Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I

WCECS 2009, October 20-22, 2009, San Francisco, USA

A Case

Study of

The Intelligent Process Decentralization Method

'Faramarz Safi EsfahafiMasrah Azrifah Azmi MuradMd. Nasir SulaimarfNur Izura Udzir

Abstract— several researches have been conducted
decompose business processes in Service Orienteditecture
(SOA). There exist several methods that encapsulateach
activity of a business process in one agent, whii¢her methods
focus on fragmenting a business process and encalsa each
fragment in an agent. As the mentioned approachesedompose
a business process without considering the adaptdity of a
process with run-time environment, the intelligent business
process decentralization (IPD) has been presentetiat uses a
process mining approach. This novel approach detectthe
frequent paths of a business process and encaps@atthe most
relevant activities as agents. Being disseminatedh @ network,
the agents are able to communicate with each othénrough a
middleware. This essay shows how IPD algorithm workand
detects the frequent paths of a loan taking procesgo
decompose it.

Index Terms—Adaptive Systems; Service Oriented
Architecture; Distributed Orchestrate Engine, Business Process
Decomposition, Frequent Path Mining.

l. INTRODUCTION

According to SOA stack[1], business process logic i

divided to orchestration and choreography layennF
business process distribution point of view, chgraphy
layer is instinctively distributed to several disti business
processes communicating with each other and noymat
on different workflow engines, whereas orchestratimyer
is workflow engine centric. It means business psees are
executed by an orchestrate engine that is resgenfib
running the activities of a process. A single eagsusually
applied to manage a business process and scafaisilit
satisfied by replicating orchestration engines Wwhilo not
obviate the problems of centralized engines corafyl¢2].

to have been identified, that are Fully, Semi and llignt

Process Distribution or FPD, SPD and IPD, respeltiv

Fully Process Distribution (FPD) is already intradd in
[2, 4] and there also exist several researched][2 fully
distribute a BPEL process to its building actistigdaving
broken a process to its activities, we are ablentcapsulate
them into agents whose interactions are handlealigjtr a
middleware. Fully process distribution, though, imes
average execution time, throughput and service ydela
Negatively, the huge number of produced agentsedsas
the number of messages for communication will swamp
run-time environment. As a matter of fact, FPD peégh
activity in one agent which is the lowest granuiaxhich
results in there being a lot of agents communigatimough
a middleware. The run-time system also can movsethe
small and light weight agents and put them beskusr t
required resources and decrease the amount of [xthdw
that can be occupied by the interaction of agemd a
resources and it increases the system adaptability.

According to [3], Semi Process Distribution (SPD)
contains all methods of process distribution tisat different
criteria for partitioning a process such as [5] ttha
encapsulates segmented activities together. SPDoren
hand, results in more coarse-grained agents tllacesthe
number of 1) produced agents, and 2) agent inferectOn
the other hand, this pattern does not consideadiaptability
of a business process with run-time environmentpiitat in
another way, SPD degrades the adaptability of jistem
owing to the fact that we cannot put together eitieéevant
agents or an agent along with its required ressudte to
coarse granularity. SPD, though, increases theureso
usage such as memory or processor usage becauke of

On one hand, several researches have been donelNgeased size of agents.

distribute a business process, but unfortunatedyetiis no
strict pattern to distribute a business processrdaagly. To
be more specific, the question is that how we gatnibute a
business process and what criteria and patternbearsed
to contribute business process distribution. In pravious
work [3], three methods of business process digioh

lFaramarz, Safi Esfahani is with the Department afftv@are
Engineering of Islamic Azad University, Najaf Abd&tanch, Esfahan,
Iran. He is also a PhD Candidatetliire Faculty of Computer Science i
Information Technology, Universiti Putra MalaysidJRM), 43400
Selangor, Malaysia. Email: fsafi@acm.org

2Assistant Prof. Dr. Masrah Azrifah Azmi Mura#issociate Prof. D
Md. Nasir Sulaiman, and Assistant Prof. Dr Nur <dzir are withthe
Faculty of ComputerScience and Information Technology, Unive
Putra Malaysia (UPM), 43400, Selangor, Malaysia.alisn {masrah
nasir, izura}@fsktm.upm.edu.my

ISBN:978-988-17012-6-8

Intelligent Process Distribution (IPD) introduced[B, 6,
7], proposes a process mining approach in whichesom
patterns have been introduced to encapsulate ®ssine
activities in agents, depending on the previousabien of
process instances. The recommended IPD approadh wil
improve three aspects of system quality. One; is th
amelioration of business process adaptability with-time
environment, another; choosing the best agent tgaty
based on detecting most relevant activities oruead paths
and encapsulating them in agents, a third; is deang the
resource usage due to reduced and improved numfber o
produced agents and messages.

In this essay we show how IPD method detects thgt mo
frequent paths of a business process using a mining
approach. The size of a frequent path and subs#ygttn

WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

equivalent produced agent depends on the level détect frequent paths of a business process targease it
granularity and minimum required frequency that edrom to coarser agents based on granularity level andmmuam
either a Service Level Agreement (SLA) document ¢8] support that come from a SLA.
run-time environment feedback. Obviously, a larggent
demands more memory without communication messagesFrequent Path Detection and Process Mining:A
among its building activities. The detection ofengint Vvariety of mining algorithms have been developedietect
activities or correspondingly frequent paths steomfan frequent paths in different data structures sucgraghs and
intelligent method based on business process eéreciay ~ trees, however, none of them have considered mining
mining. Finally, the algorithm will be imposed onl@aan approaches to business process decomposition amd th
taking business process as a case study. adaptability of business process with run-time emnent
as well. Our work also mines process log infornmatto
detect frequent paths of a process using a miniathoal.
The final result would be frequent paths and infierg
Il BACK GROUND AND RELATED WORK activities in terms of granularity level (G) and mimum
support that both come from an SLA. We use G twide

BPEL: The Business Process Execution Language @fanylar agents commensurate with run-time requiresn

BPEL briefly supports web services relationshipsfrthe

following aspects including: message exchange lzdive Also, several researches have been conducted tsward
for long running message exchanges, parallel psit@f pyjlding models without a priori knowledge, callPdocess
activities, the mapping of data between partnesratdtions Mining, based on sequences of events. Using process
and consistent exception and recovery handling. IBPEnining, one can look for the presence or absenaxtéin
activities can be classified as basic activitiest lherform patterns and deduce some process models from]":'[hﬁ
some primitive operations and structured activitteat main difference with our work is that we alreadyoknthe
define the control flow. The key BPEL basic actestare pysiness process description and the structurexaefuéed
Invoke, Receive, Reply, Assign, Compensate, Congiens puysiness process log files as well.
Scope, Empty, Exit, Throw, Re-throw, Validate andiww
whereas the structured BPEL activities are Flow;Each, BPEL Decomposition and Interaction Middleware
If, Pick, Repeat-Until, Scope, Sequence and WhiIleNINOS [2] uses a Publish/Subscribe[2, 14, 15] mgissp
respectively. In addition, two BPEL models have rbeeservice to handle the interaction of agents. Is thork, a
identified which are block and graph based. Severdistributed agent-based orchestration engine isemted in
prominent companies have implemented block-basatkimo which each activity of a business process encajesliia an
while graph-based BPEL has been implemented by sdmeagent and collaborates with other agents in oml@xecute
them. The introduced algorithm in this paper supgptine the whole process. In [4], a LINDA platform [16]agsto
block- based style of BPEL[2, 9, 10]. wrap each activity of a BPEL process in agent amild
Tuple Space concept is applied to realize the amdipe of
Service Level Agreement:Combining functionalities is agents. These methods are called Fully Processitiitstd
not the only requirement for e-Business integratiNion- (FPD) in [3]. A different approach is Semi Process
functional quality requirements must also be metvise pistribution (SPD) that collapses a business pmces
Level Agreements (SLA) capture the mutual respalits#s partitions according to a variety of criteria. WK
of the prOVider of a service and its client W|t|$pect to the partitions a business process so that each parm be
non-functional properties [8]. SLAs are gaining ithe enacted by a different participant. In fact [5]atisnects the
importance due to the increasing number of companigartitioning itself from the design of the busingsscess.
conducting business over the Internet, requirimggbsition Eyrthermore SOA stack supports messaging and [8% us
of SLAs at organizational boundaries to provideasi® on SOA messaging protocols and WSDL to wire decomposed
which to emulate the electronic equivalents of atrt components. In [17], each partition is detectecbeding to
based on business management practices. In additjé], the BPEL roles. In [12], a Control Flow Graph Hzeen

a monitoring method was implemented to show howcare ysed to automatic partitioning of a BPEL processilar to
monitor SLAS in an heterogeneous environment. Ooirkw program partitioning in mumprocessors_

can use this method to control SLAs in run time aof

orchestrated workflow engine as future work. WdkR][is a All these methods do not have any control on thaber
FPD method that has no control on compile time obf produced agents, granularity as well as adayptatf
producing agents and uses a cost function to dies¢en agents to the run-time environment. IPD [3, 6, $psuia
agents on network at run-time. Our work producesnggy mining process method to discover useful patteynsavide
according to the execution history of previous bess suitable agents. In [7], some useful IPD distribntpatterns
processes at compile time. Run-time managementuof dor most salient BPEL activities have been showm an
method is in future work and is not comparableli?] at the proved. In [6], also a methodology along with agoaithm
moment. Work [3] studied an SLA-driven businesscpss for using IPD has been presented and in [3] IPD been
distribution and showed how different distributipolicies studied from an SLA point of view and compared ®DF
including FPD, SPD and IPD affect system non-fiumztl and SPD methods. In fact, the common problem i6[3]
factors. Finally, in this paper, an algorithm iegented to is that they have not implemented the idea of IRD anly

ISBN:978-988-17012-6-8 WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

the IPD abilities have been introduced. In [18] an if (childreng)=), fp..; = fp_.. Da]-
implementation of the IPD has been shown and theect fp(a]-)={ . a a . }
paper is an improved version of that work alonghveitnew i (chﬂdrereﬁ)% P) fpai = fpai . fp(chllden(zfl))
loan taking process case study. The methods [2/711, IA also is a set of infrequent activites as:
18] are the most relevant works to our approacimfed IA={a; [a; JA, frequencyg;) < min_sup}.
business process decentralization point of view.
In addition IP is the union of infrequent activitias well as
frequent paths that their cardinality is equal toeo
IP=1AO{fp(a;)|Ua; OA,| fp(a;)|=1}. Those frequent
paths that include just one activity are behavenhfasquent
To be more specific, the idea of IPD is formulaiedhis ~paths as well. It is worth mentioning that all {heths in IP
section. We introduce set={a} as a set of activities and E and FP sets are encapsulated in their own dedicaents,
as a set of edges that are used to make a tregtivities. ~ afterwards.
Based on A and EBT = (A, E) is defined which stands for a
BPEL tree and is described by BPEL language.
Furthermore, we consider ET as a tree built froRPEL In this part, the essential steps of IPD methodjeno

execution history log file and definitelyT [BT . frequency calculation and frequent path mining dtgm to
business process decomposition are proposed.

Il. BASIC DEFINITIONS

V. IPD METHOD

A path is defined as a sequence of activitiesistaftom
process root to a leaf. Also, a frequent path path that all A. IPD BASIC PHASES
of its activities are frequent. To realize the agpic of
frequent path we considenin_supvalue that shows the The basic steps of the IPD method are introducetiit
minimum value of iteration for each activity to adrequent Section.
activity. . e

Phase0O (SLA Driven Initialization): Users are able to

To categorize the activities as well as paths iBREL define their requirements througBLAs including: 1) the
tree several concepts are required including Frequeminimum frequency or minimum support for all adiies. 2)
Activity (FA), Frequent Path (FP), Infrequent Adtigs (IA) Determining the level of granularity for each freqtipath.
and Infrequent Path (IP) that will be introduced,

respectively. Phasel (Pre-processing)in this phase all noise data

must be removed from produced log file.

FA is a set of frequent activities as:) _)
A={fa} ={a |al] AD(frequenc{[d) > min_sup} Phase2 (Tree Construction)ncludes: 1) the construction

of the process tree from a BPEL file. 2) Markinge th
executed activities according to log file infornoati Each

The frequency of each activity is calculated degeod . . o
node’s visited counter is incremented on each.visit

the type of activity that is as follows:

Phase3 (Frequency Calculation) includes the

if chilren(a)=®, returractivityiteratiomumbel . L
calculation of all activities frequency.

fi =
requendy) {elsereturrmax(frequeryﬁchildre(a)))

FP includes just frequent activities from the rdot the Phase4 (Frequent Path Detection and Agent
leaves of a process tree. We would also like towgese a construction) this phase depends on the required granularity

fpOFP in terms of granularity degree, G, which is defined> and minimum support stem fromS.A It starts from the

as follows: level G and finds the frequent paths in subseqlagets.

Phase5 (Wiring frequent and infrequent agents):In
this phase all agents are being wired so that ttemy

.]] communicate through a middleware. Wiring is not main
Accordingly, FR; is defined as a set of granular frequentyncern at the moment.

G:{Gi |GDepth-l >"'>Gi >"->Groot :GO}

paths,fpg, starting from levelG of the tree to level
TreeDepth-1. Also functionlevel(G)returns the nodes in

level G of the tree. Should a path include just frequent
activity, it is not considered as a frequent path.

At the first execution of the algorithm, a treebislt from
the execution log of the process and is stored émary.
Then, the frequency of all activities is calculatead later
on, according to the pre-determined granularityeleand

FPs ={fps} ={ fp(a) [0< G < Depth-1, g, DlevelG), | fp(a,) >3 minimum support that come from an SLA, the tremised.
Just those children of a node that their frequaacgmaller

Functionfp(a,) searches for subsequent frequen®' equal to the pre-determined minimum frequeneythen
selected. The output of the algorithm is the ditaroups of

activities of a node and put them in séb, which is -) .
P ai activities which are encapsulated in distinct agent

according to the following definition:

ISBN:978-988-17012-6-8 WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I

WCECS 2009, October 20-22, 2009, San Francisco, USA

(name: CalculateNodeFrequency ;
input: nede;
output: node frequency;

If (node.childrenNumber >0)

begin
maxFrequecny = 0}
for each child e node.children(
begin

tempFrequency =
CalculateNodeFrequency (child);//Recursive Call
if (tempFrecquency > maxFreguency)
kegin
maxFrecquency = tempFregquency;
end.
end.

node . frequency = maxFrequency;

return maxFrequency;
end.

else
begin
node . frequency = node.visitNumber;

return node. frequency;

end.

Figurel)Node Frequency Calculation Algorithm

B. CALCULATING THE FREQUENCY OF ACTIVITIES

In order to detect all frequent patterns of a bessn
process, we have to know the execution frequencthef
business process activities. The starting poinddtect the
frequency of activities is to count the number ditg for
each activity. To achieve this goal, log files prodd by a
BPEL engine are used to calculate the number dfsvigr
each nodevisit numbey. According toFigurel the frequent
path detection is based on the presumption thatefsimple
activity is visitedn times, so its frequency is. While, a
complex activity contains a number of simple andptex
activities, therefore, its frequency is equal te thequency
of the maximum frequent child. To implement theoaithm

minimum support of the agents that shows the mimmu
frequency required for an activity to be included a
frequent path. According tBigure2 to obtain the frequent
paths in a BPEL log tree; 1) tliequencyof each node is
calculated; 2) The nodes in lev@lis listed using levelNth
function; 3) For each sub-tree of nodes in le@eh new
group is created and finally; 4) Each sub-tree of noites
level G is traversedand those activities that thérequency
is equal or larger thamin_supis selected and added to a
relevantgroup.

D. ALGORITHM ANALYSIS

For a business process tree includimpdes, the frequent
path mining algorithm is consist of three stepsluding
calculating the frequency of the nodes, returnirgriodes in
level G of the tree and finally traversing the stées of the
nodes in level G of the tree.

In order to calculate the complexity of the algamit the
complexity of each step must be calculated indizilyu In
the mentioned steps the traversing of the treeagedh on a
breadth first algorithm. So, the complexity of thede

frequency algorithm is a function ©{n°®*") . Similarly,
the complexity of finding the nodes in level G béttree is
as function ofO(n®) due to the fact that all the nodes must

be traversed to reach the level G. After obtairthmgy nodes
in level G, in the worst case all the nodes in le@eare
frequent nodes and therefore the entire sub trees to be
traversed and consequently it would be a function

a recursive calculate node frequency method has besfO(n® xnPeP'™¢) As a result, the final complexity would

implemented. It traverses a node to reach its dld

recursively and finally returns the frequency o€ tmost
frequent child.

(name: LevelNth ;
input: tree, n ffNth level of the tree ;
output: A list containing the nodes of Nth level 7

travers the tree using Bread First Algorithm
return a list including neodes in level nrs

name : FrequentPathMining ;7
input:
cutput: Alist containing groups of frequent paths

min_sup ;

calculateNodeFregquency (root) ;

for each node e levelNth(granularity)

begin
if (node.frequency >= min sup)
begin
create a new group ir
HTraversing the node's sub trees
for each stNode e sub_tree{node)
if (stMNode. frequency >= min sup);
add the stlode Lo group:7:
if group;i.size () <2 remowve the group:;
end;
end;

l]:etu]:n all groups s

Figure2) Frequent Path Mining Algorithm

C. FREQUENT PATH MINING ALGORITHM

The frequent path mining algorithm is based on two

factors including the degree of granularity, G, atie

ISBN:978-988-17012-6-8

be O(nNP®"™M) in the worst case.

V. EXPERIMENTAL RESULTS

Sequence

Receive

. 2

|
v

—f—&lﬁﬂgn
v

- Flow
e

Sequence Sequence

C>) Invoke Co

+ +

. Receive . Receive

If

T o T

’ -—'»biAsﬂgn

[
v

Reply

Figure 3) a Loan Taking BPEL Process

WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

/process Visited Frequency
/process/sequence = SequeNnCe ... 10001 10000
/process/sequence/receive €5 receivecccovenniiee
/process/sequence/assign[@name="' Inputissign') B Assi 10000 10000
/process/sequence/flow Y i eiies i 10000 10000
/process/sequence/flov/ sequence 3] = A% Flow i, 10001 10000
/process/sequence/ flow/ zequence[2)] - SEQUENCE +vooveneee
/process/sequence/flov/sequence [3]/invoke[2] &> 1roke 10001 10000
/process/sequence/ flov/sequence(2]/invoke R B 10000 10000
/process/sequence/flow/ sequence[3] = SEeqUence............. 10001 10000
/process/sequence/ £low/ sequence(2] %, Invoke.......... 10000 10000
/process/sequence/flow IF oereresrenesseressenesnens
/process/sequence/if T’ 10001 6932
/process/sequence/if/if-condition = 5/ If Condition.......... 6933 6932
/process/sequence/if/if-condition/assign[@name="'Yez'] = Assign........... 6932 6932
/process/sequence/if/if-condition o @ Ese 3069 3068
/process/sequence/reply
/process/sequence) Assign.......... 3068 3068
/process &) REPlY wivvireiirerinisieinnis 10000 10000
Figure 4) a Log Sample of Loan Process in ActiveBPEL Figure 5) Loan Taking BPEL Process, a Tree View
Granularity Level =0 Granularity Level = 1 Granularity Level =2 Granularity Level =3 Granularity Level = 4

Sequence

= (1 seauen

(00 sequence) (0 sequence)
= A% Flow =) =
= (= b sequence | =]
% Invoke |) Tnvoke |
= Sequence - Sequence = Sequence m =
% Invoke % Invoke 0 Invoke % Invoke
s rl_ |gBrl a2 = “__ﬂ__’ s [
= =/ If Condition = =/ If Condition == If Condition (==~ If Condition = = If Condition
7 Assign ¥ Assign) Assign =7 Assign ¥ Assig
= & Else = ¢ Else o ¢ Else = | Ese = 4 Else

[@) Reply | @) Reply o Reply o ' Reply

(@) (b) (c) {d) (e)
Tree Depth =4 Minimum Support = 3%

=" Assign

'a
i

Figure 6) Using Different levels of Granularity

This section illustrates a sample execution of th}Q’eII formeq log file as iII.ustrated.ir? figur.e 4.' éardingly,
presented algorithms on a loan taking business epeoc each_entry in the log f||_e_|s an activity whichaddressed by
Receiving a loan request, the process checks theese the hierarchy of the activity.
against two surveyors web services and then wupon

i In this experiment, the business process was caléd0
acceptance of the loan request, issues loan offetdock- P P

based BPEL il . tthe | has e times so that 70% of the calls resulted in the inomf the
ase lustration of the loan process has WN *f.Condition branch of the If activity. Then, theefuent

in .Fi-g.ure ,3 thaF contains several. ComP'ex and gimp %ath mining algorithm was run with a minimum-sugpof
f"‘c“"'“es |ncIu<_j|ng sequence, flowif (switch), receive, 3% and different levels of granularity G, varyimgrh 0 to
invoke and assign 4. Figure 5 is the output of the frequent path mining
el java language was ued (o implement (71T PO 119 Siovs T e s o
algorithms and ActiveBPEL workflow engine[9] andrtcat Granularity levels 0 to 4 produce two trf)ree covi ang
servlet container [19] to run the loan BPEL process y P ' » SCVEME

Preprocessing and omitting the noise informatioa,get a twelve agents, respectively.

ISBN:978-988-17012-6-8 WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I

WCECS 2009, October 20-22, 2009, San Francisco, USA

VI. CONCLUSION

[10]OASIS, "Advancing Open Standards for the infatibn society,"
2007, pphttp://docs.oasis-open.org/wsbpel/2.0/0S/wsbpe-2S.html

In this paper, a mining approach has been presented[11]M. Funabashi and A. Grzecthallenges of Expanding Internet: E-

detect the frequent paths of block-model BPEL djseti

business processes- the purpose being to decongos

business process which is called Intelligent Preegs
Decomposition (IPD). Detecting frequent paths isdahon
the granularity level and minimum support paransetbat

Commerce, E-Business, and E-Government: E-commigrbasiness, and
E-government: 5th IFIP Conference on E-Commerc8uBiness, and E-

Bovernment (Monitoring Middleware For Service Lefgleements in the

Heterogeneous Environment)(13E'2005), October 2825, Poznan,
Poland Springer-Verlag New York Inc, 2005.

[12]M. G. Nanda, S. Chandra, and V. Sarkar, "Deediaing execution of

come from an SLA document, IPD encapsulates thém incomposite web servicesRCM SIGPLAN Noticesyol. 39, pp. 170-187,
2004.

agents.

The provided agents were expected to be in theit
granularity, neither fully distributed nor fully egalized,
however commensurate with the run-time behaviothef
previously executed business processes.

IPD, though, was tested on a loan taking businessegs
as a case study and resulted in decomposing theplogess

[13]"Process Mining and Monitoring Processes and/i6es: Workshop

bé?eport," in The Role of Business Process in Service Oriented

Architectures Eindhoven University of Technology, P.O.Box 51.-
5600 MB, Eindhoven, The Netherlands., 2006.

[14]H.-A. J. F. Fabret, et al, "Filtering algoritisnand implementation for
very fast publish/subscribe systems,’ACM SIGMOD2001.

[15]D. S. R. A. Carzaniga, and A. L. Wolf., "Designd evaluation of a
wide-area event notification serviceACM ToCS,vol. 19(3):, pp. 332—
383, Aug. 2001.

to several agents based on the granularity level afign. cariero and D. Gelemter, "Linda in cont&xEommunications of

minimum support parameters. So, based on diffdexls
of granularity a number of agents were provided.

At the moment, we are evaluating the IPD againkerot
process decomposition methods. In addition, based
granularity level and minimum support a number géras
are produced. The main question is which granylaeiel
would be the best decomposition based on curresteisy
configuration. Indeed, we are extending the ideamfr
compile time to run-time. By run-time we mean IPOIl w
automatically reconfigure the process either basedhe
changes in SLAs or feedbacks from run-time enviremm

REFERENCES

[1]IBM, "SOA terminology overview, Part 1: Servicerchitecture,
governance, and business terms," IBM, 2007,
http://Aww.ibm.com/developerworks/webservices/lifyfes-soa-term1/

[2]V. M. Guoli Li, and Hans-Arno Jacobsen, "NiNdsdistributed service
oriented architecture for business process exaglitibechnical report,
Middleware Systems Research Grolydy 2007.

[3]Faramarz Safi Esfahani, Masrah A. A. Murad, Maisi Sulaiman, and
N. I. Udzir, "SLA-Driven Business Process Distrilomt" in
IARIA/eKnow200Mexico: IEEE, 2009.

[4]JE. D. Mirkov Viroli, Alessandro Ricci, "Enginely a BPEL
orchestration engine as a multi-agent systéttsévier,January 2007.

[5]Rania Khalaf and F. Leymann, "E Role-based Dequasition of
Businesses using BPEL," ifEEE International Conference on Web
Services(ICWS'062006.

[6]Faramarz Safi Esfahani, Masrah A. A. Murad, Massi Sulaiman, and
N. I. Udzir, "Using Process Mining To Business Rsx Distribution,” in
SAC200%Hawaii/Honolulu: ACM, 2009, pp. 1876-1881.

[7]Faramarz Safi Esfahani, Masrah A. A. Murad, Maisi Sulaiman, and
N. I. Udzir, "An Intelligent Business Process Distition Approach,"”
Journal of Theoretical and Applied Information Teology vol. Vol. 4
No. 12, pp. 1236-1245, 31st December 2008.

[8]J. S. D.Davide Lamanna, Wolfgang Emmerich, "SBA® Language
for Defigning Service Level Agreements,"Tine Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (E$D3) 2003.

[9]Active-Endpoints, "ActiveBPEL Engine - Open SoerBPEL Server,"
2008, p.

http://www.activevos.com/cec/training/content/afRatedTraining

ISBN:978-988-17012-6-8

the ACM,vol. 32, pp. 444-458, 1989.

[17]Y. Zhai, H. Su, and S. Zhan, "A Data Flow Ogptiation Based
Approach for BPEL Processes Partition," 2007.

[18]Faramarz Safi Esfahani, Masrah A. A. Murad, Nibkir Sulaiman,
and N. I. Udzir, "A Frequent Path Detection Methodntelligent Business
Process Decomposition,” iWWORLDCOMP/SWWS'09 - The 2009
International Conference on Semantic Web and Welicgg Las Vegas,
Nevada, USA, 2009.

[19]"The Apache Software Foundation - Apache Tonrtic&009, p.
http://tomcat.apache.org/

pp.

WCECS 2009

