been used to test the
results obtained using the proposed hybrid ACO-DC
algorithm and o compare the obtained results with those
obtained using existing techniques in terms of the average
number of product terms needed for synthesis of a given
MVL function.

 This paper is organized as follows. Some background
material on MVL, and direct cover techniques are
presented in Section 2. The proposed technique is
introduced in Section 3. Section 4 describes the
experiments, results and comparison with other
techniques. Section 5 concludes the paper.

II. BACKGROUND MATERIAL

An n-variable r-valued function, f(X), is defined as a

mapping f:Rn→R where R={0,1,…,r-1} is a set of r logic
values with r ≥ 2 and X={x1,x2,…,xn} is a set of n r-
valued variables.

Definition 1: A tsum (truncated sum) operator is defined
as tsum(a1,…,an) = a1 ⊕⋅⋅⋅⊕ an, = min(a1,+…+ an, r-1),
where ai ∈R.□

Definition 2: A window literal axb of an MVL variable x is
equal to r-1 if a ≤ x ≤ b & 0 otherwise, a,b∈R and a≤ b. □

Definition 3: A product term (PT), P(x1,…,xn) is defined
as the minimum of a set of window literals on variables
x1,…,xn, i.e. P(x1,…,xn) = c • a1x1

b1 •⋅⋅⋅• anxn
bn =

min(c,a1x1
b1,anxn

bn), where ai ,bi∈R and ai≤ bi.and c ∈
{1,2,…, r-1}. □

 In the above definition, c is called the value of the PT.

Definition 4: For an MVL function f(x1,…,xn), an
assignment of values to variables x1=a1,…, xn=an is called
a minterm, iff: f(a1,…,an) ≠ 0, where ai ∈{0,1,…,r-1}. □

 A minterm is a special case of a product term consisting
of literal and min operators where the PT is dependent on
all variables and a1=b1 ,…, an=bn. Consider, for example,
the 4-valued 2-variable function shown in Fig. 1. Some of

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

the minterms are 1•3X1
3•0X2

0, 2•1X1
1•0X2

0 and 3•2X1
2•1X2

1.

Fig. 1: A tabular representation of f(x1,x2).

Definition 5: An implicant of a function f(x1,…,xn), is a
PT, I(x1,…,xn), such that f(x1,…,xn) ≥ I(x1,…,xn) ≥ for all
assignments of xi’s. □

 In Fig. 1, 3•2X1

2•0X2
1 and 2•1X1

2•0X2
1 are examples for

implicants.

 Direct cover (DC) approaches for synthesis of MVL
functions consist of the following main steps:
1) choose a minterm,
2) identify a suitable implicant that covers that minterm,
3) obtain a reduced function by removing the identified

implicant, and
4) repeat steps 1 to 3 until no more minterms remain

uncovered.

 The DC approaches reported in the literature differ in
the way step 1 and 2 are achieved. For example, the
algorithm due to Armstrong [3] selects minterms
randomly and selects the implicant which results in the
largest number of zero minterms (LRZ). The algorithm
due to Besslich [1] uses what is known as the isolation
weight (IW) for selecting minterms and selects the
implicant that leads to minimizing the cost of the resulting
function. The algorithm due to Dueck & Miller [2] uses
what is called the isolation factor (IF) for selecting
minterms and selects implicant having minimum Relative
Break Count (RBC).

 In a joint publication, the author of this paper [5, 6] has
achieved improvement in the performance of the DC
techniques by aggregating and/or ordering the above
mentioned criteria. A new way of synthesizing a given
MVL function by injecting pseudo minterm(s) in the
representation of a given function has also been proposed
in [7, 8]. In these techniques the authors showed
significant improvement compared to existing techniques
in terms of the average number of product terms required
to synthesize a given MVL function at the expense of an
additional MVL MUX at the circuit’s output.

III. PROPOSED APPROACH

 A number of iterative heuristics algorithms have been
used for synthesis of MVL functions [13-17]. Although
these techniques showed some encouraging results, the
execution times for synthesizing a given MVL function
will be much longer compared to any DC techniques. In
this paper, we try to get some benefit of the randomness
nature of these iterative heuristics and the faster execution
times of the deterministic techniques. This can be
achieved by a calculated blend of these techniques.

 The Ant Colony Optimization (ACO) algorithm [18] is
a meta-heuristic that has a combination of distributed
computation, autocatalysis (positive feedback) and
constructive greediness to find an optimal solution for a
number of combinatorial optimization problems. This
algorithm tries to mimic the ant’s behavior in the real
world. We believe that the constructive nature of ACO
algorithm is suitable with the technique that we are
targeting.

 The basic idea of our approach is to use the ant to
decompose the given function to a number of levels and
then synthesize a hopefully simpler circuit using the best
DC techniques found in the literature [6]. Working from
the circuit’s output, the proposed algorithm proceeds as
follows:

1. place a certain gate type at this level,
2. decompose using ACO, and
3. synthesize the (sub)-functions

 Steps 2 and 3 can be performed repeatedly to create a
multi-level structure. However, only 3-level synthesis is
performed in this paper. In addition, we limit the
application of the proposed algorithm to the case of 2-
input tsum gate (see Definition 1) at the output of the
circuit’s last level. We opted to use the DC algorithm
proposed in [6] since it represents the best baseline DC
technique available in the literature.

 From definition 4, we know that a minterm with value 0
can only be decomposed into two minterms each having 0
values. In this paper, this is written as D(0) {(0,0)}.
However, there are different possible decompositions for
minterm with value 2: D(2) {(0,2), (1,1), (2,0)}. For 4-
valued functions, table that summarizes the different
possible decomposition of values is shown in Table 1.

 In the proposed algorithm an ant will travel through the
truth table of the given function and select one
combination out of the possible decompositions shown in
Table 1 for each position in the truth table.
 The selection process itself is a stochastic process
influenced by the pheromone dropped by the previous
ants. The probability of selecting a possible
decomposition is calculated as p = τd / Σ τd, where τd. is
the pheromone value of dth possible decomposition. After

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

the ant finishes selecting a possible decomposition for all
positions in the table, the best ant will update the
pheromone on the selected combination. The amount of
pheromone dropped is proportional to its fitness and
calculated as follow: ∆τ = PW • Ff, where PW is the
pheromone weight and Ff = (100-Ng)/100 is the functional
fitness. Note that in the last formulae, Ng is the number of
gates used. Using such fitness function calculation; the
representation that has least number of gates will have the
highest Ff.

TABLE 1: Decomposition table

Val. Possible decompositions
0 (0,0)
1 (0,1), (1,0)
2 (0,2), (1,1), (2,0)
3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,0), (3,1), (3,2), (3,3)

 In addition to Ff, we introduce an additional criterion
in selecting the best representation called balance, B.
Balance is calculated as the different in the number of
gates between the two sub-functions generated by the
ant’s decomposition process. The lesser the different is
the better the selection. We believe that having a balanced
circuit is desirable. The proposed algorithm will try to
find the circuits representation that uses the least number
of gates. Out of those representations, the one that has the
best balance will be selected. Thus, we can say that
having the highest value of Ff is necessary but not
sufficient to have a good representation while it is
sufficient but not necessary to have a good B.

Example: Consider the example shown in Fig. 1, if we
scan through the truth table row-wise and enumerate
them, the possible path for ants to travel through the
example shown in Fig. 1 is shown in Table 2.

 Let us assume that an ant selects the following path:
((0,0), (2,0), (2,1), (0,1), (0,0), (2,0), (2,1), (1,1), (0,0),
(0,0), (0,1), (2,1), (0,0), (0,0), (0,0), (0,0)). This is shown
in Fig. 2. From this figure, it is easy to see that F1 can be
synthesized using 3 literal gates while F2 requires only
one literal gate (see Definition 2). This makes the total
number of gates needed to realize the function in Fig. 1 to
be 5 gates, including the tsum combining both F1 and F2.

 The Ff value of this representation is equal to (100-
5)/100 = 0.95 while the balance is equal to 2. Suppose
that any other ant managed to get a representation with
higher Ff, then the representation of the later will be used.
The algorithm will iterate until a certain stopping criteria
such as the number of iterations is met.

IV. EXPERIMENTAL RESULTS

 The proposed approach is tested against 50000 randomly
generated 2-variables 4-valued functions. This set of

benchmark functions is used evaluate the performance of
the proposed algorithm as well as other existing
techniques found in literature. Comparison is made based
on the results obtained in terms of the average number of
product terms needed to realize a given function.

TABLE 2: Possible Ants paths in Fig. 1
Minterm Possible path Pos. Val.

0 0 (0,0)
1 2 (0,2), (1,1), (2,0)
2 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,0), (3,1), (3,2), (3,3)
3 1 (0,1), (1,0)
4 0 (0,0)
5 2 (0,2), (1,1), (2,0)
6 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,0), (3,1), (3,2), (3,3)
7 2 (0,2), (1,1), (2,0)
8 0 (0,0)
9 0 (0,0)
10 1 (0,1), (1,0)
11 3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,0), (3,1), (3,2), (3,3)
12 0 (0,0)
13 0 (0,0)
14 0 (0,0)
15 0 (0,0)

Fig. 2: Decomposed function of example 1

 The ACO parameters used in the experiments are as
follows:
(a) number of runs = 10,
(b) number of iterations = 200,
(c) number of ants = 30.

 The MAX-MIN ant system is used to maintain the range
of pheromone values in any possible path within certain
limit. In addition to that, if there is any stagnancy
occurring during the iteration, the pheromone initial
value, which is equal to 1, will be applied to all possible
paths. This will hopefully force the ants to try to find
solution in new areas in the search space.

 In our first few experiments, we tried to find out the
best value for PW, pheromone evaporation rate (ρ) and

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

pheromone range. Using the above parameters, we can
see that the best performance (in terms of quality of
solution and stability of exploration) of the algorithm can
be achieved when 2 ≤ PW ≤ 3 and ρ is equal to 0.05.
Then, throughout our experiments, we use PW = 2.5.

 Table 3 shows a comparison of the proposed technique
with the techniques proposed in [7, 8]. We choose to
compare the proposed technique with these techniques
because they also add an additional gate at the circuit
output which is the MVL MUX. In our proposed
technique we add a TSUM gat at the output.

TABLE 3: Comparison with techniques proposed in [15]
Algorithm # gates
Minterm Injection [7] 7.09408
2 Minterm Injection [7] 7.09276
MCPM (PI_SM method) [8] 7.09064
MCPM (PI_CM method) [8] 7.0705
The proposed approach 7.02906

 From Table 3, we can see that the proposed technique
outperforms the techniques reported in [7] and [8] in
terms of the average number of gates used to realize a
given 2-variable 4-valued function.

V. CONCLUDING REMARKS

 A hybrid ACO and DC algorithm for multi-level
synthesis of MVL functions is proposed in this paper. The
main idea of the technique is to decompose a given MVL
function into simpler (sub)-functions using ACO. The
resulted (sub)-functions is then synthesized using DC
technique. The proposed technique is tested against 50000
randomly generated 2-variable 4-valued functions and
compared against existing DC techniques. The results
show that the proposed technique outperforms other
existing techniques in terms of the average number of
product terms needed to realize a given MVL function.

ACKNOWLEDGMENT

The author would like to acknowledge the financial
support received from Kuwait University through funded
Research Project # WI 02/07.

REFERENCES

[1] P. W. Besslich, “Heuristic Minimization of MVL functions:
A Direct Cover Approach”, IEEE Transactions on Computers,
35(2), 1986, pp. 134-144.
[2] G. W. Dueck and D. M. Miller, “A Direct Cover MVL
Minimization Using the Truncated Sum”, in Proceeding of the
17th international symposium on multi-valued logic, 1987, pp.
221-227.
[3] G. Promper and J. A. Armstrong, “Representation of Multi-
valued Functions Using Direct Cover Method”, IEEE
Transactions on Computers, 30(9), 1981, pp. 674-679.

[4] C. Yang and Y.-M. Wang, “A neighborhood decoupling
algorithm for truncated sum minimization”, in Proceedings of
the 20th International Symposium on Multiple Valued Logic,
1990, pp. 153-160.
[5] M. Abd-El-Barr and B. Sarif,” Weighted and Ordered
Direct Cover Algorithms for Minimization of MVL Functions”,
in Proceedings of the 37th International Symposium on Multiple
Valued Logic, 2007, pp. 48-53.
[6] B. Sarif and M. Abd-El-Barr, “Fuzzy-based Direct Cover
Algorithm for synthesis of Multi-Valued Logic Functions”, in
Proceedings of IASTED International Conference on Circuits
and Systems, 2008.
[7] B. Sarif and M. Abd-El-Barr, “Minterm Injection
Technique for Synthesis of Multiple- Valued Logic Functions”,
in Proceedings of IASTED International Conference on Circuits
and Systems, 2008.
[8] B. Sarif and M. Abd-El-Barr, “The Use of Multiple
Connected Pseudo Minterms in The Synthesis of MVL
Functions”, in Proceedings of the 39th International Symposium
on Multiple Valued Logic, 2009, pp. 145-150.
[9] P. Tirumalai and J. T. Butler, “On the Realization of
Multiple-valued Logic Functions Using CCD PLA's”,
Proceeding 14th International Symposium, Multiple-Valued
Logic, 1984, pp. 33-42.
[10] T. Sasao, “On the Optimal Design of Multiple-Valued
PLAs”, IEEE Transactions on Computers, 38(4), 1989, pp. 582-
592.
[11] M. Abd-El-Barr and M. Hasan,” New MVL-PLA
Structures Based on Current-Mode CMOS Technology”, in
Proceedings of the 26th International Symposium on Multiple
Valued Logic, 1996, pp. 98-103.
[12] F. Pelayo, A. Prieto, A. Lloris, and J. Ortega, “CMOS
Current-Mode Multi-valued PLA's”, IEEE Transactions on
Circuits and Systems, 38(4), 1991, pp. 434-441.
[13] T. Kalganova, J. Miller and N. Lipnitskaya, “Multiple-
Valued Combinational Circuits Synthesized Using Evolvable
Hardware Approach”, in Proc. 7th-Workshop on Post-Binary
Ultra Large Scale Integration Systems in Association with
ISMVL’98, 1998, pp.52-54.
[14] W. Wang and C. Moraga, “Evolutionary Methods in the
Design of Quaternary Digital Circuits”, IEEE Proc. 28th-Int.
Symposium On Multiple-Valued Logic, 1998, pp.89-94.
[15] B. Sarif, and M. Abd-El-Barr, “Synthesis of MVL
Functions - Part I: The Genetic Algorithm Approach”,
International Conference on Microelectronics, 2006. ICM '06.
16-19 Dec. 2006, pp. 154 – 157.
[16] M. Abd-El-Barr and B. Sarif, “Synthesis of MVL
Functions - Part II: The Ant Colony Optimization Approach”,
International Conference on Microelectronics, 2006. ICM '06.
16-19 Dec. 2006, pp. 158 – 161.
[17] B. Sarif, and M. Abd-El-Barr, “Synthesis of MVL
Functions Using Discrete Particle Swarm Optimization”, in the
2008 IEEE Swarm Intelligence Symposium, St. Louis, USA,
September 21-23, 2008.
[18] M. Dorigo and G. Di Caro, “New Ideas in Optimization”,
McGraw Hill, London, UK, 1999.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

