
 
 

 

  
Abstract— Continuum damage mechanics is extended to cover the 

self-repair process as well as the damage process.  The repair variable and 
its evolution equation are newly introduced to consider the self-repair 
process.   The evolution equation of the repair variable is proposed, based 
on Dyson’s equation of creep cavity growth.  The validity of the proposed 
modeling is illustrated through the simulations for the self-repair processes  
of  the creep-damaged steel  by sintering and  the fatigue-damaged 
polystyrene by annealing. 
 

Index Terms— Computational Modeling, Damage 
Mechanics, Self-Repair, Steel, Polystyrene  
 

I. INTRODUCTION 
The researches on self-repair materials with self-repairing 

functions as in living things are being activated for the 
purpose of increasing safety, reliability and economy of 
materials and structures.  The reunion of molecular chains in 
high-polymer materials, the surface repair in 
corrosion-resistant steels, the creep void repair in 
heat-resistant steels, the surface crack recovery in ceramic 
materials and the adhesive dispersion in concrete/composite 
materials have been studied in recent years [1]. 

The analytical method based on continuum damage 
mechanics [2] is a powerful tool as a modeling and 
simulation technique for the damage and fracture behaviors 
of these materials.  It is expected that simulations of the 
self-repair processes of materials and structures as mentioned 
above will be made possible by extending the concept of 
damage mechanics to the modeling of the self-repair 
processes which are the inverse processes to the damage and 
fracture behaviors.  The study conducted by Barbero et al. [3] 
for fiber-reinforced high-polymer composite materials and 
the research by Toi and Hirose [4] for steels at high 
temperature are the pioneering works trying to extend 
damage mechanics to the self-repair materials. 

In the present study, the concept of damage mechanics is 
formally extended to include the self-repair processes as well 
as the damage and fracture behaviors.  The repair variable 
and the repair evolution equation describing the self-repair 
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processes are introduced, which correspond to the damage 
variable and the damage evolution equation for the damage 
and fracture behaviors respectively.  The effects of damage 
and repair on the constitutive equation are independently 
taken into account in the formulation of Barbero et al. [3], 
however, the summation of both may affect it, depending on 
the microscopic damage and repair mechanisms of the 
materials to be considered.  The extension in the latter case is 
mainly discussed in the present study. 

The self-repair processes for two kinds of engineering 
materials are simulated as examples for the application of the 
above-mentioned concept.  The process of self-repair by 
sintering under compressive loading is calculated for the 
boiler plate steel 1.3Mn-0.5Mo-0.5Ni (abbreviated as SBV2) 
subjected to creep damage under tensile loading.  The 
process of self-repair by annealing is also analyzed for the 
polystyrene (abbreviated as PS) subjected to fatigue damage.  
The validity of the present modeling is illustrated by 
comparing the obtained results with the corresponding 
experimental results [5], [6]. 

The extension of damage mechanics to the self-repair 
process is described in Section 2.  Section 3 presents the 
constitutive equation system for damage evolution and 
self-repair.  The repair evolution equation based on the 
constrained void evolution model in solids given by Dyson 
[7] is proposed.  In Sections 4 and 5, the self-repair 
simulations for the boiler plate steel and the polystyrene are 
carried out and the results are compared with the test results.  
Section 6 contains concluding remarks. 

 

II. EXTENSION OF DAMAGE MECHANICS TO SELF-REPAIR 
PROCESS 

The damage variable in continuum damage mechanics is 
defined as the ratio of the damaged area (void area) due to 
microvoids and microcracks to the total area, which is the 
sum of the damaged area and the undamaged area, on the 
cross-section in the representative volume element.  This 
ratio is expressed by the scalar damage variable independent 
on directions in the isotropic damage theory, which is 
denoted by FD  to distinguish it from the real damage D  

explained later.  FD , which is a monotonically increasing 
function, has the value of zero when no damage exists and 
has the value of one when complete damage occurs.  Then the 
following conditions must be satisfied: 

0≥FD                                                                                        (1a) 
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10 ≤≤ FD                                                                               (1b) 
On the other hand, when the existing damage is repaired in 

some way and the damaged area decreases, the decreased 
damage area is called the repaired area and the ratio of the 
repaired area to the total area is called the repair variable, 
which is denoted by RD  here.  RD , which is a 
monotonically decreasing function, is zero when no repair 
exists and its absolute value has the upper limit of FD  when 
there is repair.  Therefore the following conditions must be 
satisfied:  

0≤RD                                                                                             
(2a) 

FR DD ≤≤0                                                                             

(2b) 
As the microscopic mechanisms for damage and repair are 

generally different with each other, the evolutions for 
damage and repair are expressed by the different evolution 
equations as follows: 

( ) FFiF nisFD ~1, ==                                                     
(3) 

( ) RRiR nisRD ~1, ==                                                      
(4) 
where Fis , the number of which is Fn , and Ris , the number 

of which is Rn , are the state variables contained in the 
damage and the repair evolution equation, respectively. 

As the damage and the repair evolution as explained above 
are simply increase and decrease of the area of damage 
opening, the real damage variable at every time D  and its 
time rate D  can be evaluated by the summation of both 
variables as follows: 

RF DDD βα +=                                                             (5a) 
and 

RF DDD βα +=                                                            (5b) 

where α  and β  are the material constants to consider the 
interactive effects in the case when the damage and the repair 
proceed simultaneously.  There are no interactive effects 
when 1=α  and 1=β  in the identified material constants 
based on the experimental results.  Some interactive effects 
can be considered to exist, when 1≠α  or 1≠β .  The 
influence of the damage and the repair variable on the 
material constitutive equations can be taken into account by 
replacing the conventional stress σ  with the effective stress 
defined by using the real damage variable D  which is the 
sum of both variables according to the strain-equivalence 
hypothesis [2].  The resulting constitutive equation is 
expressed by  

( )( ),1 DC −= σε                                                   (6) 
The damage and the repair of the heat-resistant steel and 

the polystyrene discussed in the present study can be 
considered to be examples of the above-proposed modeling, 
because they are the phenomena of evolution and shrinkage 
of the microvoids. 

In the adhesive diffusion in concrete and composite 
materials, the pre-inserted adhesive capsule is fractured by 
the crack propagation and the adhesives fill up the cracks.  In 
such a case, the influence of the repair variable RD  on the 
constitutive equation must be independently considered, as 
the different material such as adhesives repair the damage 
openings.  The resulting constitutive equation is expressed by 

( )( ),,1 RDDC −= σε                                                
(7) 

It is considered that the above-mentioned extension, which 
makes possible the applications of continuum damage 
mechanics to the self-repair processes as well as the damage 
and fracture processes, offers simulation models useful for 
the prediction for the damage and the repair of self-repair 
materials. 

 

III. EVOLUTION EQUATIONS FOR DAMAGE AND 
SELF-REPAIR PROCESSES 

A.  Constitutive Equation 
The following constitutive equation, in which the 

strain-equivalence hypothesis [2] is applied to the 
well-known Hooke’s law, is used:  

 ( )i
klkl

e
ijkl

e
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e
ijkl

ij
ij DD
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εεε
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σ −==

−
=

1
         (8) 

where the following notations are used: ijσ , the effective 

stress; ijσ , the nominal stress; e
ijklD , the stress-strain matrix 

of an elastic solid; e
klε , the elastic strain; klε , the total strain; 

i
klε , the inelastic (creep for SBV2 and viscoplastic for PS) 

strain; D , the real damage variable defined by Eq. (5a). 

B. Damage Evolution Equation 
The following equation given by Lemaitre [2] is used as 

the damage evolution equation (3):  

i
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⎛
−=                                                         (9) 

where i
eqε  is the equivalent inelastic strain rate.  The 

following conditions for damage evolution are assumed: 

pd
i
eqF whenD εε <= 0                                         (10a) 

pd
i
eqF whenD εε ≥> 0                                  (10b) 

crF DD ≤≤0                                                              (10c) 
When the accumulated equivalent inelastic strain i

eqε  exceeds 

the critical inelastic strain for damage initiation, the inelastic 
damage evolves.  When the damage variable FD  reaches the 

critical damage crD , the mesocracking occurs in the 

material.  In Eq. (9), 1S  and 2S  are the damage strength 
material parameters.  Y  is the strain energy density release 
rate expressed by the following equation:  

( ) v
eq R

DE
Y 2

2

12 −
=−

σ
                                                  (11) 
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In Eqs. (11) and (12), the following notations are used: E , 
Young’s modulus; ν , Poisson’s ratio; vR , the triaxiality 

function; Hσ , the hydrostatic pressure; eqσ , the equivalent 

stress. 
The damage strength material parameters 1S , 2S  

contained in the damage evolution equation (9) and the 
parameters pdε , crD  contained in the damage evolution 

conditions (10) are the material constants depending upon the 
sorts of materials and the types of damage.  As the inelastic 
damage discussed in the present study is a low-speed 
deformation damage, none of these material constants 
depends on the strain rate.  Therefore,  

101 SS =                                                                       (13a) 

202 SS =                                                                        (13b) 

0pdpd εε =                                                                      (13c) 

0crcr DD =                                                             (13d) 

where the following notations are used: 10S  and 20S , the 

static damage strength material parameters; 0pdε , the static 

critical strain for damage initiation; 
0crD , the static critical 

damage for mesocracking. 

C. Repair Evolution Equation 
The repair evolution equation is derived in the following.  

Kyono et al. [5] applied the evolution model of creep voids 
given by Dyson [7] to the creep void sintering and calculated 
the sintering velocity using the following equation in which 
the tensile strain rate in the void evolution model is replaced 
with the compressive strain rate: 

2

2

16r
d

dt
dr λε

−=                                                     (14) 

where the following notations are used: r , the radius of 
creep voids; ε , the compressive creep strain rate; λ , the 
distance between creep voids; d , the size of crystal grains. 

The following equation can be derived from Eq. (14):  

r
d

dt
dr

8

22 λε
−=                                                               (15) 

As the left-hand side of Eq. (15) and the denominator of the 
right-hand side are proportional to the reduction rate of void 
areas and the square root of void areas respectively, the 
damage repair equation has the following form: 

i
eqR DD ε2/1−−∝                                                              (16a) 

Its generalized form is given by the following equation: 
i
eq

n
R DD ε−∝                                                              (16b) 

The following equations for the evolution of real damage 
can be obtained, combining Eqs. (9) and (16b) with Eq. (5b).  
No repair occurs in the inelastic damage process under a 
tensile stress, then 
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It can be considered that the compressive damage and the 
repair due to sintering or annealing take place simultaneously 
in the inelastic damage/repair process under a compressive 
stress.  Therefore, the following equation can be obtained:  

i
eq

ni
eq

S

RF DK
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YKDDD εε 2
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2
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−=+=          (18) 

where 1K  and 2K , which are the material constants for 

compressive damage and repair, correspond to α  and β  in 
Eq. (5b) respectively.   

 

IV. RESULTS FOR BOILER PLATE STEEL (SBV2) 

A. Tensile Creep Damage 
The creep damage constitutive equation [4] has been 

identified by using the material test results for SBV2 
cylindrical specimens which are the creep test results under 
the tensile stresses of 118[MPa] and 157[MPa] [5].  The 
identified time-histories for the tensile creep strain as well as 
the test results are shown in Fig. 1.  The real damage variable 
D  in the calculations of the present section is evaluated by 
Eq. (17) which contains no repair processes.  The symbol × 
on the identified curves in the figure indicates the fracture 
point ( crDD = ). 

It can be seen from the results of Fig. 1 that the creep 
damage model in the present study does not represent clearly 
the reduction of the creep strain rate in the primary creep, but 
express well the stationary creep progress in the secondary 
creep and the creep rate increase and the creep fracture in the 
tertiary creep.  The identified results agree well with the two 
creep test results under different stresses.  It has been 
confirmed that the identified creep damage constitutive 
model can represent the creep damage process in good 
accuracy. 

 

 
Fig. 1 Tensile creep curves for SBV2 
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B. Self-Repair by Sintering 
The uniaxial, tensile creep test of 540[hours] was 

conducted for SBV2 at the constant temperature of 550[℃] 
under the tensile stress of 118[MPa] [5].  It was followed by 
the repair of creep damage by sintering under five levels of 
uniaxial, compressive stresses 59, 88, 116, 147, 177[MPa] 
[5].  Figures 2 and 3 show the results of the simulations for 
these five experimental results [5] by the identified creep 
damage constitutive model.  The real damage variable D  in 
this calculation has been evaluated by Eq. (18) with 

2/1−=n considering the repair process. 
Figure 2 shows the time-history of the compressive creep 

strain during the loading of the compressive stress.  As seen 
from the figure, the present results represent well the 
transient material softening phenomena after the stress 
reversal and totally correspond well with the experimental 
results, although the correspondence depends on the 
compressive stress levels. 

Figure 3 shows the relation between the repair rate of 
damage and the compressive creep strain.  The repair rate of 
damage on the vertical axis, which is the recovery rate for the 
density of the material decreased by the tensile creep in the 
experiment, corresponds to the reduction rate of the damage 
variable D  in the analysis.  The horizontal axis indicates the 
compressive creep strain.  As seen from Fig. 3, the time rate 
of repair decreases with the progress of the repair in the 
experimental results, however, this phenomena has not 
appear in the creep damage constitutive modeling proposed 
in the present study.  On the contrary, the time rate of repair 
has increased with the relative increase of the influence of the 
second term in Eq. (18).  Although there remains a room for 
improvement in the present modeling, the repair evolution 
equation is physically valid to some extent as the dependence 
of the repair rate on the compressive stress levels at the initial 
stage has been successfully simulated.  

 
 

 
Fig. 2 Compressive creep curves for SBV2 

 
Fig. 3 Repair rate versus compressive creep strain for SBV2 

V. RESULTS FOR POLYSTYRENE (PS) 

A. Tensile Fatigue Damage 
The tensile fatigue damage analysis [8] has been 

conducted for the model of Fig. 4 under the repeated loading 
with the maximum stress of 6MPa and the frequency of 
0.83Hz [6]. 

The craze and crack have developed from the notch-tip in 
the direction perpendicular to the load.  Figure 5 shows the 
relation between the number of cycles and the length of craze 
and crack.  The calculated result agrees well with the 
experimental result [6]. 

The specimens in which the crack and craze length 
normalized by the specimen width has reached 0.2, 0.3, 0.4 
and 0.5 are identified as 20%-, 30%-, 40%- and 50%-PS 
model. 

B. Self-Repair by Annealing  
The self-repair analysis has been conducted for 20%-, 

30%-, 40%- and 50%-PS model subjected to fatigue damage.  
The real damage variable D  in this calculation has been 
evaluated by Eq. (18) with 0=eqσ (i.e. 0=Y ) and 

2/1=n considering the repair process. 
Figures 6 and 7 are the damage variable distribution and 

the equivalent stress distribution, respectively, for 50%-PS 
model.  The damage except for the crack has been repaired by 
the repair evolution equation.  It is seen that the craze has 
been repaired and the residual stress has been removed.  The 
similar results have been obtained for the other three models.  

C. Tensile Strength before and after Annealing 
Figure 8 shows the calculated results for the tensile 

strength before and after annealing.  The increase of the 
tensile strength by annealing has been confirmed.   The 
qualitative tendency of the increase of the repair rate with the 
increase of the crack and craze length has been well 
simulated.  The calculated results have corresponded well 
with the experimental results [6]. 
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Fig. 4 Finite element mesh for notched PS 
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Fig. 5 Crack and craze length for PS 

 
 

   
(a)before annealing           (b)after annealing 

 
Fig. 6 Distribution of damage for fatigued PS 

 
 

   
(a)before annealing           (b)after annealing 

 
Fig. 7 Distribution of equivalent stress for fatigued PS 
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VI. CONCLUSION 
The concept of continuum damage mechanics has been 

extended so as to contain the self-repair process as well as the 
damage fracture behavior in the present study.  The repair 
variable and the repair evolution equation have been 
introduced to describe the self-repair process, corresponding 
to the damage variable and the damage evolution equation.  
The detailed formulation has been conducted for the case 
when both influence additionally on the constitutive 
equations, depending upon the microscopic damage and the 
repair mechanism of the material. 

The self-repair processes have been simulated for two 
kinds of engineering materials, the creep-damaged steel and 
the fatigue-damaged polymer.  The validity of the present 
computational modeling has been illustrated by comparing 
the calculated results with the corresponding test results.  It is 
considered that the extension of continuum damage 
mechanics to the self-repair process as proposed in the 
present study can also be applied effectively to brittle 
materials such as ceramics and concrete. 
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