

Abstract— This paper presents a new model sequential

Bayesian technique for software reliability characterization
using a growth curve formulation that allows model parameters
to vary as a function of covariate information. The approaches
include probabilistic models that aim at predicting reliability
and other elements of software quality on the basis of program
properties such as size and complexity, and statistical models
that base reliability prediction on an analysis of failure data.

 We describe a Sequential Bayesian Technique and model
evaluation which allows for integration of historical
information and expert opinion in the form of prior
distributions on the parameters.

Index Terms— sequential Bayesian technique probabilistic
models, predicting reliability, operational profile

I. INTRODUCTION

Software reliability engineering is centered around a very
important software attribute: reliability. Software reliability
is defined as the probability of failure-free software operation
for a specified period of time in a specified environment[8]. It
is one of the attributes of software quality, a multi-
dimensional property including other customer satisfaction
factors like functionality, usability, performance,
serviceability, capability, installability, maintainability, and
documentation. Software reliability, however, is generally
accepted as the key factor in software quality since it
quantifies software failures - which can make a powerful
system inoperative or even deadly. As a result, reliability is
an essential ingredient in customer satisfaction for most
commercial companies and governmental organizations.

The main objective of this paper is to determine the

Reliability of Software [16][17]. Requirements Specification
defines and describes the operations, interfaces, performance,
and quality assurance requirements of the Reliability of
Software. The document describes the design constraints that
are to be considered when the system is to be designed, and
other factors necessary to provide a complete and
comprehensive description of the requirements for the
software. This paper attempts to focus on analysis of
reliability of software using Sequential Bayesian Technique
[1][10][13][14][18].

*Lalji Prasad is with Sanghvi Institute of Management & Science

/Computer Engineering, INDORE (Email: lalji_prasad@sims-indore.com)
**Ankur Gupta is with Sanghvi Institute of Management & Science

/Computer Engineering, INDORE (Email: ankur.gupta@sims-indore.com)
***Sarita Badoria is with MITS, GWALIAR, INDIA (Email:

sarita-mits@gmail.com)

II. SOFTWARE RELIABILITY

 Reliability of software systems requires implementation of a
thorough, integrated set of reliability modeling, allocation,
prediction, estimation and test tasks. These tasks allow
on-going evaluation of the reliability of system, subsystem and
lower-tier designs. The results of these analyses are used to
assess the relative merit of competing design alternatives, to
evaluate the reliability progress of the design program, and to
measure the final, achieved product reliability through testing.
As such the Software reliability model[1][3][4][5][6][11][14] in Figure
1 represents the whole framework being done for analysis

Figure 1. Software Reliability Model

The Reliability of software provides real time information

about the software that how much it is reliable on client needs
& how much he can be dependable on it. The Product
functions are more or less the same as described in the
product perspective.

Measurement of Software Reliability Using
Sequential Bayesian Technique

Lalji Prasad*, Ankur Gupta**, Sarita Badoria***

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

III. RELIABILITY TOPOLOGY

Reliability topology[15] is the relationship between the
failures of an individual function to the failure of the
aggregate system. Generally, software functions or
operations are related in a "series" topology, meaning that the
failure of one function results in the failure of the software
system. Software fault tolerance techniques can result in
systems that can survive the failure of one or more functions.
Software fault tolerance consists of a set of techniques which
are not covered by this notebook, but are described in depth
in the general software engineering literature.

IV. TYPES OF FAULTS

The following types of faults are being found while

determining the reliability of software.

Activity
introducing
fault

Fault type or root cause

Requirements Missing requirements.
Misinterpreted requirements.
Requirements not clear.
Changed requirements.
Conflicting requirements.

Design Design not to requirements.
Missing design.
Top level design logic.
Low level design logic.
Design not robust.

Code Code not implemented to design.
Code not implemented to
requirements.
Missing code.
Initialization error.
Storing error.
Mismatched parameters.
Math operations not robust.
I/O operations not robust.
Memory errors.
Domain errors.

Maintenance
and corrective
action

New fault generated in maintenance.

V. OPERATIONAL PROFILES

The reliability of a software-based product depends on
how the computer and other external elements will use it.
Making a good reliability estimate depends on testing the
product as if it were in the field. The operational profile
(OP), a quantitative characterization of how the software will
be used, is therefore essential in any Software Reliability
Engineering (SRE) application. It is a fundamental concept
which must be understood in order to apply SRE effectively
and with any degree of validity. This section provides a
detailed description of the OP.

 A profile is a set of independent possibilities called
elements, and their associated probability of occurrence. The
operational profile is the set of independent operations that a
software system performs and their associated probabilities.
Developing an operational profile for a system involves one
or more of the following five steps:

1. Find the customer profile
2. Establish the user profile
3. Define the system-mode profile
4. Determine the functional profile
5. Determine the operational profile itself

Figure 2. Operational Profile Developments

Figure 3 shows the elements involved in determining

operational profiles from functions. A function may
comprise several operations. In turn, operations are made up
of many run types. Grouping run types into operations
partitions the input space into domains. A domain can be
partitioned into sub domains, or run categories. To use the
operational profile to drive testing, first choose the domain
that characterizes the operation, then the sub domain that
characterizes the run category, and finally the input state that
characterizes the run.

Figure 3. Operational Elements

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

VI. SEQUENTIAL BAYESIAN TECHNIQUE

A sequential maximum a posteriori estimation procedure
based on Bayesian approach[10][13][14][18] is discussed here.
The procedure is capable of utilizing the prior information.
Let the general regression model be

The equation for the Bayesian estimation of the

model parameters, is given as

Where P is the covariance matrix of estimators (q x q), given
as

: Estimated parameter vector (q x 1)

M: mean value of parameter vector (q x 1) known from the
prior information
X: independent variable matrix (n x 1)
V: covariance matrix of B known from prior information
Q: covariance matrix of errors.

Substituting

We get the recursive form of equation (2) and (3). Here C
is a m x m diagonal covariance matrix of error and m is the
number of observations. Substituting the above expressions
in equation (2) and (3) we get

 From matrix inversion theorem we know that,

Hence equation (5) may be written as follows

Then the following matrix identity holds

Therefore, substituting the values of R and H we get,

Substituting equations (6) & (7) in (4) & (5) we get,

Equations (8) to (13) are the governing equations for the
sequential estimation procedure of the parameters. If the
number of observations is one then no matrix inversion is
involved and the computation becomes efficient. Thus for
one observation, equation (8) to (13) may be rewritten as
follows:

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Where u = 1, 2, 3,. . . q, v = 1, 2, 3, . . . , q, q is the number of
parameters and σ2

i+1 is the variance of Yi+1. Here in equation
(15) S is used instead of σ2

i+1 to denote the error variance
obtained from linear regression method. So equation (15)
becomes

VII. ESTIMATION OF MODEL PARAMETERS

In the following paragraphs the description of the model is

followed by the parameter estimation using proposed
algorithm.

Let Xt = Xθ

t− 1δ where θ is constant and values of θ > 1
mean growth of reliability and θ < 1 means decay of
reliability. δ is the error due to some uncertainty in power
law. Taking natural logarithm on both sides we get

To apply the above-mentioned algorithm for general
sequential procedure given in equations
(14) to (19) the expression (21) becomes

is a dummy variable taking a constant value 1. Here t denotes
the stage of testing and Xt denotes the time between failures.

VIII. SOFTWARE RELIABILITY PREDICTION:

Software reliability predictions[2][17] are made during the
software development phases that precede software system
test, and are available in time to feed back into the software
development process. The predictions are based on
measurable characteristics of the software development
process and the products produced by that process.

Figure 4 shows the software reliability prediction process.
Product and process metrics are collected and used to predict
the initial failure rate and fault content. From these
quantities, the reliability growth model parameters are
predicted, and then the growth model is used to obtain
estimates of the test time and resources needed to meet
reliability objectives.

Figure 4. Software Reliability Prediction Procedure

The final outcomes of a software reliability prediction
include:

• Relative measures for practical use and management.
• A prediction of the number of faults expected during

each phase of the life cycle.
• A constant failure rate prediction at system release that

can be combined with other failure rates.

IX. SOFTWARE RELIABILITY GROWTH TESTING:

Software reliability growth testing[20][22] takes place during
the software system test phase, after the software has been
fully integrated. During growth testing, the software is
executed in an environment with inputs that most closely
simulate the way the software is expected to be used in the
field. In particular, the inputs are randomly selected in
accordance with the software's operational profile.

The quality of testing is directly related to reliability
growth and is a function of various system level tests that
validate the software from more than one perspective.
System tests can validate domains, paths, states, transaction
flow, error handling, etc. The quality of testing is also related
to testing the functionality that is executed most often by end
user, most critical to end user, and most error prone.

An operational profile associates each input state or
end-user function with a probability of occurrence. Testing
according to the operational profile is efficient with respect to
failure intensity reduction, because it reveals those faults that
the user is most likely to encounter in use, those faults that
contribute most to the program failure rate. When a failure is
observed, the execution time, among other information, is
recorded. The observed failure times are used as input to a
statistical estimation technique that determines the
parameters of the software reliability growth model. This
way, the current reliability can be measured and the future
reliability can be forecasted. Figure 5 depicts a failure
intensity curve.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

Figure 5. Software Failure Intensity Curve

Software reliability growth testing assumes that faults exist

in the software and they will be uncovered during execution
to produce software failures. As testing proceeds, failures
will occur, the faults underlying the failures are identified and
removed, the system is recompiled, and new input states are
selected randomly from the operational profile. As software
faults are removed, the failure intensity should decrease over
time. This should continue until enough faults have been
removed from the system to meet reliability goals.

X. CONCLUSION

This research paper attempts to focus on analysis of

reliability of software using Sequential Bayesian Technique.
The document describes the design constraints that are to be
considered when the system is to be designed, and other
factors necessary to provide a complete and comprehensive
description of the requirements for the software.

REFERENCES

[1] Basu, S. and Ebhrahimi, N. (2003). Bayesian software

reliability models based on martingale processes,
Technometrics, 45, 150–158.

[2] Chatterjee S, Misra R B, Alam S 1997 Joint effect of test
effort and learning factor on software reliability and
optimal release policy. Int. J. Sys. Sci. 28(4): 391–396

[3] Chatterjee S, Misra R B, Alam S S 1998 A generalized
shock model for software reliability. Comput. Elect.
Eng.-An Int. J. 24: 363–368

[4] Fakhre-Zakeri I, Slud E 1995 Mixture models for
reliability of software with imperfect debugging:
Identifiably of parameters. IEEE Trans. Rel. 44:
104–113

[5] Goel A L, Okumoto K 1979 A time-dependent error
detection rate model for software reliability and other
performance measure. IEEE Trans. Rel. R-28: 206–211

[6] Gokhale S S, Lyu M R, Trivedi K S 2006 Incorporating
fault debugging activities into software reliability
models: A simulation approach. IEEE Trans. Rel.
55(2): 281–292

[7] Ibrahim, J.G., and Chen, M.H. (2000), “Power Prior
Distributions for Regression Models, ” Statistical
Science, 15, 46-60.

[8] Institute of Electrical and Electronics Engineers,
ANSI/IEEE Standard Glossary of Software
Engineering Terminology, IEEE Std. 729-1991, 1991.

[9] Jelinski Z, Moranda P B 1972 Software reliability
research statistical computer performance evaluation.
W Freiberger, Ed. Academic, NY, 465–484

[10] Jeske, D., Qureshi, M., and Muldoon, E. (2000) “A
Bayesian methodology for estimating the failure rate of
software, ” International Journal of Reliability,
Quality, and Safety Engineering, 7, 153-168.

[11] Jeske, D., and Pham, H. (2001) “On the maximum
likelihood estimates for the Goel-Okumoto software
reliability model,” The American Statistician, 55,
219-222.

[12] Kan, S.H., Parrish, J., and Manlove, D. (2001) “
In-process metrics for software testing,” IBM Systems
Journal, 40, 220-241.

[13] Kuo, L., and Yang, T.Y. (1996), “ Bayesian
computation for nonhomogeneous Poisson processes in
software reliability, ” Journal of the American
Statistical Association, 91, 763-773.

[14] Littlewood B, Verrall J L 1973 A Bayesian reliability
growth model for computer software. Appl.Statist. 22:
332–346.

[15] MIL-HDBK-781 Reliability Test Methods, Plans, and
Environments for Engineering Development,
Qualification, and Production, 14 July 1987.

[16] Musa J D 1975 A theory of software reliability and its
application. IEEE Trans. Software Eng. SE-1:312–327

[17] Musa J D, Iannino A, Okumoto K 1987 Software reliability
measurement. Prediction, Application, McGraw-Hill Int.
Ed.

[18] Schick G J, Wolverton R W 1978 An analysis of
competing software reliability model. IEEE Trans.
Software Eng. SE-4: 104–120

[19] Soman K P, Misra K B 1993 On Bayesian estimation of
system reliability. Microelectronic Reliabilit33:
1455–1459

[20] Sumita U, Shantikumar J G 1986 A software reliability
model with multiple-error introduction & removal.
IEEE Trans. Rel. R-35: 459–462

[21] Xie M 1987 A shock model for software reliability.
Microelectronic Reliability 27: 717–724

[22] Yamada, S., Ohba, M., and Osaki, S. (1983), “
S-shaped reliability growth modeling for software error
detection,” IEEE Transactions on Reliability, 32,
475-478.

[23]Zeephongsekul P, Xia G, Kumar S 1994
Software-reliability growth model: Primary failures
generate secondary-faults under imperfect debugging.
IEEE Trans. Rel. 43: 408–413.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

