

Abstract— This research attempt to evolve computer

programs, to solve a problem by using the input-output
specifications of this problem. The evolutionary process adapts
Genetic Programming to search for a good Finite State
Automata that efficiently satisfies these specifications. It has
been presented that for large and complex problems, it is
necessary to divide them into sub problem(s) and
simultaneously breed both sub- program(s) and a calling
program.

Index Terms— Evolutionary Algorithm, Genetic Algorithm,
Genetic Programming, Finite State Machine.

I. INTRODUCTION
 The input to an Automatic Programming System

(APS) is a programming problem expressed in the
specification language defined by that APS. The
specification may state tasks to be performed within the
world domain or restriction to be enforced, or both, the job of
an APS is to translate that specification into a program in
some target language using it's knowledge bases and problem
solving strategies [1][2][3]. The recent resurgence of interest
in AP with Genetic Algorithm has been spurred by the work
on Genetic Programming (GP). GP paradigm provides a
way to do program induction by searching the space of
possible computer programs for an individual computer
program that is highly fit in solving or approximately solving
the problem at hand. [4] [5] [6] [7][8]. Unfortunately, since
every real life problem are dynamic problem, thus their
behaviors are much complex, GP suffers from serious
weaknesses. Complex systems often include chaotic
behavior(the classic example of chaos theory is “the
Butterfly effect”), which is to say that the dynamics of these
systems are nonlinear and difficult to predict over time, even
while the systems themselves are deterministic machines
following a strict sequence of cause and effect. Natural
chaotic systems may be difficult to predict but they will still
exhibit structure that is different than purely random systems.
[9][10]. GP weakness and the chaotic behavior of real live
problem is reduced if induction process based on the meaning
of the low-level primitives rather than their structure. In this
paper we attempted to scale-up GP application to real live
problems, by focusing on the meaning rather than the
structure of a program to overcome the representation
problem. Abstract machine, like Fixit State Machine, is used
to specify the meaning of a programming language
mathematically [11] [12], as we shall explain in detailed in
the rest of this paper.

Nada M. A. Al Salami (1971) Author is with the Manegement
Information System Department, University of Al Zaytoonah, Amman ,
Jordan, (her e-mail: nada.alsalami@yahoo.com).

II. THEORETICAL DEFINITION
The meaning of a program P can be specified by set of

function transformation from states to states; hence P effects
a transformation:
(P) X ini t ia l X f i n a l
on a state vector X, which consists of an association of the
variable manipulated by the program and their values. A
Program P can be defined as 9- tuples, called Semantic
Finite State Automata (SFSA): P=(x, X, T, F, Z, I, O, γ, X
initial), where: x is the set of system variables, X is the set of
system states, X= { X initial, ----, X final }, T is the time scale: T
=[0, ∞), F is the set of primitive functions, Z is the state
transition function, Z = {(f, X, t): (f, X, t) Є F × X × T , z(f,
X, t) = (•X, •t)}, I is the set of inputs, O is the set of outputs,
γ is the readout function, and Xinitial is the initial state of the
system: Xinitial Є X.
All sets involved in the definition of P are arbitrary, except
T, and F. Time scale T must be some subset of the
set [0, ∞) of nonnegative integer numbers, while the
set of primitive function F must be a subset of the set CL
(FL) of al l computable functions in the language L
and sufficient to generate the remainder functions.
Two features characterize state transition function:
1- Z (- , - , t) = (X initial, 1) if t = 0 … Eq 1
2- Z (f , X, t) = z (f , z (f(t-1), X, t-1)) i f t ≠ 0
 . . . Eq. 2
The concepts of reusable parameter ized
sub-sys tems can be implemented by restricting the
transition functions of the main system, so that it has
the ability to call and pass parameters to one or more
such sub-systems. Suppose we have sub-system 'P,
and main-system P, then they can be defined by the
following 9-tuples:

P (x, X, T, F, Z, 1, 0, X
i n i t i a l , γ)

 P (•x, •X, •T, •F, •Z, •I, •O, •X
i n i t i a l , •γ)

where:
•x ⊆ x, •X

i n i t i a l Є X, then there exi t *f Є F, z Є Z, •f,
Є F, and •z Є •Z, and h is a function defined over •Z with
value in •X is defined as follows:
h = •z (•f, •X

i n i t i a l , 1) = Xh , ti , .. Eq 3
z (*f, X, t) = z (h , X , t) = Xh , t, ..Eq 4
*f is a special function we call it sub-SFSA function to
distinguish it from other primitive functions in the set
F. Also, we call the sub-system •P , sub-SFSA, to
distinguish it from the main SFSA. Formally, a
system •P is a sub-system of a system P , iff: •x ⊆ x,
•T ⊆ T, •I ⊆ I, •O ⊆ O, •γ must be the restriction of
γ to •O , and •F ⊆ N , where N is the set of
restrictions of F to •T. If (• f, •X, • t) is an element of
•F × •X × •T, then there exists f Є F, such that the
restriction of f to •T is • f, and •z (• f, •X, •t) is z (f, X, t).

Genetic System Generation
Nada M. A. Al Salami

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

III. SYSTEM INDUCTION
On the basis of the theoretical approach sketch in section 2,
we shall define and explain another theoretical approach for
system induction, it is modification of system theory given in
reference[13]. The newly defined approach highly depend on
input-output behavior of the problem, it is expressed as
7-tuples: (IOS, S, F, a1, Tmax, β, υ):

1. Input-Output Specification (IOS):
IOS is establishing the input-output boundaries of the
system. It describes the inputs that the system is designed to
handle and the outputs that the system is designed to produce.
An IOS is a 6-tuples: IOS = (T, I, O, Ti, TO, η). Where T, is
the time scale of IOS, I is the set of inputs, O is a set of
outputs, Ti is a set of input trajectories defined over T, with
values in I, TO, is a set of output trajectories defined over T,
with values in O, and η is a function defined over Ti whose
values are subset of TO; that is, η matches with each given
input trajectories the set of all output trajectories that might,
or could be, or eligible to be produced by some systems as
output, experiencing the given input trajectory. A system P
satisfies IOS if there is a state X of P, and some subset U not
empty of the time scale T of P, such that for every input
trajectory g in Ti, there is an output trajectory h in TO
matched with g by η such that the output trajectory generated
by P, started in the state X is:

γ (Z (f (g), X, t) = η(h(t)), For every t Є U ………. Eg.(5)

2. Syntax Term (S):
Refers to the written form of a program as far as possible
independently of its meaning. In particular it concerns the
legality or well-formed ness of a program relative to a set of
grammatical rules, and parsing algorithms for the discovery
of the grammatical structure of such well-formed programs. S
is a set of rules governing the construction of allowed or legal
system forms.
3. Primitive Function (F):
Each fi must be coupled with its effect on both the state
vector X, and the time scale T of the system. Some primitive
functions may serve as primitive building blocks for more
complex functions or even sub-systems.

4. Learning Parameter (a1):
 is a positive real number specifying the minimum accepted
degree of matching between an IOS, and the real observed
behavior of the system over the time scale, Tx, of IOS only.

5.Complexity Para(Tmax, β):

Tmax and β parameters are merits of system
complexity: size and time, respectively. It is important to
note that there is a fundamental difference between a
time scale T and an execution time of a system. T
represents system size, it defines points within the
overall system, whereas, β, is the time required by the
machine to complete system execution, hence it is high
sensitive to the machine type.
6. System Proof Plan (υ):

Prove process should be a par t of the
s ta tement of sys tem induct ion problem especially
when the IOS is imprecise or inadequate to generate

an accurate system. We s a y P i s c o r r e c t i f f i t
c o m p u t e s a c e r t a i n f u n c t i o n f f r o m X i n i t i a l Є X
properly, that is if for each Xi Є X , P (Xi) is defined,
i.e. P does not loop for Xi, and is equal to f(Xi).
Broadly speaking, there have been two main
approaches to the problem of developing methods for
making programs more reliable [11]: Systematized testing,
and Mathematical proof.

Our works use systematized testing approach
as a proof plane. The usual method for verifying that a
program is correct by testing is by choosing a finite
sample of states X1, X2,..., Xn and running P on each of
them to verify that: P(X1) =f (X1), P(X2) =f(X2),……. P(X n)
=f (X n) . Formally, if testing approach is used for
system verif ication, a system proof is denoted
υ=(α2 , d) , where α2 is a positive real parameter
defining the maximum accepted error from testing
process. α2 focus on the degree of generality, so that
α1 ,and α2 , parameters suggest a fundamental
tradeoff between training and generali ty. On the
o ther hand , d represents a se t of tes t cases pai r s
(O i , K i) , where K i i s a sequence of initial state Xinitial
and input Ii.

In addition to using the idea of sub-system
functions, i.e., sub-FSA , for complex software it is
better to divide the process of system induction into
sub-system(s) and main-system induction.
Sub-system induction must be accomplished with
several objectives; first one is that a suitable
solution to sub-problem must determine a solution
to the next higher level problem. Second is to ensure
that the figure of merit of the sub-system has
relationships to the figure of merit of the top-level
problem. The third objective is to ensure specific
functional relationships of sub-system proof plans to
the system proof plan of the top-level problems.

IV. GENETIC GENERATION PROCESS
Within the context of the suggested

mathemat ical approaches , to automatical ly
generate a system means search to find an
appropriate SFSA satisfying IOS efficiently, with
regard to learning and complexity parameters. Then,
proof plan υ must be applied to that SFSA for further
assessing its performance and correctness. If that
SFSA behaves well with υ , it may be considered as a
solution or approximate solution to the problem,
else, some or all terms in the statement of the
problem of system induction must be modified, and
the process is repeated unti l a good SFSA is found,
or no further revisions can be made. The search
space in Genetic Program Generation algorithm is the
space of all possible computer programs described
as an 9-tuples SFSA. Multi-objective fitness
measure is adopted to incorporate a combination of
correctness (satisfy IOS), parsimony (smal lness T) ,
and ef f ic iency (smal lness β) .The f i tness value of
ind iv idual i s computed by the following equation:

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

())()(
0

))(()()(max1 iiii TT
Tx

j
jRjTifitness ββηηαδ −+−+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
=

−−=

………...Eq. 6
where: δ is the weight parameter, δ >=2, βi the run time of
individual i, Ti is the time scale of the individual iI, Ri is the

actual calculated input trajectory of individual i. Since the
goal is to satisfy the IOS, first term in equation (1) is
multiplied by the weight parameter δ. Learning
parameter α1, is used ultimately to guide the search
process. Values for δ are selected experimentally
forms substantial number of runs. To give rise to the
fitness variation in the overall population from one
generation to the next, the fitness of each individual is
computed proportional to the fitness summation of all
individuals in the population as follows:

∑
=

=

M

j
jfitness

ifitnessifitness

0
)('

)(')(" ..Eq. 7

where: M: is the population size. Equation (7) is also
adjusted so that the adjusted fitness lies between 0 and 1:

)("
1)(ifitnessifitness = ..Eq. 8

Three types of points are defined in each individual:
transition, function, and function arguments. When
structure-preserving crossover is performed, any point type
anywhere in the first selected individuals may be chosen as
the crossover point of the first parent. The crossover point of
the second parent must be chosen only from among points of
this type. The restriction in the choice of the second crossover
points ensures the syntactic validity of the offspring. The
proposed APS breeds SFSA to solve problems by executing
the following algorithm:

Genetic System Generation Algorithm
♦ Initialize the following: variable terms, and(

learning, complexity, generalization, and δ)
parameters.

♦ Generate an initial population of random SFSA
represented as a composition of the constant and
variable terms, which are consistent with S.

♦ I te ra t ively per form the fo l lowing subse ts un t i l
the te rmina t ion cr i te r ion has been satisfied

A. Run each individual in the current population over
all fitness cases and assign it a fitness value using
equation (8).
B. Create a new population based on operation
probability: Darwinian Reproduction, Structure-Preserving
Crossover, and Structure-Preserving Mutation.
C. Apply test plans υ to the best-of-generation individual,
and compute the error returned from testing e.

♦The best of generation individual with small error;
e=<α2, is designated as the result for the run.

V. RESULT AND DISCUSSION

A. Input-Output Specification
Unfortunately, when we deal with complex systems and real
live problem, strong feedback (positive as well as negative)
and many interactions exist: i.e. chaotic behavior, as we
explain in part I. Thus, we need to find a way to control
chaos, to understand, and predict what may happen long
term. In these cases input and output specifications are self
organized, which mean that trajectory data are collected and
enhanced over time, when genetic generation process runs
again and again. Figure1, specify clearly that SFSA
populations, with high trajectory information converge to the
solution in less time than these populations with little
trajectory information. Although trajectory data are changed
over time, but by experiment, it still sensitive to initial
configuration of SFSA (sensitivity to the initial conditions).
In figure 2, for the same problem we change in initial
configurations of state set X, and data trajectory sets. The
behaviors of the resulting SFSAs are completely different.
There is a fundamental difference between a crossovers
occurring in a sub-SFSA versus one occurring in the
main-SFSA. Since the later usually contains multiple
references to the sub-SFSA(s), a crossover occurring in the
sub-SFSA is usually leveraged in the sense that it
simultaneously affects the main-SFSA in several places. In
contrast, a crossover occurring in the main-SFSA provides no
such leverage. In addition, because the population is
architecturally diverse, parents selected to participate in the
crossover operation will usually possess different numbers of
sub-SFSA(s). The proposed architecture-altering operations
are:

Creating sub-SFSA,
Deleting sub-SFSA,
Adding Variables, and
Deleting Variables
.

Fig.1:Relation between Convergence
Time and the Size of Data Trajectory

0
1000
2000
3000
4000
5000
6000

0 50 100 150

Data Trajectory Size

Nu
m

be
r o

f G
en

er
at

io
n

Series1

figure 1: Relation between Convergence Time and the size of
data trajectory

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Fig. 2: Sensitivity to Initial Data Trajectory Set for
The Same Problem

0
1000
2000
3000
4000
5000
6000

0 5 10 15 20 25

Data Trajectory Case

Nu
m

be
r o

f G
en

er
at

io
n

Series1

Figure 2: Sensitivity to initial Data Trajectory set for the
same Problem

B. Performance
Because of its probabilistic steps, non-convergence and
premature convergence problems become inherent features
of genetic generation process. To minimize the effect of these
problems, multiple independent runs of a problem must be
made. Best-of-run individual from all such multiple
independent runs can then be designated as the result of the
group of runs. If every run of GPG were successful in
yielding a solution, the computational effort required to get
the solution would depends primarily on four factors:
population size, M, number of generation that are run, g, (g
must be less than or equal to the maximum number of
generation G) the amount of processing required for fitness
measure over all fitness cases, and the amount of processing
required for test phase e, we assume that the processing time
to measure the fitness of an individual is its run time, P. If
success occurs on the same generation of every run, then the
computational effort E would be computed as follows
[8][15]:

E= M • g • β • e …….E q. 9
Since the value of e is too small with respect to other factors,
we shall not consider it. However, in most cases, success
occurs on different generations in different runs, then
the computational effort E would be computed as follows:

E=M•gavr• β …….Eq.10
where: gavr is the average number of executed generations.
Since GPG is a probabilistic algorithm, not all runs
are successful at yielding a solution to the problem
by generation G. Thus, the computational effort is
computed in this way, first determining the number
of independent runs R needed to yield a success with
a certain probability. Second, multiply R by the
amount of processing required for each run, that is .
The number of independent runs R required to
sat isfy the success predicate by generation i with a
probability z which depends on both z and P (M, i), where z
is the probability of satisfying the success predicate by
generation i at least once in R runs defined by:

z = 1-[1-P (M, i)]R ……Eq.11
P (M, i) is the cumulative probability of success for
all the generations between generation 0 and
generation i. P (M, i) is computed after

experimentally obtaining an estimate for the
instantaneous probability Y (M, i) that a particular
run with a population size M yields, for the first
time, on a specified generation i, an individual is
satisfying the success predicate for the problem [8] .
This exper imenta l measurement of Y(M, i)
usua l ly requires a substantial number of runs. After
taking logarithms for equation 4, we find:

⎡ ⎤)),(1log(
)1log(

iM
zR ρ−

−= …..Eq.12

The computational effort E, is the minimal value of
the total number of individuals that must be processed to
yield a solution for the problem with z probability (ex: z =
99%):

E=M • (•g+ 1) • β • R ….Eq.13
Where •g is the first generation The computational
effort ratio,RE, is the ratio of the computational effort
without sub-SFSA to the computational effort with
sub-SFSA:

SFSAEwithsub
SFSAbEwithoutsuER −

−= …..Eq. 14
The fitness ratio, Rfitness, is the ratio of the average
f i tness without sub-SFSA to the average f i tness ,
wi th sub-SFSA [8], for a problem.

SFSAbragewithsufitnessave
SFSAtsubragewithoufitnessave

fitnessR −
−

= Eq. 15

VI. CONCLUSION
1. The proposed APS can be changed to produce software in
a different implementation language without significantly
affecting existing problem specification, leading to an
increase in the system productivity. Trajectory data of the
system are Self-organization to reflect the chaotic behavior in
real live applications. Convergences time is highly sensitive
to the initial input-output specification of the problem.

2-Programs with less sub-programs tend to disappear
because they accrue fitness from generation to generation,
more slowly than those programs with sub-programs. The
proposed APS gain leverage in simultaneously solving the
problems of system induction and evolving the architecture
of a single or multi-part system, with the aid of four new
architecture-altering operations. Sub-systems can be reused
to solve multiple problems. They provide rational way to
reduce software cost and increase software quality.

3-Although complexity parameters provide a way to bound
the search space of the proposed method, their effect in the
induction process is relatively less than the effect of learning
and generalization parameters. System analyst must select a
value for α 2 , so that missing or incorrect specifications of
some input-output relationships of the problem don't lead to
un convergence situation. Real payoff will come when α 2
value is too small (near zero) due to the poor behavior of the
system during testing phase.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

REFERENCES
[1] E. Rich, "Artificial Intelligence", McGraw-Hill, Inc, 1983.W.-K. Chen,

Linear Networks and Systems (Book style). Belmont, CA:
Wadsworth, 1993, pp. 123–135.

[2] S . K . M i s r a , a n d , P . J . J a l l e s , " T h i r d - G e n e r a t i o n
v e r s u s F o u r t h - G e n e r a t i o n S o f t w a r e Development", IEEE
software, July, pp. 8-14, 1998.

[3] J. Verner, and, G. Tate, "Estimating Size and Effort in
Fourth-Generation Development", IEEE software, July, pp.
15-22, 1988.

[4] A . S c h a f e r , " G r a p h i c a l I n t e r a c t i o n s w i t h a n
A u t o m a t i c P r o g r a m m i n g S y s t e m" , I E E E Transactions
on systems, Man, and cybernetics, vol. 18, No. 4,
July/August, pp. 575-591, 1988.

[5] J. G. Cleaveland, "Building Application Generators", IEEE
software, July, pp. 25-33, 1988.

[6] J . R. Koza, "Genet ic Programming: on the Programming of
Computer by means of Natural Selection", Massachusetts
Institute of technology, 2004.

[7] D. E. Golberg, "Genetic Algorithm in Search, Optimization,
and Machine Learning", Addison-Wesley, 1989.

[8] M. Mitchell, "An Introduction to Genetic Algorithm", Massachusetts
Institute of tech., 1996.

[9] Leonard Smith, “Chaos: Avery Short Introduction”, OXFORD
university press, 2007.

[10] George Rzevski, Petr Skobelev, “Emergent Intelligence in Large Scale
Multi- Systems”, Journal or Education and Information Technologies
Issue 2, Volume 1, 2007 64,
http://www.naun.org/journals/educationinformation/eit-11.pdf

[11] J. M. Brady, "The Theory of Computer Science: A
Programming Approach", Chapman, and Hall ltd., 1977.

[12] J . E . H o p e r o f t , a n d J . D . U l l ma n , " I n t r o d u c t i o n t o
A u t o ma t a T h e o r y : L a n g u a g e s a n d Computation", Addison
Wesley, Reading, Mass., 1979.

[13] A. W. Wymore, "Theory of System", Handbook of Software
Engineering, CBS Publishers, pp. 119133, 1986.

[14] P. Berlioux, and P. Bizard, "Algorithms: The Construction,
Proof, and Analysis of Programs", John Wiley and Son Ltd,
1986.

[15] J. P. Koza, "Two Ways of Discovering the size and shape of
a computer program to solve a problem", pp. 287-294.

[16] A. Kent, J. G. Williams, C. M. Hall, "Genetic Programming",
Encyclopedia of Computer Science and Technology, Marcel
Dekker, pp. 29-43, 1998.

[17] R. E. Smith, B. A. Dike, and S. A. Stegmann, "Fitness
Inheritance in Genetic Algorithm", In Proceedings of the 1995
ACM Symposium on Applied Computing, 1995.

[18] J. R. Koza, S. H. Al-Sakra and W. J. Lee, Automated re-invention of six
patented op- 37 tica lens systems using genetic programming, Genetic
and Evolutionary Computation Conference (GECCO) '05
(Washington, DC, 2005).

[19] Riccardo Poli, William B. Langdon , Nicholas F. McPhee, John R.
Koza, “Genetic Programming :An Introductory Tutorial and a Survey
of Techniques and pplications” , Technical Report CES-475 ISSN:
1744-8050 October 2007.
essex.ac.uk/dces/research/publications/.../2007/ces475.pdf

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

