
 
 

 

  
Abstract— This research attempt to evolve computer 

programs, to solve a problem by using the input-output 
specifications of this problem. The evolutionary process adapts 
Genetic Programming to search for a good Finite State 
Automata that efficiently satisfies these specifications. It has 
been presented that for large and complex problems, it is 
necessary to divide them into sub problem(s) and 
simultaneously breed both sub- program(s) and a calling 
program.  

Index Terms— Evolutionary Algorithm, Genetic Algorithm, 
Genetic Programming, Finite State Machine.  
 

I. INTRODUCTION 
  The input to an Automatic Programming System 

(APS) is a programming problem expressed in the 
specification language defined by that APS. The 
specification may state tasks to be performed within the 
world domain or restriction to be enforced, or both, the job of 
an APS is to translate that specification into a program in 
some target language using it's knowledge bases and problem 
solving strategies [1][2][3]. The recent resurgence of interest 
in AP with Genetic Algorithm has been spurred by the work 
on Genetic Programming (GP). GP paradigm provides a 
way to do program induction by searching the space of 
possible computer programs for an individual computer 
program that is highly fit in solving or approximately solving 
the problem at hand. [4] [5] [6] [7][8].  Unfortunately, since 
every real life problem are dynamic problem, thus their 
behaviors are much complex, GP suffers from serious 
weaknesses. Complex systems often include chaotic 
behavior( the classic example of chaos theory is “the 
Butterfly effect”), which is to say that the dynamics of these 
systems are nonlinear and difficult to predict over time, even 
while the systems themselves are deterministic machines 
following a strict sequence of cause and effect. Natural 
chaotic systems may be difficult to predict but they will still 
exhibit structure that is different than purely random systems. 
[9][ 10].  GP weakness and the chaotic behavior of real live 
problem is reduced if induction process based on the meaning 
of the low-level primitives rather than their structure. In this 
paper we attempted to scale-up GP application to real live 
problems, by focusing on the meaning rather than the 
structure of a program to overcome the representation 
problem. Abstract machine, like Fixit State Machine, is used 
to specify the meaning of a programming language 
mathematically [11] [12], as we shall explain in detailed in 
the rest of this paper. 
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II. THEORETICAL DEFINITION  
The meaning of a program P can be specified by set of 

function transformation from states to states; hence P effects 
a transformation: 
(P) X ini t ia l             X  f i n a l  
on a state vector X, which consists of an association of the 
variable manipulated by the program and their values. A 
Program P can be defined as 9- tuples, called Semantic 
Finite State Automata (SFSA): P=( x, X, T, F,  Z, I, O, γ, X 
initial), where: x is the set of system variables, X is the set of 
system states, X= { X initial, ----, X final  }, T is the time scale: T 
=[0, ∞ ), F is the set of primitive functions, Z is the state 
transition function, Z = {(f, X, t): (f, X, t) Є F × X × T , z(f, 
X, t) = (•X, •t)}, I is the set of inputs, O is the set of outputs, 
γ is the readout function, and Xinitial   is the initial state of the 
system: Xinitial  Є X.  
All sets involved in the definition of P are arbitrary, except 
T,  and F.  Time scale T must be some subset of the 
set [0, ∞ ) of nonnegative integer numbers, while the 
set of primitive function F must be a subset of the set CL 
(FL) of al l  computable functions in the language L 
and sufficient to generate the remainder functions.  
Two features characterize state transition function: 
1-  Z (  - ,  - ,  t)  =  (X initial,  1)   if  t  = 0    … Eq 1  
2-  Z (  f ,  X, t)  = z (  f ,  z (  f(t-1),  X, t-1))    i f  t  ≠  0
 . . .  Eq.  2  
The concepts  of  reusable  parameter ized  
sub-sys tems can  be  implemented  by restricting the 
transition functions of the main system, so that it has 
the ability to call and pass parameters to one or more 
such sub-systems. Suppose we have sub-system 'P, 
and main-system P, then they can be defined by the 
following 9-tuples: 

P (x, X, T, F, Z, 1, 0, X 
i n i t i a l ,  γ )  

 P (•x, •X, •T, •F, •Z,  •I,  •O, •X 
i n i t i a l ,  •γ)  

where:  
•x ⊆  x,  •X 

i n i t i a l  Є X,  then there  exi t  *f Є F, z Є Z, •f, 
Є F, and •z Є •Z, and  h is a function defined over •Z with 
value in •X is defined as follows: 
h = •z (•f,  •X 

i n i t i a l  , 1) = Xh  , ti ,          .. Eq 3 
z (*f, X, t) = z (h , X , t) = Xh , t,        ..Eq 4 
*f is a special function we call it sub-SFSA function to 
distinguish it from other primitive functions in the set 
F. Also, we call the sub-system •P , sub-SFSA, to 
distinguish it from the main SFSA. Formally, a 
system •P  is a sub-system of a system P ,  iff: •x ⊆  x,  
•T ⊆ T, •I  ⊆ I,  •O ⊆ O, •γ  must be the restriction of 
γ  to •O ,  and •F  ⊆  N ,  where N  is  the set of 
restrictions of F to •T. If (• f, •X, • t) is an element of 
•F × •X × •T, then there exists f Є F, such that the 
restriction of  f  to •T is • f, and •z (• f, •X, •t) is z (f, X, t). 
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III. SYSTEM INDUCTION 
On the basis of the theoretical approach sketch in section 2, 
we shall define and explain another theoretical approach for 
system induction, it is modification of system theory given in 
reference[13]. The newly defined approach highly depend on 
input-output behavior of the problem, it is expressed as 
7-tuples: (IOS, S, F, a1, Tmax, β, υ  ): 
 
1. Input-Output Specification (IOS):  
IOS is establishing the input-output boundaries of the 
system. It describes the inputs that the system is designed to 
handle and the outputs that the system is designed to produce. 
An IOS is a 6-tuples: IOS = (T, I, O, Ti, TO, η). Where T, is 
the time scale of IOS, I is the set of inputs, O is a set of 
outputs, Ti is a set of input trajectories defined over T, with 
values in I, TO, is a set of output trajectories defined over T, 
with values in O, and η is a function defined over Ti whose 
values are subset of TO; that is, η matches with each given 
input trajectories the set of all output trajectories that might, 
or could be, or eligible to be produced by some systems as 
output, experiencing the given input trajectory. A system P 
satisfies IOS if there is a state X of P, and some subset U not 
empty of the time scale T of P, such that for every input 
trajectory g in Ti, there is an output trajectory h in TO 
matched with g by η such that the output trajectory generated 
by P, started in the state X is: 
 
γ (Z (f (g), X, t) = η(h(t)), For every t Є U   ………. Eg.(5) 
 
2. Syntax Term (S):  
Refers to the written form of a program as far as possible 
independently of its meaning. In particular it concerns the 
legality or well-formed ness of a program relative to a set of 
grammatical rules, and parsing algorithms for the discovery 
of the grammatical structure of such well-formed programs. S 
is a set of rules governing the construction of allowed or legal 
system forms. 
3. Primitive Function (F):  
Each fi must be coupled with its effect on both the state 
vector X, and the time scale T of the system. Some primitive 
functions may serve as primitive building blocks for more 
complex functions or even sub-systems. 
 
4. Learning Parameter (a1 ): 
 is a positive real number specifying the minimum accepted 
degree of matching between an IOS, and the real observed 
behavior of the system over the time scale, Tx, of  IOS only. 
 
5.Complexity Para(Tmax, β):  

Tmax and β parameters are merits of system 
complexity: size and time, respectively. It is important to 
note that there is a fundamental difference between a 
time scale T and an execution time of a system. T 
represents system size, it defines points within the 
overall system, whereas, β, is the time required by the 
machine to complete system execution, hence it is high 
sensitive to the machine type. 
6. System Proof Plan (υ):  

Prove process  should  be  a  par t  of  the  
s ta tement  of  sys tem induct ion problem especially 
when the IOS is imprecise or inadequate to generate 

an accurate system. We s a y  P  i s  c o r r e c t  i f f  i t  
c o m p u t e s  a  c e r t a i n  f u n c t i o n  f  f r o m X i n i t i a l  Є  X  
properly, that is if for each Xi Є X , P (Xi) is defined, 
i.e. P does not loop for Xi, and is equal to f(Xi). 
Broadly speaking, there have been two main 
approaches to the problem of developing methods for 
making programs more reliable [11]: Systematized testing, 
and Mathematical proof. 

Our works use systematized testing approach 
as a proof plane. The usual method for verifying that a 
program is correct by testing is by choosing a finite 
sample of states X1, X2,..., Xn and running P on each of 
them to verify that: P(X1) =f (X1), P(X2) =f(X2),……. P(X n)  
=f (X n) .  Formally,  if  testing approach is  used for 
system verif ication,  a system proof is denoted 
υ=(α2 ,  d) ,  where α2  is a positive real parameter 
defining the maximum accepted error from testing 
process. α2  focus on the degree of generality, so that 
α1  ,and α2  ,  parameters suggest a fundamental 
tradeoff between training and generali ty.  On the 
o ther  hand ,  d  represents  a  se t  of  tes t  cases  pai r s  
(O i ,  K i ) ,  where  K i  i s  a  sequence  of  initial state  Xinitial 
and input Ii. 
 
In addition to using the idea of sub-system 
functions, i.e.,  sub-FSA ,  for complex software it is 
better to divide the process of system induction into 
sub-system(s) and main-system induction. 
Sub-system induction must be accomplished with 
several objectives; first one is that a suitable 
solution to sub-problem must determine a solution 
to the next higher level problem. Second is to ensure 
that the figure of merit of the sub-system has 
relationships to the figure of merit  of the top-level 
problem. The third objective is  to ensure specific 
functional relationships of sub-system proof plans to 
the system proof plan of the top-level problems. 
 

IV. GENETIC GENERATION PROCESS 
Within  the context  of  the  suggested 

mathemat ical  approaches ,  to  automatical ly 
generate a system means search to find an 
appropriate SFSA satisfying IOS efficiently, with 
regard to learning and complexity parameters. Then, 
proof plan υ must be applied to that SFSA for further 
assessing its performance and correctness. If that 
SFSA behaves well with υ  , it may be considered as a 
solution or approximate solution to the problem, 
else, some or all terms in the statement of the 
problem of system induction must be modified, and 
the process is repeated unti l  a good SFSA is  found, 
or no further revisions can be made. The search 
space in Genetic Program Generation algorithm is the 
space of all  possible computer programs described 
as an 9-tuples SFSA. Multi-objective fitness 
measure is adopted to incorporate a combination of 
correctness (satisfy IOS), parsimony ( smal lness  T ) ,  
and  ef f ic iency (smal lness  β  ) .The  f i tness  value  of  
ind iv idual  i s  computed  by the following equation: 
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………...Eq. 6 
where: δ is the weight parameter, δ >=2,   βi the run time of 
individual i, Ti is the time scale of the individual iI, Ri is the 

actual calculated input trajectory of individual i. Since the 
goal is to satisfy the IOS, first term in equation (1) is 
multiplied by the weight parameter δ. Learning 
parameter α1, is used ultimately to guide the search 
process. Values for δ are selected experimentally 
forms substantial number of runs. To give rise to the 
fitness variation in the overall population from one 
generation to the next, the fitness of each individual is 
computed proportional to the fitness summation of all 
individuals in the population as follows: 
 

∑
=

=

M

j
jfitness

ifitnessifitness

0
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)(')("           ..Eq. 7 

where: M: is the population size. Equation (7) is also 
adjusted so that the adjusted fitness lies between 0 and 1:  

 

)("
1)( ifitnessifitness =                  ..Eq. 8 

Three types of points are defined in each individual: 
transition, function, and function arguments. When 
structure-preserving crossover is performed, any point type 
anywhere in the first selected individuals may be chosen as 
the crossover point of the first parent. The crossover point of 
the second parent must be chosen only from among points of 
this type. The restriction in the choice of the second crossover 
points ensures the syntactic validity of the offspring. The 
proposed APS breeds SFSA to solve problems by executing 
the following algorithm: 
 
Genetic System Generation Algorithm 
♦ Initialize the following: variable terms, and( 

learning, complexity, generalization, and δ) 
parameters. 

 
♦ Generate an initial population of random SFSA 
represented as a composition of the constant and 
variable terms, which are consistent with S. 
 
♦ I te ra t ively  per form the  fo l lowing  subse ts  un t i l  
the  te rmina t ion  cr i te r ion  has  been  satisfied 
 
A. Run each individual in the current population over 
all fitness cases and assign it a fitness value using 
equation (8). 
B. Create a new population based on operation 
probability: Darwinian Reproduction, Structure-Preserving 
Crossover, and Structure-Preserving Mutation. 
C. Apply test plans υ to the best-of-generation individual, 
and compute the error returned from testing e. 
 
♦The best of generation individual with small error; 
e=<α2,  is designated as the result for the run. 
 

V. RESULT AND DISCUSSION 

A. Input-Output Specification  
Unfortunately, when we deal with complex systems and real 
live problem, strong feedback (positive as well as negative) 
and many interactions exist: i.e. chaotic behavior, as we 
explain in part I. Thus, we need to find a way to control 
chaos, to understand, and predict what may happen long 
term. In these cases input and output specifications are self 
organized, which mean that trajectory data are collected and 
enhanced over time, when genetic generation process runs 
again and again. Figure1, specify clearly that SFSA 
populations, with high trajectory information converge to the 
solution in less time than these populations with little 
trajectory information. Although trajectory data are changed 
over time, but by experiment, it still sensitive to initial 
configuration of SFSA (sensitivity to the initial conditions). 
In figure 2, for the same problem we change in initial 
configurations of state set X, and data trajectory sets. The 
behaviors of the resulting SFSAs are completely different. 
There is a fundamental difference between a crossovers 
occurring in a sub-SFSA versus one occurring in the 
main-SFSA. Since the later usually contains multiple 
references to the sub-SFSA(s), a crossover occurring in the 
sub-SFSA is usually leveraged in the sense that it 
simultaneously affects the main-SFSA in several places. In 
contrast, a crossover occurring in the main-SFSA provides no 
such leverage. In addition, because the population is 
architecturally diverse, parents selected to participate in the 
crossover operation will usually possess different numbers of 
sub-SFSA(s). The proposed architecture-altering operations 
are:  
 
Creating sub-SFSA,  
Deleting sub-SFSA,  
Adding Variables, and  
Deleting Variables 
. 
 

Fig.1:Relation between Convergence 
Time and the Size of Data Trajectory
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figure 1: Relation between Convergence Time and the size of 
data trajectory 
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Fig. 2: Sensitivity  to Initial Data Trajectory Set for 
The Same Problem
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Figure 2: Sensitivity to initial Data Trajectory set for the 
same Problem 
 

B. Performance 
Because of its probabilistic steps, non-convergence and 
premature convergence problems become inherent features 
of genetic generation process. To minimize the effect of these 
problems, multiple independent runs of a problem must be 
made. Best-of-run individual from all such multiple 
independent runs can then be designated as the result of the 
group of runs. If every run of GPG were successful in 
yielding a solution, the computational effort required to get 
the solution would depends primarily on four factors: 
population size, M, number of generation that are run, g, (g 
must be less than or equal to the maximum number of 
generation G) the amount of processing required for fitness 
measure over all fitness cases, and the amount of processing 
required for test phase e, we assume that the processing time 
to measure the fitness of an individual is its run time, P. If 
success occurs on the same generation of every run, then the 
computational effort E would be computed as follows 
[8][15]: 
 
E= M • g • β • e                          …….E q. 9 
Since the value of e is too small with respect to other factors, 
we shall not consider it. However, in most cases, success 
occurs on different generations in different runs, then 
the computational effort E would be computed as follows: 
 
E=M•gavr• β                                                                                    …….Eq.10  
where: gavr  is the average number of executed generations. 
Since GPG is a probabilistic algorithm, not all runs 
are successful at yielding a solution to the problem 
by generation G. Thus, the computational effort is 
computed in this way, first determining the number 
of independent runs R needed to yield a success with 
a certain probability. Second, multiply R by the 
amount of processing required for each run,  that  is .  
The number of  independent  runs R required to 
sat isfy the success predicate by generation i with a 
probability z which depends on both z and P (M, i), where z 
is the probability of satisfying the success predicate by 
generation i at least once in R runs defined by: 
 
z = 1-[1-P (M, i)]R                 ……Eq.11 
P (M, i) is the cumulative probability of success for 
all the generations between generation 0 and 
generation i. P (M, i) is computed after 

experimentally obtaining an estimate for the 
instantaneous probability Y (M, i) that a particular 
run with a population size M yields, for the first 
time, on a specified generation i, an individual is 
satisfying the success predicate for  the  problem [8] .  
This  exper imenta l  measurement  of  Y(M,  i )  
usua l ly  requires  a  substantial number of runs. After 
taking logarithms for equation 4, we find: 
 

⎡ ⎤)),(1log(
)1log(

iM
zR ρ−

−=                  …..Eq.12 

The computational effort E, is the minimal value of 
the total number of individuals that must be processed to 
yield a solution for the problem with z probability (ex: z = 
99%): 
 
E=M • ( •g+ 1) • β  • R               ….Eq.13 
Where •g is the first generation The computational 
effort ratio,RE, is the ratio of the computational effort 
without sub-SFSA to the computational effort with 
sub-SFSA: 
 

SFSAEwithsub
SFSAbEwithoutsuER −

−=            …..Eq. 14 
The fitness ratio, Rfitness, is the ratio of the average 
f i tness  without  sub-SFSA to  the  average f i tness ,  
wi th  sub-SFSA [8],  for  a  problem. 
 

SFSAbragewithsufitnessave
SFSAtsubragewithoufitnessave

fitnessR −
−

=      .. ..Eq. 15 

 

VI. CONCLUSION 
1. The proposed APS can be changed to produce software in 
a different implementation language without significantly 
affecting existing problem specification, leading to an 
increase in the system productivity. Trajectory data of the 
system are Self-organization to reflect the chaotic behavior in 
real live applications. Convergences time is highly sensitive 
to the initial input-output specification of the problem. 
  
2-Programs with less sub-programs tend to disappear 
because they accrue fitness from generation to generation, 
more slowly than those programs with sub-programs. The 
proposed APS gain leverage in simultaneously solving the 
problems of system induction and evolving the architecture 
of a single or multi-part system, with the aid of four new 
architecture-altering operations. Sub-systems can be reused 
to solve multiple problems. They provide rational way to 
reduce software cost and increase software quality.  
 
3-Although complexity parameters provide a way to bound 
the search space of the proposed method, their effect in the 
induction process is relatively less than the effect of learning 
and generalization parameters. System analyst must select a 
value for α 2 , so that missing or incorrect specifications of 
some input-output relationships of the problem don't lead to 
un convergence situation. Real payoff will come when α 2 
value is too small (near zero) due to the poor behavior of the 
system during testing phase.  
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