
  

  
 Abstract—The efficiency of a cryptographic algorithm is 
based on its time taken for encryption / decryption and the way 
it produces different cipher text from a clear text. The RSA, the 
widely used public key algorithm and other public key 
algorithms may not guarantee that the cipher text is fully 
secured. As an alternative approach to handling ASCII 
characters in the cryptosystems, a magic square 
implementation is thought of in this work. It attempts to 
enhance the efficiency by providing add-on security to the 
cryptosystem. This approach will increase the security due to its 
complexity in encryption because it deals with the magic square 
formation with seed number, start number and sum that cannot 
be easily traced. Here, encryption / decryption is based on 
numerals generated by magic square rather than ASCII values. 
This proposed work provides another layer of security to any 
public key algorithms such as RSA, ElGamal etc., Since, this 
model is acting as a wrapper to a public key algorithm, it 
ensures that the security is enhanced. Further, this approach is 
experimented in a simulated environment with 2, 4, 8, and 16 
processor model using Maui scheduler which is based on back 
filling philosophy.  
 
 Index Terms —Magic Square, Public Key Cryptosystem, RSA, 
Security.  
 

I. INTRODUCTION 
 Cryptography is the study of mathematical techniques 
related to aspects of information security such as 
confidentiality, data integrity, entity authentication, and data 
origin authentication. Cryptographic algorithms are divided 
into public-key and secret-key algorithms. In public-key 
algorithms both public and private keys are used, with the 
private key computed from the public key. Secret-key 
algorithms rely on secure distribution and management of the 
session key, which is used for encrypting and decrypting all 
messages. Though, public-key encryption is slower than 
symmetric-key encryption, it is used for bulk-data 
encryption. This is also due to encryption/decryption 
processes. Hence, in practice cryptosystems are a mixture of 
both [1], [12].  
 There are two basic approaches used to speed up the 
cryptographic transformations. The first approach is to 
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design faster (symmetric or asymmetric) cryptographic 
algorithms. This approach is not available most of the time. 
The speed of cryptographic algorithm is typically determined 
by the number of rounds (in private-key) or by the size of 
messages (in public-key case). The second approach is the 
parallel cryptographic system. The main idea is to take a large 
message block, divide it into blocks of equal sizes and each 
block can be assigned to one processor [7]. To perform the 
operations in parallel, effective scheduling is very important 
so that it can reduce the waiting time of message for 
processing. The back filling is one such approach. 
 The security of many cryptographic systems depends upon 
the generation of unpredictable components such as the key 
stream in the one-time pad, the secret key in the DES 
algorithms, the prime p, and q in the RSA encryption etc. In 
all these cases, the quantities generated must be sufficient in 
size and the random in the sense that the probability of any 
particular value being selected must be sufficiently small. 
However, RSA is not semantically secure or secure against 
chosen cipher text attacks even if all parameters are chosen in 
such a way that it is infeasible to compute the secret key d 
from the public key (n, e), choosing p, q are very large etc. 
Even if the above said parameters are taken carefully, none of 
the computational problems are fully secured enough [8]. 
Because to encrypt the plaintext characters, their ASCII 
values are taken and if a character occurs in several places in 
a plaintext there is a possibility of same the cipher text is 
produced. To overcome the problem, this paper attempts to 
develop a method with different doubly even magic squares 
of order 16 and each magic square is considered as one 
ASCII table. Thus, instead of taking ASCII values for the 
characters to encrypt, preferably different numerals 
representing the position of ASCII values are taken from 
magic square and encryption is performed using RSA 
cryptosystem.  
 

II.  METHODOLOGY 
 The working methodology of the proposed add-on security 
model is discussed stepwise. 
• Construct different doubly even magic square of                   

order 16 as far as possible and each magic square 
corresponds to one ASCII set.  

• To encrypt the character, use the ASCII value of the 
character to determine the numeral in the magic square 
by considering the position in it. Let NP and NC denote 
the numeral of the plaintext and cipher text respectively. 
Based on NP and NC values, all plaintext and cipher text 
characters are encrypted and decrypted respectively 
using RSA algorithm. 
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(a) Encryption process 
 
 

 
 
 
 
 

(b) Decryption process 
 

Fig. 1. Add-On Wrapper Model 
 
• To speed up the operations, perform them in parallel in a 

simulated environment. For that, use Maui scheduler 
with back filling philosophy. 

 The methodology of Add-on Security Model is shown in 
Fig. 1. 

A. Magic Squares and their construction  
 Definition 1:  A magic square of order n is an arrangement 
of integers in an n*n matrix such that the sums of all the 
elements in every row, column and along the two main 
diagonals are equal.  
 A normal magic square contains the integers from 1 to n2.  
It exists for all orders n ≥ 1 except n = 2, although the case                
n = 1 is trivial as it consists of a single cell containing the 
number. The constant sum in every row, column and 
diagonal is called the magic constant or magic sum, M [6]. 
The magic constant of a normal magic square depends only 
on n and has the value     

                       
2

1)2n(n
M(n)

+
=                                   (1) 

For normal magic squares of order n = 3, 4, 5, 6, 7, 8 … the 
magic constants are 15, 34, 65, 111, 175, 265… respectively. 
Though there is only one magic square of order 3 apart from 
trivial notations and reflections, the number of squares per 
order quickly sky rockets. There are 880 distinct order 4 
squares, and 275,305,234 distinct order 5 magic squares              
[2], [4]. Magic squares can be classified into three types: odd, 
doubly even (n divisible by four) and singly even [3] (n even 
but not divisible by four). This paper focuses only on doubly 
even magic square implementation and their usefulness for 
public-key cryptosystem   

A.1. Construction of Doubly Even Magic Square  
In this work, to generate the doubly even magic square, any 

seed number, starting number, and magic sum may be used 
and the numbers generated will not be in consecutive order.  

The algorithm (A.2) starts with building 4 x 4 magic 
square. Incrementally 8 x 8 and 16 x 16 magic squares are 
built using 4 x 4 magic squares as building blocks. While 
constructing the doubly even magic squares the following 
notations are used.   
MS       : Magic Square  
n       : Order of MS where n = 4m, where 
        m = 1, 2, 3 and 4  
MSn       : MS of order n 
MSB4       : Base MS of order 4 
MSstart      : Starting number of MS 
MSTnsum      : Total sum of MS of order n  
MSDn sum       : Diagonal sum of MS of order n  
T_No_MS       : Total Number of MS 
S1, S2  S3, S4       : First, Second, Third and Fourth 
digit of 4 digits seed number. Each digit has a value from                  
0 to 7. If S1 = S2 = S3 = S4 = 0, i.e 0000 then it is MSB4. The 
values in the MSB4 are filled as shown in Fig. 2. Call it as 
MS4_fill_order (Min start , Max start) 
 

-4 MS start -8 +12 
-10 +14 -6 +2 
+8 -12 +4 MST4sum 

+6 -2 +10 -14 
Fig. 2. Magic Square Filling Order 

 
where –int represents the places to fill the values in MS, 

starting from MST4sum and decremented by 2 each time to get 
the next number and +int represents the places to fill the 
values in MS, starting from MSstart and incremented by 2 to 
get the next number. 
MS4_min_start_value   : Minimum starting value of MS 
MS4_fill_order (MSstart, MST4sum) 

:  function used to fill the  values in    
   MS in the order shown in Fig. 2  

MSn_base i      : ith nth order base MS 
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MS4_sub i  : ith 4th order MS obtained   from 
MSB4 by using suitable   
transformation based on  S i , where 
i= 1,2,3,4 

i, j,  count  : Index variables for loop 
|| : Concatenation 

A.2.  Algorithm 
Input : 4 digit Seed number, Starting Number and  

Magic Square Sum 
Output: Doubly Even Magic Square of order 16. 
1. Read MSstart ; Si, i = 1,2,3,4 ;MST16sum and T_No_MS 
2. MST4sum ← ⎡ MST16sum / 8⎤ 
3. MST8sum ← ⎡MST16sum / 4⎤ 
4. Count    ← 1 
5. While Count ≤ T_No_MS do // to generate MS16 
  5.a. prev← 1 
  5. b.  for  j ← 1 to 4 // to generate four MS8 
 5.b.1  for  i ← 1 to 4 // to generate four MS4 
    5.b.1.1  if ((j=2)&&(i = 3)) ||  ((j = 3) &&(i =2)) 
                       MS4_min_start_value  
                                     ←  MS4start  + 16 *( iprev-1) +1 
                       else 
                      MS4_min_start_value  
           ← MSstart + 16* (prev-1 ) 
                 end if 
    5.b.1.2  MS4_max_start_value  
                                   ← MST4sum – 16* (prev- 1) - MSstart 
         5.b.1.3  MS4_base i ← call MS4_fill_order 

      (MS4_min_start_value, MS4_max_ start_value) 
    5.b.1.4 Case  Si in 0,1,2,3,4,5,6,7  

0:  MS4_sub i ← MS4_base i 
1: MS4_sub i ←  rotate  MS4 _base i by 90° 
2: MS4_sub i ←  rotate  MS4_base i by 180° 
3: MS4_sub i ←  rotate  MS4_base i by 270° 
4: MS4_sub i ←  rotate  MS4_base i by 180° 
        along vertical axis 
5: MS4_sub i ←  rotate  MS4_base i by 90° 
        through anticlock wise 
6: MS4_sub i ←  rotate  MS4_base i by 180° 
        along horizontal axis 
7: MS4_sub i ←  rotate  MS4_base i by 180° 
        diagonally 

                     end case Si 
           5.b.1.5 prev← prev+1 
       end  for i 
 5.b.2 MS8_sub j ←MS4_sub 1|| MS4_sub 2                  
                                  || MS4_sub 3 || MS4_sub 4 
   5.b.3    case j in 2,3,4  
             2: S1 ← S2 ; S2 ← S3 ; S3 ← S1 ; S4 ← S4 
         3: S1 ← S3 ; S2 ← S1 ; S3 ← S4 ; S4 ← S2 
             4: S1 ← S4 ; S2 ← S1 ; S3 ← S3 ; S4 ← S2 
          end case j 
 5.b.4 Si ← S1 || S2 || S3 || S4 , i ← 1,2,3,4 
     end  for j 
  5.c  MS16_count ←  
                   MS8_sub1|| MS8_sub2 ||MS8_sub3||MS8_sub4 
  5.d  Si  ←(Si + rnd(10)) mod 8 ,  i = 1,2,3,4 
  5.e   count ← count + 1 
   end while  count 
 

A.3. Magic Square Construction - Example  
1. Let MS start = 4 ;S1= 0, S2= 1, S3= 0, S4= 0;  
 MST16 sum = 12345 and T_No_MS  =4 
2. MST4sum  = ⎡ 12345/ 8⎤   = ⎡ 1543.13⎤ = 1543  
3. MST8sum  = ⎡ 12345/ 4⎤  = ⎡ 3086.25⎤ = 3086 
4. Count =1 
5. While count ≤ 4 
 5.a  prev=1  
 5.b  j = 1 
 5.b.1 i = 1 
   5.b.1.1 MS4_min _start –value= 4+16(0)= 4 
   5.b.1.2 MS4_max _start –value = 
1543–16(0)–4=1539 
         5.b.1.3 MS4_base 1 = call  fill_order(4,1539) 
 

1535 4 1531 16 
1529 18 1533 6 

12 1527 8 1539 
10 1537 14 1525 

Fig. 3. MS4_sub1 with (4, 1539) 
 

   5.b.1.4 since S1 = 0  MS4_sub 1 = MS4_base 1 
   5.b.1.5   prev=2  
 5.b.1 i = 2 
     5.b.1.1 MS4_min _start –value  = 4+ 16(1)=20 
   5.b.1.2 MS4_max _start –value =1543–16(1)–4=1523 
         5.b.1.3 MS4_base 2 = call  fill_order (20,1523) 
 

1519 20 1515 32 
1513 34 1517 22 

28 1511 24 1523 
26 1521 30 1509 
Fig. (a). MS4_base 2 with (20, 1523) 

 
  5.b.1.4 since S2 = 1  

MS4_sub 2 = 90° rotation of MS4_base 2 
26 28 1513 1519 

1521 1511 34 20 
30 24 1517 1515 

1509 1523 22 32 
Fig. (b). 90° rotation of Fig. (a) 

 
Fig. 4. MS4_sub2 with (20, 1523) 

 
  5.b.1.5   prev= 3  
5.b .1 i = 3 
  5.b.1.1 MS4_min _start –value  = 4+ 16(2) = 36 
  5.b.1.2 MS4_max _start –value =1543–16(2)–4 
=1507 
  5.b.1.3 MS4_base 3 = call  fill_order (36,1507) 
 

1503 36 1499 48 
1417 50 1501 38 

44 1495 40 1507 
42 1505 46 1493 

Fig. 5. MS4_sub3 with (36, 1507) 
 

  5.b.1.4 since S3 = 0   MS4_sub 3 = MS4_base 3 
  5.b.1.5   prev = 4  
5.b.1 i = 4 
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  5.b.1.1 MS4_min _start –value = 4+ 16(3) = 52 
   
    5.b.1.2 MS4_max _start –value =1543–16(3)–4  
              = 1491 
    5.b.1.3 MS4_base 4 = call  fill_order(52,1491)  
 

1487 52 1483 64 
1481 66 1485 54 

60 1479 56 1491 
58 1489 62 1477 

Fig. 6. MS4_sub4 with (52, 1491) 
 

     5.b.1.4 since S4 = 0  MS4_sub 4 = MS4_base 4 
 5.b.2 MS8_sub 1 =  
          MS4_sub1 || MS4_sub2 || MS4_sub3 || MS4_sub4 

Other matrices MS8_sub2, MS8_sub3 and MS4_sub4 are 
generated in this manner and they are concatenated so that 
they form MS16 which is shown in Fig. 7. Similarly other 
MS16 matrices are generated by using suitable 
transformations of the seed number. In this paper, only four 
MS16 matrices are generated. 

B. Encryption / Decryption of message using RSA 
cryptosystem with Magic Square  

 To show the relevance of this work to the security of 
public-key encryption schemes, a public-key cryptosystem 
RSA is taken. RSA was proposed by Rivest et al [10], [11]. 
The private key of a user consists of two prime p and q and an 
exponent (decryption key) d.  

The public-key consists of the modulus n = pq, and an 
exponent e such that d = e-1 mod (p-1) (q-1). To encrypt a 
plaintext M the user computes C = Me mod n and decryption 
is done by calculating M = Cd mod n. In order to thwart 
currently known attacks, the modulus n and thus M and C 
should have a length of 512-1024 bits in this paper.  

B.1.  Wrapper implementation – Example  

 In order to get a proper understanding of the subject matter  
of this paper, let p = 11, q = 17 and e = 7, then n = 11(17)                 
= 187, (p-1)(q-1) = 10(16) = 160. Now d = 23. To encrypt,                
C = M7 mod 187 and to decrypt M = C23 mod 187. Suppose 
the message is to be encrypted is “BABA”. The ASCII values 
for A and B are 65 and 66 respectively. To encrypt B, the 
numerals which occur at 66th position in first (Fig.7) and third 
MS16(not shown here) are taken because B occurs in first 
and third position in the clear text. Similarly, to encrypt A, 
the numerals at 65th position in second and fourth MS16(not 
shown here) are taken. Thus NP(A) = 42 and 48, NP(B) = 36 
and 44.  Hence C(B) = 367mod 187 = 9, C(A) = 427 mod 187 
= 15, C(B) = 447 mod 187 = 22,  C(A) = 487 mod 187 = 157. 
Thus, for same A and B which occur more than once, 
different cipher texts are produced for the same.  

C. Parallel Cryptography  
 To speed up cryptographic transformation, the parallel 
cryptography is used.  Effective scheduling is important to 
improve the performance of crypto system in parallel [13]. 
The scheduling algorithms are divided into two classes: time 
sharing and space sharing. Backfilling is the space sharing 
optimization technique. 

Maui is a job scheduler specifically designed to optimize 
system utilization in policy driver, heterogeneous high 
performance cluster (HPC) environment. The philosophy 
behind it is essentially schedule jobs in priority order, and 
then backfill in the holes [9]. Maui has a two-phase 
scheduling algorithm. In the first phase, the high priority jobs 
are scheduled using advanced reservation. A backfill 
algorithm is used in the second phase to schedule 
low-priority jobs between previously selected jobs [5]. 
 In our study the Maui Scheduler with back filling 
scheduling technique is used to calculate the 
encryption/decryption time of given message in simulated 
environment. 

 
 

35 4 1531 16 26 28 1513 1519 74 76 1465 1471 1455 85 1451 96 

1529 18 1533 6 1521 1511 34 20 1473 1463 82 68 1449 98 1454 86 

12 1527 8 1539 30 24 1517 1515 78 72 1469 1467 93 1447 88 1459

10 1537 14 1525 1509 1523 22 32 1461 1475 70 80 90 1457 94 1446

1503 36 1499 48 1487 52 1483 64 1439 101 1435 112 1423 116 1419 128 

1497 50 1501 38 1481 66 1485 54 1433 114 1438 102 1417 130 1421 118 

44 1495 40 1507 60 1479 56 1491 109 1431 104 1443 124 1415 120 1427

42 1505 46 1493 58 1489 62 1477 106 1441 110 1430 122 1425 126 1413

1407 132 1403 144 1391 149 1387 160 1343 196 1339 208 1327 212 1323 224 

1401 146 1405 134 1385 162 1390 150 1337 210 1341 198 1321 226 1325 214 

140 1399 136 1411 157 1383 152 1395 204 1335 200 1347 220 1319 216 1331

138 1409 142 1397 154 1393 158 1382 202 1345 206 1333 218 1329 222 1317

1375 165 1371 176 186 188 1353 1359 1311 228 1307 240 250 252 1289 1295

1369 178 1374 166 1361 1351 194 180 1305 242 1309 230 1297 1287 258 244 

173 1367 168 1379 190 184 1357 1355 236 1303 232 1315 254 248 1293 1291

170 1377 174 1366 1349 1363 182 192 234 1313 238 1301 1285 1299 246 256 

 
Fig. 7. First MS16 using Starting No. 4, Seed No. 0100, and Magic Sum 12345 
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No. of  Processors 

1 2 4 8 16 
File 
Size 
(MB) E 

ms 
D 
ms 

T 
ms 

E 
ms 

D 
ms 

T 
ms 

E 
ms 

D 
ms 

T 
ms 

E 
ms 

D 
ms 

T 
ms 

E 
ms 

D 
ms 

T 
ms 

1 328 361 689 518 540 1058 440 462 902 401 420 821 381 392 773 
2 640 641 1281 682 690 1372 518 528 1046 440 455 895 402 404 806 
4 1250 1297 2547 994 1010 2004 678 682 1360 520 522 1042 441 443 884 
8 2515 2578 5093 1627 1651 3278 994 1006 2000 680 686 1366 520 524 1044 

 
E- Encryption time, D-Decryption time, T- Total Time, and ms- milliseconds 

 
  Fig. 8. Encryption and Decryption time using RSA on a Pentium Processor 
 

III. EXPERIMENTAL RESULT 
 The methodology proposed is implemented in visual C++ 
version 6.0. The time taken for encryption and decryption of 
various file sized message in simulated parallel environment 
using RSA public key crypto system with magic square are 
shown in Fig. 8. The simulation scenario configured in our 
implementation consisting of 2, 4, 8, and 16 processors. 

From Fig. 8, we observe that as the file size is increased in 
double, encryption and decryption time is also increased in 
double for single processor. Moreover, the time taken for 
encryption and decryption is almost same. Parallel 
encryption and decryption have more effect if the file size is 
increased. 
 

IV. CONCLUSION 
 An alternative approach to existing ASCII based 
cryptosystem a number based approach is thought of and 
implemented. This methodology will add-on one more layer 
of security, it adds numerals for the text even before feeding 
into public-key algorithm for encryption. This add-on 
security is built using magic square position equivalent to the 
character to be encrypted.  
 Further efficiency of cryptographic operation depends on 
performing them in parallel. Simulation using different 
number of processors for encryption /decryption has shown 
that the time taken for decryption is approximately 1.2 times 
larger than the corresponding time for encryption.  
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