
The Entity Refactoring Set Selection Problem -

Practical Experiments for an Evolutionary

Approach

Camelia Chisăliţă–Creţu ∗

Abstract—Refactoring is a commonly accepted
technique to improve the structure of object oriented
software. The paper presents a multi-objective ap-
proach to the Entity Refactoring Set Selection Prob-
lem (ERSSP) by treating the cost constraint as an
objective and combining it with the effect objective.
The results of the proposed weighted objective ge-
netic algorithm on a experimental didactic case study
are presented and compared with other previous re-
sults.

Keywords: refactoring, object-oriented programming,

multi-objective optimization

1 Introduction

Software systems continually change as they evolve to re-
flect new requirements, but their internal structure tends
to decay. Refactoring is a commonly accepted technique
to improve the structure of object oriented software [4].
Its aim is to reverse the decaying process in software qual-
ity by applying a series of small and behaviour-preserving
transformations, each improving a certain aspect of the
system [4]. The ERSSP is the identification problem of
the optimal set of refactorings that may be applied to
software entities, such that several objectives are kept or
improved. The paper introduces a first formal version
definition of the Multi-Objective Entity Refactoring Set
Selection Problem (MOERSSP) and performs a proposed
weighted objective genetic algorithm on an experimental
didactic case study. Obtained results for our case study
are presented and compared with other recommended so-
lutions for similar problems [6].

The rest of the paper is organized as follows: Section
2 presents the formal definition of the studied problem,
while Section 3 gives the definition of the Multi-Objective
Optimization Problem (MOOP). A short description of
the Local Area Network simulation source code used to
validate our approach is provided in Section ??. The pro-
posed approach and several details related to the genetic
operators of the genetic algorithm are described in Sec-

∗Manuscript submission date: 26 July, 2009, Babeş-Bolyai
University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania, 1, M. Kogalniceanu Street, RO-400084, Tel: 40-
264-405.300/5240 Email: cretu@cs.ubbcluj.ro

tion 5. The obtained results for the studied source code
and for similar problems are presented and compared in
Section 6. The paper ends with conclusions and future
work.

2 ERSSP Definition

In order to state the ERSSP some notion and character-
istics have to be defined. Let SE = {e1, . . . , em} be a set of
software entities, i.e., a class, an attribute from a class, a
method from a class, a formal parameter from a method
or a local variable declared in the implementation of a
method. They are considered to be low level components
bounded thought dependency relations. The weight asso-
ciated with each software entity ei, 1 ≤ i ≤ m is kept by the
set Weight = {w1, . . . , wm}, where wi ∈ [0, 1] and

∑

m

i=1
wi = 1.

A software system SS consists of a software entity set SE

together with different types of dependencies between the
contained items.

A set of possible relevant chosen refactorings [4] that may
be applied to different types of software entities of SE is
gathered up through SR = {r1, . . . , rt}. There are various
dependencies between such transformations when they
are applied to the same software entity, a mapping em-
phasizing them being defined by:

rd : SR×SR×SE → {Before, After, AlwaysBefore, AlwaysAfter,

Never, Whenever},

rd(rh, rl, ei) =







B, if rh may be applied to ei only before rl, rh < rl
A, if rh may be applied to ei only after rl, rh > rl
AB, if rh and rl are both applied to ei then rh < rl
AA, if rh and rl are both applied to ei then rh > rl
N, if rh and rl cannot be both applied to ei
W, otherwise, i.e., rh and rl may be both applied to ei

,

where 1 ≤ h, l ≤ t, 1 ≤ i ≤ m. The effort involved by each
transformation is converted to cost, described by the fol-
lowing function:

rc : SR × SE → Z,

rc(rl, ei) =

{

> 0, if rl may be applied to ei

= 0, otherwise
,

where 1 ≤ l ≤ t, 1 ≤ i ≤ m. Changes made to each software
entity ei, i = 1, m by applying the refactoring rl, 1 ≤ l ≤ t are
stated and a mapping is defined:

effect : SR × SE → Z,

effect(rl, ei) =

{

> 0, if rl is applied to ei and has the requested effect on it
< 0, if rl is applied to ei; has not the requested effect on it
= 0, otherwise

,

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



where 1 ≤ l ≤ t, 1 ≤ i ≤ m. The overall effect of applying a
refactoring rl, 1 ≤ l ≤ t to each software entity ei, i = 1, m is
defined as:

res : SR → Z,

res(rl) =

m
∑

i=1

wi ∗ effect(rl, ei),

where 1 ≤ l ≤ t. Each refactoring rl, l = 1, t may be applied
to a subset of software entities, defined as a function:

re : SR → P (SE),

re(rl) =

{

el1
, . . . , elq

| if rl is applicable to elu
, 1 ≤ u ≤ q, 1 ≤ q ≤ m

}

,

where re(rl) = SErl
, SErl

⊆ SE − φ, 1 ≤ l ≤ t. The purpose
is to find a subset of entities ESetl for each refactoring
rl ∈ SR, l = 1, t such that the fitness function is maximized.
The solution space may contain items where a specific
refactoring applying rl, 1 ≤ l ≤ t is not relevant, since ob-
jective functions have to be optimized. This means there
are subsets ESetl = φ, ESetl ⊆ SE, 1 ≤ l ≤ t.

3 MOOP Model

MOOP is defined in [8] as the problem of finding a deci-
sion vector

→
x= (x1, . . . , xn), which optimizes a vector of M

objective functions fi(
→
x ) where 1 ≤ i ≤ M, that are subject

to inequality constraints gj(
→
x ) ≥ 0 , 1 ≤ j ≤ J and equal-

ity constraints hk(
→
x ) = 0 , 1 ≤ k ≤ K. A MOOP may be

defined as:

maximize{F (
→
x )} = maximize{f1(

→
x ), . . . , fM (

→
x )},

with gj(
→
x ) ≥ 0, 1 ≤ j ≤ J and hk(

→
x ) = 0, 1 ≤ k ≤ K where

→
x is the vector of decision variables and fi(

→
x ) is the i-

th objective function; and g(
→
x ) and h(

→
x ) are constraint

vectors.

There are several ways to deal with a multi-objective
optimization problem. In this paper the weighted sum
method [5] is used.

Let us consider the objective functions f1, f2,. . . , fM . This
method takes each objective function and multiplies it by
a fraction of one, the ”weighting coefficient” which is rep-
resented by wi, 1 ≤ i ≤ M. The modified functions are then
added together to obtain a single fitness function, which
can easily be solved using any method which can be ap-
plied for single objective optimization. Mathematically,
the new mapping may be written as:

F (
→
x ) =

M
∑

i=1

wi · fi(
→
x ), 0 ≤ wi ≤ 1,

M
∑

i=1

wi = 1.

3.1 MOORSP Formulation

Multi-objective optimization often means compromising
conflicting goals. For our MOORSP formulation there
are two objectives taken into consideration in order to
maximize refactorings effect upon software entities and

minimize required cost for the applied transformations.
Current research treats cost as an objective instead of a
constraint. Therefore, the first objective function defined
below minimizes the total cost for the applied refactor-
ings, as:

minimize

{

f1(
→
r )

}

= minimize

{

t
∑

l=1

m
∑

i=1

rc(rl, ei)

}

,

where
→
r = (r1, . . . , rt). The second objective function max-

imizes the total effect of applying refactorings upon soft-
ware entities, considering the weight of the software en-
tities in the overall system, like:

maximize

{

f2(
→
r )

}

= maximize

{

t
∑

l=1

res(rl)

}

,

where
→
r = (r1, . . . , rt). The goal is to identify those solutions

that compromise the refactorings costs and the overall
impact on transformed entities. In order to convert the
first objective function to a maximization problem in the
MOORSP, the total cost is subtracted from MAX, the
biggest possible total cost, as it is shown below:

maximize

{

f1(
→
r )

}

= maximize

{

MAX −

t
∑

l=1

m
∑

i=1

rc(rl, ei)

}

,

where
→
r = (r1, . . . , rt). The final fitness function for

MOORSP is defined by aggregating the two objectives
and may be written as:

F (
→
r ) = α · f1(

→
r ) + (1 − α) · f2(

→
r ),

where 0 ≤ α ≤ 1.

4 Case Study: LAN Simulation

The algorithm proposed was applied on a simplified ver-
sion of the Local Area Network (LAN) simulation source
code that was presented in [2]. Figure 1 shows the class
diagram of the studied source code. It contains 5 classes
with 5 attributes and 13 methods, constructors included.

Figure 1: Class diagram for LAN simulation

The current version of the source code lacks of hiding in-
formation for attributes since they are directly accessed
by clients. The abstraction level and clarity may be in-
creased by creating a new superclass for PrintServer

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



and FileServer classes, and populate it by moving up
methods in the class hierarchy.

Thus, for the studied problem the software entity
set is defined as: SE = {c1, ..., c5, a1, ..., a5,

m1, ..., m13}. The chosen refactorings that may be
applied are: renameMethod, extractSuperClass, pullUp-

Method, moveMethod, encapsulateField, addParameter,
denoted by the set SR = {r1, . . . , r6} in the following.
The dependency relationship between refactorings is de-
fined as follows: {(r1, r3) = B, (r1, r6) = AA, (r2, r3) = B, (r3, r1) =

A, (r6, r1) = AB, (r3, r2) = A, (r1, r1) = N, (r2, r2) = N, (r3, r3) =

N, (r4, r4) = N, (r5, r5) = N, (r6, r6) = N}.

The values of the final effect were computed for each
refactoring, but using the weight for each existing and
possible affected software entity, as it was defined in Sec-
tion ??. Therefore, the values of the res function for each
refactoring are: 0.4, 0.49, 0.63, 0.56, 0.8, 0.2.

Here, the cost mapping rc is computed as the number
of the needed transformations, so related entities may
have different costs for the same refactoring. Each soft-
ware entity has a weight within the entire system, but
∑23

i=1 wi = 1. For the effect mapping, values were con-
sidered to be numerical data, denoting the estimated im-
pact of applying a refactoring. Due to the space limita-
tion, intermediate data for these mappings was not in-
cluded. An acceptable solution denotes lower costs and
higher effects on transformed entities both objectives be-
ing satisfied.

5 Proposed Approach Description

The decision vector
→

S= (S1, . . . , St), Sl ⊆ SE ∪ φ, 1 ≤ l ≤ t

determines the entities that may be transformed using
the proposed refactorings set SR . The item Sl on the l-th
position of the solution vector represents a set of entities
that may be refactored by applying the l-th refactoring
from SR, where each entity elu ∈ SErl

, elu ∈ Sl ⊆ SE ∪ φ, 1 ≤

u ≤ q, 1 ≤ q ≤ m, 1 ≤ l ≤ t. This means it is possible to apply
more than once different refactorings to the same software
entity, i.e., distinct gene values from the chromosome may
contain the same software entity.

A steady-state evolutionary algorithm was applied here,
a single individual from the population being changed
at a time. The best chromosome (or a few best chromo-
somes) is copied to the population in the next generation.
Elitism can very rapidly increase performance of GA, pre-
venting to lose the best found solution. A variation is to
eliminate an equal number of the worst solutions, i.e. for
each best chromosome kept within the population a worst
chromosome is deleted.

The parameters used by the evolutionary approach are
as follows: mutation probability 0.7 and crossover prob-
ability 0.7. Different number of generations and of indi-

viduals are used: number of generations 10, 50, 100, 200
and number of individuals 20, 50, 100, 200.

5.1 Genetic Operators

A simple one point crossover scheme is used. A crossover
point is randomly chosen. All data beyond that point in
either parent string is swapped between the two parents.

For example, if the two parents are: parent1 =

[ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 3, 6, 9, 12], ge[11], gf [13, 4]] and
parent2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11], g4[10, 11], g5[2, 3, 12],

g6[5, 9]] and the cutting point is 3, the two resulting off-
springs are: offspring1 = [ga[1, 7], gb[3, 5, 10], gc[8], g4[10, 11],

g5[2, 3, 12], g6[5, 9]] and offspring2 = [g1[4, 9, 10, 12], g2[7],

g3[5, 8, 11], gd[2, 3, 6, 9, 12], ge[11], gf [13, 4]].

Mutation operator used here exchanges the value of a
gene with another value from the allowed set. In other
words, mutation of i-th gene consists of adding or remov-
ing a software entity from the set that denotes the i-th
gene. We have used 11 mutations for each chromosome,
number of genes being 6.

For instance, if we have the chromosome
parent = [ga[1, 7], gb[3, 5, 10] gc[8], gd[2, 6, 9, 12] ge[12] gf [13, 4]]

and we chose to mutate the fifth gene,
then a possible offspring may be parent =

[ga[1, 7] gb[3, 5, 10] gc[8] gd[2, 6, 9, 12] ge[10, 12] gf [13, 4]] by
adding the 10 -th software entity to the 5 -th gene.

In order to compare data having different domain val-
ues the normalization is applied firstly. We have used
two methods to normalize the data: decimal scaling for
the refactorings cost and min-max normalization for the
value of the res function.

6 Practical Experiments for the Pro-

posed Approach

The algorithm was run 100 times and the best, worse
and average fitness values were recorded. Following sub-
sections reveal the obtained results for different values of
the α parameter.

6.1 Equal Weights: α = 0.5

A first experiment proposes equal weights, i.e., α =

0.5, for the studied fitness function. Thus, F (
→
r ) =

0.5 · f1(
→
r ) + 0.5 · f2(

→
r ), where

→
r = (r1, . . . , rm). Figure 2

presents the 10 generations evolution of the fitness func-
tion (best, worse and average) for 20 chromosomes pop-
ulations (Figure 2(a)) and 200 chromosomes populations
(Figure 2(b)).

It is easy to see that there is a strong struggle between
chromosomes in order to breed the best individual. In
the 20 individuals populations the competition results in
different quality of the best individuals for various runs,

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



(a) Experiment with 10 generations and 20
individuals with eleven mutated genes

(b) Experiment with 10 generations and 200
individuals

Figure 2: The evolution of fitness function (best, worse
and average) for 20 and 200 individuals with 10 genera-
tions

from very weak to very good solutions. The 20 individ-
uals populations runs have a few very weak solutions,
worse than 0.35, but there are a lot of good solutions,
i.e., 22 chromosomes with fitness better than 0.41. Com-
pared to the former populations, the 200 chromosomes
populations breed closer best individuals, since there is
no chromosome with fitness value worse than 0.35, but
the number of good chromosomes is smaller than the one
for 20 individuals populations, i.e., 8 chromosomes with
fitness better than 0.41 only. The data for the worst
chromosomes reveals similar results, since for the 200 in-
dividuals populations there is no chromosome with fitness
better than 0.25, while for the 20 chromosomes popula-
tions there is a large number of worse individuals better
than 0.25. This situation outlines an intense activity in
smaller populations, compared to larger ones, where di-
versity among individuals reduces the population capa-
bility to quickly breed better solutions.

The number of chromosomes with fitness value better
than 0.41 for the studied populations and generations
is captured by Figure 3. It shows that smaller popu-
lations with poor diversity among chromosomes have a
harder competition within them and more, the number
of eligible chromosomes increases quicker for smaller pop-
ulations than for the larger ones. Therefore, for the 20
chromosomes populations with 200 generations evolution
all 100 runs have shown that the best individuals are bet-
ter than 0.41, while for 200 individuals populations with
200 generations the number of best chromosomes better
than 0.41 is only 53.

For the recorded experiments, the best individual for 200
generations was better for 20 chromosomes populations

Figure 3: The evolution of the number of chromosomes
with fitness better than 0.41 for the 20, 50, 100 and 200
individual populations

(with a fitness value of 0.4793) than the 200 individuals
populations (with a fitness value of just 0.4515). Various
runs as number of generations, i.e., 10, 50, 100 and 200
generations, show the improvement of the best chromo-
some.

Thus, the best individual fitness value for 10 generations
is 0.43965 for 20 individuals populations and 0.43755
for 200 chromosomes populations. This means in small
populations (with few individuals) the reduced diversity
among chromosomes may induce a harsher struggle com-
pared to large populations (with many chromosomes)
where the diversity breeds weaker individuals. As it was
said before, after several generations smaller populations
produce better individuals (as number and quality) than
larger ones, due to the poor populations diversity itself.

The best individual obtained allows to improve the struc-
ture of the class hierarchy. Therefore, a new Server

class is the base class for PrintServer and FileServer

classes. More, the signatures of the print method from
the PrintServer class and the save method from the
FileServer class are changed and then both renamed to
process. The accept method is pulled up to the new
Server class. The two refactorings applied to the print

and save methods ensure their polymorphic behaviour.
The correct access to the class fields by encapsulating
them within their classes is enabled. The current solu-
tion representation allows to apply more than one refac-
toring to each software entity, i.e., method print from
PrintServer class is transformed by two refactorings,
addParameter and renameMethod.

6.2 Different Weights: α = 0.3

An experiment with different weights, i.e., α = 0.3, where
the final effect (res function) has a greater relevance than
the implied cost (rc mapping) of the applied refactorings
is presented below. Therefore, the new fitness function

may be rewritten as: F (
→
r ) = 0.3 · f1(

→
r ) + 0.7 · f2(

→
r ),

where
→
r = (r1, . . . , rm).

Figure 4 shows the the number of chromosomes better
than 0.298 for the 20, 50, 100 and 200 individuals popu-
lations with 10, 50, 100 and 200 generations. It shows the
grouping of the eligible chromosomes for the 100 and 200

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



individuals populations for each number of generations.
The solutions for the 20 individuals populations for the
studied number of generations keep their good quality,
since the number of eligible chromosomes remains higher
than any individuals population recorded by the experi-
ment.

Figure 4: The evolution of the number of chromosomes
with fitness better than 0.298 for the 20, 50, 100 and 200
individuals populations, with α = 0.3

The experiment shows good results in all 100 runs as
quality and number for the studied individuals popula-
tions and number of generations. In the 200 generations
runs for 200 chromosomes populations the greatest value
of the fitness function was 0.33426 (with 45 individuals
with the fitness > 0.298) while in the 200 evolutions ex-
periments for 50 individuals populations the best fitness
value was not more than 0.32772 (88 individuals with the
fitness > 0.298). But the best chromosome was found in
the experiment with 200 generations and 20 individuals
having the value 0.33587 (with all individuals with the
fitness > 0.298).

The best individual obtained by this solution representa-
tion makes only small changes to the structure of the class
hierarchy. Its analysis allows to extract a base class for
the PrintServer and FileServer classes. Therefore, a
new class named Server is added to the source code. The
addParameter refactoring was not suggested such that
the signature for print method from PrintServer class
and for save method from FileServer class are changed
in order to allow the corresponding accept methods from
the PrintServer and FileServer classes to be pulled up.
More, no appearance for the encapsulatedField refac-
toring have been recorded.

6.3 Different Weights: α = 0.7

The last experiment was run for α = 0.7, where the cost
(rc mapping) of the applied refactorings is more impor-
tant than the implied final effect (res function) on the
affected software entities. Thus, the new fitness function

is: F (
→
r ) = 0.7 · f1(

→
r ) + 0.3 · f2(

→
r ), where

→
r = (r1, . . . , rm).

The number of chromosomes better than 0.527 for the 20,
50, 100 and 200 individuals populations with 10, 50, 100
and 200 generations is depicted in Figure 5. The solu-
tions for the 20 individuals populations for each studied
number of evolutions keep their good quality, the number

of eligible chromosomes remaining raised.

Figure 5: The evolution of the number of chromosomes
with fitness better than 0.527 for the 20, 50, 100 and 200
individuals populations, with α = 0.7

In the 200 generations runs for 50 chromosomes popula-
tions the greatest value of the fitness function was 0.60772
(with 89 individuals with the fitness > 0.527) while in
the 200 evolutions experiments for 200 individuals pop-
ulations the best fitness value was not more than 0.617
(47 individuals with the fitness > 0.527). But the best
chromosome was found in the experiment with 200 gener-
ations and 20 individuals having the value 0.61719 (with
all individuals with the fitness > 0.527).

The best chromosome obtained for α = 0.7 experi-
ment suggests several refactorings, but there are some
that have to be interpreted by the programmer. A new
base class for the PrintServer and FileServer classes
is added too. The signature for the print method
from PrintServer class and for save method from
FileServer class is not suggested to be changed by the
best chromosome. More, the renameMethod refactoring
was recommended for the save method from FileServer

class, but not for the print method from the sibling
PrintServer class. Another improvment suggested by
the current experiment is to apply the pullUpMethod

refactoring in order to highlight the polymorphic be-
haviour of the accept method from the PrintServer

and FileServer classes. But, no appearance for the
encapsulatedField refactoring have been recorded such
that all public class attributes become protected from
unauthorized access.

6.4 Discussion

Current paper presents the results of the proposed ap-
proach in Section 5 for three different value for the α
parameter, i.e., 0.3, 0.5, 0.7. A chromosome summary of
the obtained results for all experiments is given below:

• α = 0.3, bestF itness = 0.33587 for 20 chromosomes and

200 generations

• α = 0.5, bestF itness = 0.4793 for 20 chromosomes and

200 generations

• α = 0.7, bestF itness = 0.61719 for 20 chromosomes and

200 generations

The experiment for α = 0.3 should identify those refac-
torings for which the cost has a lower relevance than

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



the overall impact on the applied software entities. But,
the obtained best chromosome obtained has the fitness
value 0.33587, loer than the best fitness value for the
α = 0.5 chromosome, i.e.,0.4793. This shows that an
agreggated fitness function with a higher weight for the
overall impact of the applied refactorings unbalance the
fitness function. Therefore, there are not too many key
software entities to be refactored by a such an exper-
iment. The experiment for α = 0.7 gets near to the
α = 0.5 experiment. The data shows similarities for the
structure of the obtained best chromosomes for the two
experiments. A major difference is represented by the
encapsulatedField refactoring that may be applied to
the public class attributes from the class hierarchy. This
refactoring was not suggested by the solution proposed by
the α = 0.7 experiment. More, there is a missing link in
the same experiment, due to the fact the addParameter

refactoring was not recommended for save method from
FileServer and print method from PrintServer class.
The α = 0.7 experiment should identify the refactorings
for which the cost is more important than the final effect
of the applied refactorings. The fitness value for the best
chromosome for this experiment is 0.61719, while for the
α = 0.5 experiment the best fitness value is lower than
this one.

Balancing the fitness values for the studied experiments
and the relevance of the suggested solutions, we consider
the α = 0.5 experiment is more relevant as quality of
the results, than the other analyzed experiments. Figure
6 highlights the changes in the class hierarchy for the
α = 0.5.

Figure 6: The class diagram for the LAN Simulation
source code, with α = 0.5

7 Obtained Results by Others

Fatiregun et al. [3] applied genetic algorithms to identify
the transformation sequences for a simple source code,
with 5 transformation array, whilst we have applied 6
distinct refactorings to 23 entities. Seng et al. [7] applied
a weighted multi-objective search, in which metrics were
combined into a single objective function. An hetero-
geneous weighed approach was applied in our approach,
because of the weight of software entities in the overall
system and refactorings cost being applied. Mens et al.
[6] propose techniques to detect the implicit dependencies

between refactorings. Their analysis helped to identify
which refactorings are most suitable to LAN simulation
case study. Our approach considers all relevant applying
of the studied refactorings to all entities.

8 Conclusions and Future work

The paper presents three experiments of the MOERSSP
with different α values. The results for a proposed
weighted objective genetic algorithm on a experimental
didactic case study are presented and analized. Different
α values may strongly unbalance the aggregated fitness
function, making it either too poor or too expensive.

The weighted multi-objective optimization is discussed
here, but the Pareto approach may prove to be more suit-
able when it is difficult to combine fitness functions into
a single overall objective function. Thus, a further step
would be to apply the Pareto front approach in order to
prove or deny the superiority of the second possibility.
Here, the cost is described as an objective, but it can
be interpreted as a constraint, with the further conse-
quences.

References

[1] C. Chisăliţă–Creţu, A. Vescan, ”The Multi-objective
Refactoring Selection Problem”, Proceedings of the Inter-
national Conference on Knowledge Engineering, Princi-
ples and Techniques (KEPT2009), Cluj-Napoca, Roma-
nia, July 24, 2009, accepted paper.

[2] S. Demeyer, D. Janssens, T. Mens, ”Simulation of
a LAN”, Electronic Notes in Theoretical Computer Sci-
ence, 72 (2002), pp. 34-56.

[3] D. Fatiregun, M. Harman, R. Hierons, ” Evolving
transformation sequences using genetic algorithms”, in
4th International Workshop on Source Code Analysis
and Manipulation (SCAM 04), Los Alamitos, California,
USA, IEEE Computer Society Press, 2004, pp. 65-74.

[4] M. Fowler. ” Refactoring: Improving the Design of Ex-
isting Software”. Addison Wesley, 1999.

[5] Y. Kim, O.L. deWeck, ” Adaptive weighted-sum
method for bi-objective optimization: Pareto front gen-
eration”, in Structural and Multidisciplinary Optimiza-
tion, MIT Strategic Engineering Publications, 29(2),
2005, pp. 149-158.

[6] T. Mens, G. Taentzer, O. Runge, ” Analysing refactor-
ing dependencies using graph transformation”, Software
and System Modeling, 6(3), 2007, pp. 269-285.

[7] O. Seng, J. Stammel, D. Burkhart, ” Search-based
determination of refactorings for improving the class
structure of object-oriented systems”, in Proceedings of
the 8th Annual Conference on Genetic and Evolutionary
Computation, M. Keijzer, M. Cattolico, eds., vol. 2,
ACM Press, Seattle, Washington, USA, 2006, pp. 1909-
1916.

[8] E. Zitzler, M. Laumanss, L. Thiele, ” SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm”,
Computer Engineering and Networks Laboratory, Tech-
nical Report, 103(2001), pp. 5-30.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009


