

 Abstract—The efficiency of a cryptographic algorithm is
based on its time taken for encryption / decryption and the way
it produces different cipher text from a clear text. The RSA, the
widely used public key algorithm and other public key
algorithms may not guarantee that the cipher text is fully
secured. As an alternative approach to handling ASCII
characters in the cryptosystems, a magic square
implementation is thought of in this work. It attempts to
enhance the efficiency by providing add-on security to the
cryptosystem. This approach will increase the security due to its
complexity in encryption because it deals with the magic square
formation with seed number, start number and sum that cannot
be easily traced. Here, encryption / decryption is based on
numerals generated by magic square rather than ASCII values.
This proposed work provides another layer of security to any
public key algorithms such as RSA, ElGamal etc., Since, this
model is acting as a wrapper to a public key algorithm, it
ensures that the security is enhanced. Further, this approach is
experimented in a simulated environment with 2, 4, 8, and 16
processor model using Maui scheduler which is based on back
filling philosophy.

 Index Terms —Magic Square, Public Key Cryptosystem, RSA,
Security.

I. INTRODUCTION
 Cryptography is the study of mathematical techniques
related to aspects of information security such as
confidentiality, data integrity, entity authentication, and data
origin authentication. Cryptographic algorithms are divided
into public-key and secret-key algorithms. In public-key
algorithms both public and private keys are used, with the
private key computed from the public key. Secret-key
algorithms rely on secure distribution and management of the
session key, which is used for encrypting and decrypting all
messages. Though, public-key encryption is slower than
symmetric-key encryption, it is used for bulk-data
encryption. This is also due to encryption/decryption
processes. Hence, in practice cryptosystems are a mixture of
both [1], [12].
 There are two basic approaches used to speed up the
cryptographic transformations. The first approach is to

Manuscript received July 15, 2009.
Dr. Gopinath Ganapathy, Professor and Head with the computer Science
Department, University of Bharthidasan, Trichy, India – 620 024.
(Phone : +91 9842407008; email: gganapathy@gmail.com).
K. Mani is with the computer Science Department of Nehru Memorial
College, Puthanapatti, University of Bharthidasan, Trichy, India – 621 007.
(Phone : +91 9443598804; email: nitishmanik@yahoo.com).

design faster (symmetric or asymmetric) cryptographic
algorithms. This approach is not available most of the time.
The speed of cryptographic algorithm is typically determined
by the number of rounds (in private-key) or by the size of
messages (in public-key case). The second approach is the
parallel cryptographic system. The main idea is to take a large
message block, divide it into blocks of equal sizes and each
block can be assigned to one processor [7]. To perform the
operations in parallel, effective scheduling is very important
so that it can reduce the waiting time of message for
processing. The back filling is one such approach.
 The security of many cryptographic systems depends upon
the generation of unpredictable components such as the key
stream in the one-time pad, the secret key in the DES
algorithms, the prime p, and q in the RSA encryption etc. In
all these cases, the quantities generated must be sufficient in
size and the random in the sense that the probability of any
particular value being selected must be sufficiently small.
However, RSA is not semantically secure or secure against
chosen cipher text attacks even if all parameters are chosen in
such a way that it is infeasible to compute the secret key d
from the public key (n, e), choosing p, q are very large etc.
Even if the above said parameters are taken carefully, none of
the computational problems are fully secured enough [8].
Because to encrypt the plaintext characters, their ASCII
values are taken and if a character occurs in several places in
a plaintext there is a possibility of same the cipher text is
produced. To overcome the problem, this paper attempts to
develop a method with different doubly even magic squares
of order 16 and each magic square is considered as one
ASCII table. Thus, instead of taking ASCII values for the
characters to encrypt, preferably different numerals
representing the position of ASCII values are taken from
magic square and encryption is performed using RSA
cryptosystem.

II. METHODOLOGY
 The working methodology of the proposed add-on security
model is discussed stepwise.
• Construct different doubly even magic square of

order 16 as far as possible and each magic square
corresponds to one ASCII set.

• To encrypt the character, use the ASCII value of the
character to determine the numeral in the magic square
by considering the position in it. Let NP and NC denote
the numeral of the plaintext and cipher text respectively.
Based on NP and NC values, all plaintext and cipher text
characters are encrypted and decrypted respectively
using RSA algorithm.

Add-On Security Model for Public-Key
Cryptosystem Based on Magic Square

Implementation
Gopinanath Ganapathy, and K. Mani

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

(a) Encryption process

(b) Decryption process

Fig. 1. Add-On Wrapper Model

• To speed up the operations, perform them in parallel in a

simulated environment. For that, use Maui scheduler
with back filling philosophy.

 The methodology of Add-on Security Model is shown in
Fig. 1.

A. Magic Squares and their construction
 Definition 1: A magic square of order n is an arrangement
of integers in an n*n matrix such that the sums of all the
elements in every row, column and along the two main
diagonals are equal.
 A normal magic square contains the integers from 1 to n2.
It exists for all orders n ≥ 1 except n = 2, although the case
n = 1 is trivial as it consists of a single cell containing the
number. The constant sum in every row, column and
diagonal is called the magic constant or magic sum, M [6].
The magic constant of a normal magic square depends only
on n and has the value

2

1)2n(n
M(n)

+
= (1)

For normal magic squares of order n = 3, 4, 5, 6, 7, 8 … the
magic constants are 15, 34, 65, 111, 175, 265… respectively.
Though there is only one magic square of order 3 apart from
trivial notations and reflections, the number of squares per
order quickly sky rockets. There are 880 distinct order 4
squares, and 275,305,234 distinct order 5 magic squares
[2], [4]. Magic squares can be classified into three types: odd,
doubly even (n divisible by four) and singly even [3] (n even
but not divisible by four). This paper focuses only on doubly
even magic square implementation and their usefulness for
public-key cryptosystem

A.1. Construction of Doubly Even Magic Square
In this work, to generate the doubly even magic square, any

seed number, starting number, and magic sum may be used
and the numbers generated will not be in consecutive order.

The algorithm (A.2) starts with building 4 x 4 magic
square. Incrementally 8 x 8 and 16 x 16 magic squares are
built using 4 x 4 magic squares as building blocks. While
constructing the doubly even magic squares the following
notations are used.
MS : Magic Square
n : Order of MS where n = 4m, where
 m = 1, 2, 3 and 4
MSn : MS of order n
MSB4 : Base MS of order 4
MSstart : Starting number of MS
MSTnsum : Total sum of MS of order n
MSDn sum : Diagonal sum of MS of order n
T_No_MS : Total Number of MS
S1, S2 S3, S4 : First, Second, Third and Fourth
digit of 4 digits seed number. Each digit has a value from
0 to 7. If S1 = S2 = S3 = S4 = 0, i.e 0000 then it is MSB4. The
values in the MSB4 are filled as shown in Fig. 2. Call it as
MS4_fill_order (Min start , Max start)

-4 MS start -8 +12
-10 +14 -6 +2
+8 -12 +4 MST4sum

+6 -2 +10 -14
Fig. 2. Magic Square Filling Order

where –int represents the places to fill the values in MS,

starting from MST4sum and decremented by 2 each time to get
the next number and +int represents the places to fill the
values in MS, starting from MSstart and incremented by 2 to
get the next number.
MS4_min_start_value : Minimum starting value of MS
MS4_fill_order (MSstart, MST4sum)

: function used to fill the values in
 MS in the order shown in Fig. 2

MSn_base i : ith nth order base MS

Encryption
Algorithm

Numeral

TextClear theofvalue
ASCII

Sum Square
 Magic

and
No., Seed

 No., Starting
Generate

Doubly Even
Magic Square

Clear Text

Determine the
numeral value from
the Magic Square

that corresponds to
the position of
ASCII value

 Cipher Text

ASCII
value of the
Clear text

Determine the
position of the
numeral value
in the Magic

Square

 Cipher Text
Decryption
Algorithm

Numeral
Clear Text

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

MS4_sub i : ith 4th order MS obtained from
MSB4 by using suitable
transformation based on S i , where
i= 1,2,3,4

i, j, count : Index variables for loop
|| : Concatenation

A.2. Algorithm
Input : 4 digit Seed number, Starting Number and

Magic Square Sum
Output: Doubly Even Magic Square of order 16.
1. Read MSstart ; Si, i = 1,2,3,4 ;MST16sum and T_No_MS
2. MST4sum ← ⎡ MST16sum / 8⎤
3. MST8sum ← ⎡MST16sum / 4⎤
4. Count ← 1
5. While Count ≤ T_No_MS do // to generate MS16
 5.a. prev← 1
 5. b. for j ← 1 to 4 // to generate four MS8
 5.b.1 for i ← 1 to 4 // to generate four MS4
 5.b.1.1 if ((j=2)&&(i = 3)) || ((j = 3) &&(i =2))
 MS4_min_start_value
 ← MS4start + 16 *(iprev-1) +1
 else
 MS4_min_start_value
 ← MSstart + 16* (prev-1)
 end if
 5.b.1.2 MS4_max_start_value
 ← MST4sum – 16* (prev- 1) - MSstart
 5.b.1.3 MS4_base i ← call MS4_fill_order

 (MS4_min_start_value, MS4_max_ start_value)
 5.b.1.4 Case Si in 0,1,2,3,4,5,6,7

0: MS4_sub i ← MS4_base i
1: MS4_sub i ← rotate MS4 _base i by 90°
2: MS4_sub i ← rotate MS4_base i by 180°
3: MS4_sub i ← rotate MS4_base i by 270°
4: MS4_sub i ← rotate MS4_base i by 180°
 along vertical axis
5: MS4_sub i ← rotate MS4_base i by 90°
 through anticlock wise
6: MS4_sub i ← rotate MS4_base i by 180°
 along horizontal axis
7: MS4_sub i ← rotate MS4_base i by 180°
 diagonally

 end case Si
 5.b.1.5 prev← prev+1
 end for i
 5.b.2 MS8_sub j ←MS4_sub 1|| MS4_sub 2
 || MS4_sub 3 || MS4_sub 4
 5.b.3 case j in 2,3,4
 2: S1 ← S2 ; S2 ← S3 ; S3 ← S1 ; S4 ← S4
 3: S1 ← S3 ; S2 ← S1 ; S3 ← S4 ; S4 ← S2
 4: S1 ← S4 ; S2 ← S1 ; S3 ← S3 ; S4 ← S2
 end case j
 5.b.4 Si ← S1 || S2 || S3 || S4 , i ← 1,2,3,4
 end for j
 5.c MS16_count ←
 MS8_sub1|| MS8_sub2 ||MS8_sub3||MS8_sub4
 5.d Si ←(Si + rnd(10)) mod 8 , i = 1,2,3,4
 5.e count ← count + 1
 end while count

A.3. Magic Square Construction - Example
1. Let MS start = 4 ;S1= 0, S2= 1, S3= 0, S4= 0;
 MST16 sum = 12345 and T_No_MS =4
2. MST4sum = ⎡ 12345/ 8⎤ = ⎡ 1543.13⎤ = 1543
3. MST8sum = ⎡ 12345/ 4⎤ = ⎡ 3086.25⎤ = 3086
4. Count =1
5. While count ≤ 4
 5.a prev=1
 5.b j = 1
 5.b.1 i = 1
 5.b.1.1 MS4_min _start –value= 4+16(0)= 4
 5.b.1.2 MS4_max _start –value =
1543–16(0)–4=1539
 5.b.1.3 MS4_base 1 = call fill_order(4,1539)

1535 4 1531 16
1529 18 1533 6

12 1527 8 1539
10 1537 14 1525

Fig. 3. MS4_sub1 with (4, 1539)

 5.b.1.4 since S1 = 0 MS4_sub 1 = MS4_base 1
 5.b.1.5 prev=2
 5.b.1 i = 2
 5.b.1.1 MS4_min _start –value = 4+ 16(1)=20
 5.b.1.2 MS4_max _start –value =1543–16(1)–4=1523
 5.b.1.3 MS4_base 2 = call fill_order (20,1523)

1519 20 1515 32
1513 34 1517 22

28 1511 24 1523
26 1521 30 1509
Fig. (a). MS4_base 2 with (20, 1523)

 5.b.1.4 since S2 = 1

MS4_sub 2 = 90° rotation of MS4_base 2
26 28 1513 1519

1521 1511 34 20
30 24 1517 1515

1509 1523 22 32
Fig. (b). 90° rotation of Fig. (a)

Fig. 4. MS4_sub2 with (20, 1523)

 5.b.1.5 prev= 3
5.b .1 i = 3
 5.b.1.1 MS4_min _start –value = 4+ 16(2) = 36
 5.b.1.2 MS4_max _start –value =1543–16(2)–4
=1507
 5.b.1.3 MS4_base 3 = call fill_order (36,1507)

1503 36 1499 48
1417 50 1501 38

44 1495 40 1507
42 1505 46 1493

Fig. 5. MS4_sub3 with (36, 1507)

 5.b.1.4 since S3 = 0 MS4_sub 3 = MS4_base 3
 5.b.1.5 prev = 4
5.b.1 i = 4

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

 5.b.1.1 MS4_min _start –value = 4+ 16(3) = 52

 5.b.1.2 MS4_max _start –value =1543–16(3)–4
 = 1491
 5.b.1.3 MS4_base 4 = call fill_order(52,1491)

1487 52 1483 64
1481 66 1485 54

60 1479 56 1491
58 1489 62 1477

Fig. 6. MS4_sub4 with (52, 1491)

 5.b.1.4 since S4 = 0 MS4_sub 4 = MS4_base 4
 5.b.2 MS8_sub 1 =
 MS4_sub1 || MS4_sub2 || MS4_sub3 || MS4_sub4

Other matrices MS8_sub2, MS8_sub3 and MS4_sub4 are
generated in this manner and they are concatenated so that
they form MS16 which is shown in Fig. 7. Similarly other
MS16 matrices are generated by using suitable
transformations of the seed number. In this paper, only four
MS16 matrices are generated.

B. Encryption / Decryption of message using RSA
cryptosystem with Magic Square

 To show the relevance of this work to the security of
public-key encryption schemes, a public-key cryptosystem
RSA is taken. RSA was proposed by Rivest et al [10], [11].
The private key of a user consists of two prime p and q and an
exponent (decryption key) d.

The public-key consists of the modulus n = pq, and an
exponent e such that d = e-1 mod (p-1) (q-1). To encrypt a
plaintext M the user computes C = Me mod n and decryption
is done by calculating M = Cd mod n. In order to thwart
currently known attacks, the modulus n and thus M and C
should have a length of 512-1024 bits in this paper.

B.1. Wrapper implementation – Example

 In order to get a proper understanding of the subject matter
of this paper, let p = 11, q = 17 and e = 7, then n = 11(17)
= 187, (p-1)(q-1) = 10(16) = 160. Now d = 23. To encrypt,
C = M7 mod 187 and to decrypt M = C23 mod 187. Suppose
the message is to be encrypted is “BABA”. The ASCII values
for A and B are 65 and 66 respectively. To encrypt B, the
numerals which occur at 66th position in first (Fig.7) and third
MS16(not shown here) are taken because B occurs in first
and third position in the clear text. Similarly, to encrypt A,
the numerals at 65th position in second and fourth MS16(not
shown here) are taken. Thus NP(A) = 42 and 48, NP(B) = 36
and 44. Hence C(B) = 367mod 187 = 9, C(A) = 427 mod 187
= 15, C(B) = 447 mod 187 = 22, C(A) = 487 mod 187 = 157.
Thus, for same A and B which occur more than once,
different cipher texts are produced for the same.

C. Parallel Cryptography
 To speed up cryptographic transformation, the parallel
cryptography is used. Effective scheduling is important to
improve the performance of crypto system in parallel [13].
The scheduling algorithms are divided into two classes: time
sharing and space sharing. Backfilling is the space sharing
optimization technique.

Maui is a job scheduler specifically designed to optimize
system utilization in policy driver, heterogeneous high
performance cluster (HPC) environment. The philosophy
behind it is essentially schedule jobs in priority order, and
then backfill in the holes [9]. Maui has a two-phase
scheduling algorithm. In the first phase, the high priority jobs
are scheduled using advanced reservation. A backfill
algorithm is used in the second phase to schedule
low-priority jobs between previously selected jobs [5].
 In our study the Maui Scheduler with back filling
scheduling technique is used to calculate the
encryption/decryption time of given message in simulated
environment.

35 4 1531 16 26 28 1513 1519 74 76 1465 1471 1455 85 1451 96

1529 18 1533 6 1521 1511 34 20 1473 1463 82 68 1449 98 1454 86

12 1527 8 1539 30 24 1517 1515 78 72 1469 1467 93 1447 88 1459

10 1537 14 1525 1509 1523 22 32 1461 1475 70 80 90 1457 94 1446

1503 36 1499 48 1487 52 1483 64 1439 101 1435 112 1423 116 1419 128

1497 50 1501 38 1481 66 1485 54 1433 114 1438 102 1417 130 1421 118

44 1495 40 1507 60 1479 56 1491 109 1431 104 1443 124 1415 120 1427

42 1505 46 1493 58 1489 62 1477 106 1441 110 1430 122 1425 126 1413

1407 132 1403 144 1391 149 1387 160 1343 196 1339 208 1327 212 1323 224

1401 146 1405 134 1385 162 1390 150 1337 210 1341 198 1321 226 1325 214

140 1399 136 1411 157 1383 152 1395 204 1335 200 1347 220 1319 216 1331

138 1409 142 1397 154 1393 158 1382 202 1345 206 1333 218 1329 222 1317

1375 165 1371 176 186 188 1353 1359 1311 228 1307 240 250 252 1289 1295

1369 178 1374 166 1361 1351 194 180 1305 242 1309 230 1297 1287 258 244

173 1367 168 1379 190 184 1357 1355 236 1303 232 1315 254 248 1293 1291

170 1377 174 1366 1349 1363 182 192 234 1313 238 1301 1285 1299 246 256

Fig. 7. First MS16 using Starting No. 4, Seed No. 0100, and Magic Sum 12345

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

No. of Processors

1 2 4 8 16
File
Size
(MB) E

ms
D
ms

T
ms

E
ms

D
ms

T
ms

E
ms

D
ms

T
ms

E
ms

D
ms

T
ms

E
ms

D
ms

T
ms

1 328 361 689 518 540 1058 440 462 902 401 420 821 381 392 773
2 640 641 1281 682 690 1372 518 528 1046 440 455 895 402 404 806
4 1250 1297 2547 994 1010 2004 678 682 1360 520 522 1042 441 443 884
8 2515 2578 5093 1627 1651 3278 994 1006 2000 680 686 1366 520 524 1044

E- Encryption time, D-Decryption time, T- Total Time, and ms- milliseconds

 Fig. 8. Encryption and Decryption time using RSA on a Pentium Processor

III. EXPERIMENTAL RESULT
 The methodology proposed is implemented in visual C++
version 6.0. The time taken for encryption and decryption of
various file sized message in simulated parallel environment
using RSA public key crypto system with magic square are
shown in Fig. 8. The simulation scenario configured in our
implementation consisting of 2, 4, 8, and 16 processors.

From Fig. 8, we observe that as the file size is increased in
double, encryption and decryption time is also increased in
double for single processor. Moreover, the time taken for
encryption and decryption is almost same. Parallel
encryption and decryption have more effect if the file size is
increased.

IV. CONCLUSION
 An alternative approach to existing ASCII based
cryptosystem a number based approach is thought of and
implemented. This methodology will add-on one more layer
of security, it adds numerals for the text even before feeding
into public-key algorithm for encryption. This add-on
security is built using magic square position equivalent to the
character to be encrypted.
 Further efficiency of cryptographic operation depends on
performing them in parallel. Simulation using different
number of processors for encryption /decryption has shown
that the time taken for decryption is approximately 1.2 times
larger than the corresponding time for encryption.

REFERENCES
[1] Antti Hamalainenn, Matti Tommiska, and Jorma Skytta, “6.78 Gigabits

per Second Implementation of the IDEA Cryptographic Algorithm
LNCS 2438”, Springer-Verlag, 2002, pp. 760-769.

[2] Adam Rogers, and Peter Loly, “The Inertial Properties of Magic
Squares and Cubes”, Nov. 2004, pp. 1-3.

[3] Clifford A. Pickover, “The Zen of Magic Squares, Circles and Stars”,
Universities Press, Hyderabad, India, 2002.

[4] Dan Thomasson. Knights Templar Ciphers. March 2004, Available:
http://www.borderschess.org/ KTcipher.html

[5] Daniel Page, and Nigel P.Smart. “Parallel Cryptographic Arithmetic
using a redundant Montegomery Representation”. IEEE Transactions
on Computers Vol. 53, No.9, November 2004.

[6] http://en.wikipedia.org/wiki/Magic_ squares , pp. 1-3.
[7] Josef Piepryk, and David Pointcheval, “Parallel Authentication and

Public-Key Encryption”, The Eigth Australasian Conference on
Information Security and Privacy, Springer-Verlag, Jul. 2003, pp.
383-401.

[8] A. J. Menezes, P.C. Van Oorschot, and S. Vanstone, “Handbook of
Applied Cryptography”, CRC Press, Boca Ration, Florida, USA, 1997.

[9] Sayeed Iqbal, Rinku Gupta and Yung-Chin Lang, “Job Scheduling in
HPC Clusters”, Power Solutions, Feb. 2005, pp. 133-135.

[10] B.Schneier, “Applied Cryptography”, John Wiley & Sons Inc., New
York, Second Edition, 1996.

[11] Stallings,“Cryptography and Network Security”, Prentice Hall, Upper
Saddle River, New Jersey, USA, Second Edition, 1997.

[12] Thomas Wollinger, Jorge Guajardo, and Chirst of Paar, “Cryptography
in Embedded Systems: An overview. In Proc. of the Embedded World
2003 Exhibition and Conference”, Feb. 18-20, 2003, pp. 735-744,.

[13] Y.Zhang, H. Franke, J. E. Moreira and A. Sivasubramanian, “An
Integrated Approach to Parallel Scheduling using Gang-Scheduling,
Backfilling and Migration”, JSSPP, UK, Springer-Verlag, 2006, pp.
133-158.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

