
Setvectors for Memory Phase Classification

Michael Zwick, Marko Durkovic, Florian Obermeier and Klaus Diepold ∗

Abstract—Phase classification has frequently been
discussed the recent years as a method to guide
scheduling, compiler optimizations and program sim-
ulations. In this paper, we propose a new classifica-
tion method called setvectors. We show that the new
method outperforms classification accuracy of state
of the art methods by approximately 6 to 25 percent,
while it has comparable computational complexity to
the fastest state of the art methods. As a second con-
tribution, we introduce a new method called PoEC
(Percentage of Equal Clustering) to objectively com-
pare phase classification techniques.

Keywords: Computer systems, cache memory, phase

classification

1 Introduction

It is well known that the execution of computer programs
shows cyclic, reoccuring behavior over time. In one time
interval, a program may get stuck waiting for I/O, in
another time interval, it may likely stall on branch mis-
prediction or wait for the ALU (Arithmetic Logic Unit)
to complete its calculations. These intervals of specific
behavior are called phases. Phase classification is the
method that analyzes programs and groups program in-
tervals of similar behavior to equal phases. [12, 8, 7, 5]

To identify phases, programs are split into intervals of an
fixed amount of instructions. Then, these intervals are
analyzed by some method to predict its behavior. In-
tervals showing similar behavior are grouped together to
form a specific class of a phase. Therefore a phase is a set
of intervals that show similar behavior while discarding
temporal adjacency. The phase information of a program
can be used to guide scheduling, compiler optimizations,
program simulations, etc.

Several phase classification techniques have been pro-
posed the recent years, many of which rely on code met-
rics such as basic block vectors [12] and dynamic branch
counts [3]. Since code related methods only have low cor-
relation with memory hierarchy behavior, several mem-
ory related phase classification methods have been pro-
posed to predict L1 and L2 cache misses, such as wavelet
based phase classification [5], activity vectors [11] and
stack reuse distances [4].

∗Lehrstuhl für Datenverarbeitung, Technische Universität
München, Arcisstr. 21, 80333 München, Germany, {zwick,
durkovic, f.obermeier, kldi}@tum.de

In this paper, we propose a new method for phase classifi-
cation to predict L2 cache performance called setvectors.
On the basis of ten SPEC2006 benchmarks, we show that
the mean accuracy of our method outperforms the activ-
ity vector method by about 6%, the stack reuse distance
method by about 18% and the wavelet based method by
about 24%. Further, we introduce a new metric called
PoEC (Percentage of Equal Clustering) to objectively
evaluate different phase classification methods and make
them comparable to one another.

The remaining of this paper is organized as follows: Sec-
tion 2 describes state of the art phase classification tech-
niques, section 3 presents our setvector method, section 4
introduces PoEC as our methodology to evaluate phase
classification accuracy, section 5 presents our results and
section 6 concludes the paper.

2 Phase Classification Techniques

In this section, we describe state of the art techniques
we compared our setvector method to. Since we focus on
phase classification for L2 cache performance prediction,
we exclusively consider memory based techniques.

All the methods we apply use the same tracefiles com-
prised of memory references we gatherd using the pin tool
described in [9], as it has been done in [5]. For cross val-
idation, we use our MCCCSim (Multi Core Cache Con-
tention Simulator) simulator [14] to obtain the hitrates
for each interval. Since we initially started the evalua-
tion of our method in comparison to the wavelet tech-
nique presented by Huffmire and Sherwood [5], we chose
the same interval size of 1 million instructions as they
did to make the results better comparable. All methods
were evaluated on ten SPEC2006 test benchmarks, each
comprised of 512 million instructions.

2.1 Wavelet based Phase Classification

In [5], Huffmire and Sherwood use haar wavelets [13] to
perform phase classification.

First, they create 16 × 16 matrices for each interval of
1 million instructions. Therefore, they split each set of
106 instructions into 20 subsets of 106/20 = 50, 000 in-
structions forming 20 column vectors. They determine
the elements of every such column vector by calculating
m = ((address%M) · (400/M)) for each address in the
corresponding subset, where ‘%’ is the modulo operator

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

and M = 16k the modulo size that has been matched
to the L1 cache size. By iterating over each address of
the 50k instructions, they fill up the rows of the col-
umn vectors by summing up the occurences of each m
(0 ≤ m < 400) in a histogram manner. After having cal-
culated each of the 20 400× 1 column vectors, they scale
the resulting 400 × 20 matrix to a 16 × 16 matrix using
methods from image scaling.

In a second step, they calculate the haar wavelet trans-
form [13] for each 16 × 16 matrix and weight the coeffi-
cients according to [6].

In a third step, they apply the k-means clustering algo-
rithm [10] on the scaled wavelet coefficients and compare
the clusters with the hitrates of the corresponding inter-
vals, gained by a cache simulator.

In our implementation of the wavelet technique, we fol-
lowed Huffmire’s and Sherwood’s description except for
the following: we split each 106 instructions in 16 inter-
vals of 64k instructions each to omit the scaling from 20
to 16 columns and use our MCCCSim [14], that is based
on Huffmire’s and Sherwood’s cache simulator anyway.
Everything else we implemented as presented in [5].

Since the top-left element of the coefficient matrix corre-
sponds to the mean value of the original matrix, we also
clustered all top-left elements of the coefficient matrices
and compared the results of the clustering process to the
L2 hitrates of the corresponding intervals.

As the wavelet transform seems not an obvious choice
of algorithm for this problem, yet it achieved good re-
sults shown by Huffmire and Sherwood, we decided to
replace the wavelet transformation by a SVD (singular
value decomposition) M = UΣVTin another experiment
to probe if a more general method could find more infor-
mation in the data matrix. We clustered both columns
and rows of U and V respectively but could not find any
impressive results, as we will show in Section 5.

2.2 Activity Vectors

In [11], Settle et al. propose to use “activity vectors”
for Enhanced SMT (simultaneous multi-threaded) job
scheduling. The activity vectors are used like a phase
classification technique to classify program behavior with
respect to memory hierarchy performance. The activity
vector method has been proposed as an “online classifica-
tion method” that relies on a set of on-chip event counters
that count memory accesses to so-called super sets.

We implemented the activity vector method in software
and applied the same tracefile data that we applied to all
our other simulations mentioned in this paper.

To use the activity vector method as a phase classification
method, we clustered a) the vectors and b) the length of

each vector and compared the clustering results with the
L2 cache performance of the corresponding intervals.

In section 5 we show that the activity vector method on
average achieves better results than the wavelet method.

2.3 Stack Reuse Distances

In [1], Beyls and D’Hollander propose to use the “stack
reuse distance” as a metric for cache behavior. They
define the stack reuse distance of a memory access as
“the number of accesses to unique addresses made since
the last reference to the requested data” [1].

In section 5 we show that, on average, the classifica-
tion performance of the stack reuse distance method lies
between the wavelet and the activity vector method,
whereas its calculation takes a huge amount of time.

2.4 Other techniques

Although many other techniques for phase classification
have been proposed such as basic block vectors [12], lo-
cal/global stride [8], working set signatures [2], we omit-
ted to compare our setvector technique to those methods
since it has been shown that they are outperformed by
other methods, for example the wavelet method [5].

3 Setvector based Phase Classification

In this section, we describe our setvector based phase
classification method.

The setvectors are as easily derived as they are effec-
tive: For all addresses of an interval and an n-way set-
associative cache, determine the number of addresses
with different key that are mapped to the same cache
set.

That means: Given a L2 cache with 32 bit address length
that uses b bits to code the byte selection, s bits to code
the selection of the cache set and k = 32 − s − b bits to
code the key that has to be compared to the tags stored
in the tag RAM, do the following:

• Extract the set number from the address, e.g. by
shifting the address k bits to the left and then
unsigned-shifting the result k + b bits to the right.

• Extract the key from the address, e.g. by unsigned-
shifting the address s + b bits to the right.

• In the list for the given set, determine whether the
given key is already present.

• If the key is already present, do nothing and process
the next address.

• If the key is not in the list yet, add the key and
increase the counter that corresponds to that set.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

More formally written: Starting with a tracefile

T = {ai|1 ≤ i ≤ t}

made up of memory addresses a1...at that are grouped
into intervals of a fixed amount of instructions, we split
the tracefile into a set of access vectors ai, each repre-
senting an interval of several ai:

T =
[
a1 . . . ac

]

Now, for each ai and caches with a row size of r byte and
a way size of w byte, we derive the set vector

si =
[
s1 . . . ss

]T

by

Si ←
{

a

r
| a ∈ ai,

(a%w) − ((a%w)%r)
r

= i,
a

r
/∈ Si

}

si = min(2n − 1,
∑

a/r∈Si

1)

with ‘%’ representing the modulo operator and n the
maximum number of bits allowed to code the set vector
elements, if there should be such a size constraint.

This way, each element of a set vector contains for each
corresponding interval the number of addresses that be-
long to the same cache set, but have a different cache-key
– saturated by n, the number of bits at most to be spent
for each vector element.

Due to this composition, the setvectors directly represent
cache set saturation, a measure that is highly correlated
with cache misses.

In section 5, we show that on average, the setvector
method outperforms all methods mentioned in section 2.

4 Metrics to Compare Phase Classifica-
tion Techniques

In [8], Lau et al. define the Coefficient of Variation (CoV)
as a metric to measure the effectiveness of phase classifi-
cation techniques. CoV measures the standard deviation
as percentage of the average and can be calculated by

CoV =
phases∑

i=1

σi

averagei
· intervalsi

total intervals
. (1)

Huffmire and Sherwood adapt this metric by omitting the
division by the average, resulting in the weighted standard
deviation

σweighted =
phases∑

i=1

σi · intervalsi

total intervals
. (2)

Being derived from standard deviation, both CoV and
σweighted denote better clustering performance by smaller
values. However, the CoV metric (σweighted as well) may
describe the standard deviation of the L2 cache perfor-
mance in each phase, but not the correlation between L2
cache performance and the different phases, what should
be the key evaluation method for phase classification.
Therefore, we developed the PoEC (Percentage of Equal
Clustering) metric that can be calculated as follows:

Consider the cluster vector γ as a vector that holds, for
each index, the phase of the corresponding 16×16 scaled
matrix. In a first step, we sort the elements of the cluster
vector γ according to its phases, such that ∀i∈1..indeces :
γi ≤ γi+1.

In a second step, we calculate the percentage of equal
clustering (PoEC) by

PoEC = 2 ·
[
min

(∑indeces
i=1 (γh,i == γx,i)

indeces
, 0, 5

)
− 0, 5

]

(3)

This way, high correlation between L2 cache performance
and the cluster vectors result in PoEC values near 1 and
low correlation corresponds to values near 0, with 0 ≤
PoEC ≤ 1.

Figure 2 shows the difference between those metrics by
clustering some SPEC2006 benchmarks in two phases
(“good ones” and “bad ones”) using the wavelet method
and plotting the phases (each ring corresponds to one
interval) against the L2 hitrate of the corresponding in-
tervals. As L2 cache hitrates of the same magnitude
should be classified into the same class, a good cluster-
ing is achieved if one class contains higher hitrates and
the other contains lower hitrates, as it is the case for the
“milc”, “soplex”, “lbm” and “bzip2” benchmarks.

In Figure 2a), we calculated the CoV value according to
formula 1 for each benchmark and arranged the plots ac-
cording to their CoV value. While analyzing Figure 2a),
one can observe the following: There are benchmarks
that achieve good clustering, such as “soplex”, “milc”,
“bizp2” and “lbm”. And there are benchmarks that do
not cluster well at all, such as “hmmer”, “libquantum”,
“gobmk”. But the point is: The clustering quality does
not fit the CoV value the plots are arranged by. Although
not plotted in this place, the σweighted metric shows sim-
ilar behavior.

In Figure 2b), we calculated the PoEC value according
to formula 3 and arranged the plots according to their

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

PoEC value. Although the clustering is the same, this
time the clustering quality does fit the PoEC value the
plots are arranged by.

Therefore we decided to omit both σweighted and CoV
and to perform our evaluation using our new PoEC met-
ric.

5 Results

In this section we discuss the results gathered from our
simulations.

5.1 Classification Accuracy

In Figure 1, we plotted the PoEC values for each of the
mentioned methods for ten SPEC2006 benchmarks. For
the activity vectors, we clustered a) the vector itself and
b) the magnitude |activity vector| of the activity vec-
tor. For the haar wavelet method, we clustered both
the scaled matrix and the left-top matrix element “haar
wav.[0][0]”. For the setvectors, we clustered the mag-
nitude of the setvectors; for the stack reuse distances,
we clustered the stack distance vector, and for the SVD
scaled matrices the results shown originate from the col-
umn space of U. Column/Rowspace of V didn’t achieve
any better results. PoEC values near 1 indicate good
classification performance, PoEC values near 0 indicate
poor classification performance. The benchmark mcf for
example shows superior performance for the activity vec-
tors method, the wavelet method and the setvector ap-
proach and poor classification performance for the stack
distance and SVD method.

Figure 3 depicts the mean classification performance of
each method averaged on the ten SPEC2006 benchmarks.
The setvector approach outperforms all other methods
and achieves about 6% better classification performance
than the next best method, the activity vectors method,
that performs just slighly better than the stack reuse dis-
tance method. While the wavelet method still shows fair
results, the singular value decomposition of the scaled
matrix has apparantely not been a good idea at all.

5.2 Computational Performance

The computational performance of the mentioned meth-
ods can not easily be compared in this paper, because
the methods have been implemented in different pro-
gramming languages. The setvector and activity vector
methods have completely been implemented in slow Ruby
1.8.6, the wavelet and SVD methods have been imple-
mented in a mixture of Ruby and R and the stack reuse
distances method has completely been implemented in C
for performance reasons.

The calculation of the scaled matrices used by the wavelet
method has been timed for 14μs per simulated instruc-
tion. The calculation of wavelet coefficients in Ruby was

ac
tiv

ity
 v

ec
to

rs

| a
ct

iv
ity

 v
ec

to
rs

 |

ha
ar

 w
av

el
et

ha
ar

 w
av

.[0
][0

]

| s
et

−v
ec

to
rs

 |

st
ac

k
re

us
e

di
st

an
ce

s

sv
d

sc
al

ed
m

at
ric

es

m
ea

n(
po

ec
)

0.0

0.2

0.4

0.6

0.8

Figure 3: Mean PoEC classification performance

about 15ns, the calculation of the kmeans algorithm in R
was about 2.5ns, including data exchange over the Ruby-
R-bridge in both cases.

The setvector method suffered as the wavelet method
from the slow Ruby interpreter and took about 3.97μs
per instruction. The magnitude calculation and the clus-
tering algorithm for the setvectors finished in less than
0.5ns. The better clustering performance originates from
using scalars (vector magnitues) rather than vectors of
dimensionality 16 · 16 = 256, as it has been done in the
wavelet technique.

The by far worst computational performance was demon-
strated by the stack reuse distance method, that also took
about 3.97μs of time per simulated instruction, but this
time the method was implemented in C-code to finish the
simulation in just some days instead of months.

Comparing the ruby wavelet implementation (about
14, 0175μs per simulated instruction) to the execution
time measued by [5] (about 10ns per simulated instruc-
tion), allows the setvector method to be estimated for
about 5−10ns per instruction when implemented on a C
code basis; i.e. the setvector method has about the same
magnitude of calculation complexity as the other men-
tioned methods, except the stack reuse distance method.
All values have been averaged over several executions or
files.

6 Conclusions
In this paper we introduced a new method for phase clas-
sification called setvectors. The method is similar to the
activity vectors method proposed by [11], but it differs
in the way the vectors are obtained. While Settle et al.
just count accesses to super sets, we calculate the num-
ber of accesses to a set that reference a different key.
We show that the proposed method outperforms state
of the art methods with respect to classification accu-
racy by approximately 6 to 25 percent, having about the

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lb
m

m
cf

m
ilc

po
vr

ay

po
ec

0.0

0.2

0.4

0.6

0.8

1.0
activity vectors

| activity vectors |

haar wavelet

haar wav.[0][0]

| set−vectors |

stack reuse
distances
svd scaled
matrices

Figure 1: Accuracy of phase classification techniques measured by the PoEC metric

same computational constraints. As a second contribu-
tion, we introduced the PoEC metric that can be used
to objectively evaluate phase classification methods in a
more intuitive way than the known metrics CoV and
σweighted. Although we proved the better performance
of the PoEC method compared to the CoV /σweighted

method just qualitatively “by inspection”, it obviously is
a more reasonable approach.

References

[1] K. Beyls and E. H. D’Hollander. Reuse distance as a
metric for cache behavior. 2004.

[2] A. S. Dhodapkar and J. E. Smith. Managing multi-
configuration hardware via dynamic working set analysis.
In International Symposium on Computer Architecture
(ISCA’02), May 2002.

[3] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Char-
acterizing and predicting program behavior and its vari-
ability. In 12th International Conference on Parallel
Architectures and Compilation TEchniques (PACT’03),
2003.

[4] C. Fang, S. Carr, S. Önder, and Z. Wang. Reuse-
distance-based miss-rate prediction on a per instruction
basis. In Proceedings of the 2004 workshop on Memory
system performance, 2004.

[5] T. Huffmire and T. Sherwood. Wavelet-based phase
classification. In Parallel Architectures and Compilation
Techniques (PACT’06), September 2006.

[6] C. Jacobs, A. Finkelstein, and D. Salesin. Fast mul-
tiresolution image querying. In Proceedings of the 22nd
annual conference on Computer graphics and interactive
techniques, 1995.

[7] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code signa-
tures and performance. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software.
March 2005.

[8] J. Lau, S. Schoenmackers, and B. Calder. Structures for
phase classification. 2004.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klausner,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In Programming Language
Design and Implementation, ACM, 2005.

[10] J. MacQueen. Some methods for classification and anal-
ysis of multivariate obervations. In Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297, 1967.

[11] A. Settle, J. L. Kihm, A. Janiszewski, and D. A. Connors.
Architectural support for enhanced smt job scheduling.
Proceedings of the 13th International Conference of Par-
allel Architectures and Compilation Techniques, Septem-
ber 2004.

[12] Sherwood, Perelman, Hamerly, and Calder. Auto-
matically characterizing large scale program behavior.
ASPLOS-X: Proceedings of the 10th international con-
ference on Architectural support for programming lan-
guages and operating systems, 2002.

[13] E. Stollnitz, T. DeRose, and D. Salesin. Wavelets for
computer graphics: A primer. In IEEE Computer Graph-
ics and Applications.

[14] M. Zwick, M. Durkovic, F. Obermeier, W. Bam-
berger, and D. K. Mcccsim - a highly config-
urable multi core cache contention simulator.
Technical report, Technische Universität München,
https://mediatum2.ub.tum.de/doc/802638/802638.pdf,
2009.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

a)

b)

�

�

�
�
�

�
��

� ��
� ���� ��� ��� ��� ���� ��� ��� ��� ���� ��� ��� ���� ��� ���� �� ���

1 2

0.
65

0.
75

0.
85

0.
95

libquantum, wavelet,
poec = 0.00

cluster

L2
 h

itr
at

e

�

�

�

�

�
�
�
�
�
�
��
��
��
��
���
��
����
���
������
������
����������������������

1 2

0.
5

0.
6

0.
7

0.
8

0.
9

specrand, wavelet,
poec = 0.12

cluster

L2
 h

itr
at

e

�

�

� ��
�

�
�
�

�
�
�

�
�

�
�
�

���
� ���
� ��
� ��� ��� ��� ���� �� �� ���� ������

���� ��� ��

1 2

0.
90

0.
92

0.
94

0.
96

hmmer, wavelet,
poec = 0.19

cluster

L2
 h

itr
at

e

�

�
�
�����
��������

�

�

�

� ���
�
�
�
��

� ����������
���
���
���
���
���

�
�
��
� �����

1 2

0.
0

0.
2

0.
4

0.
6

gobmk, wavelet,
poec = 0.19

cluster

L2
 h

itr
at

e

�

��

�
�

�

�

�
�

�

�
�
�
�
��
��
��
��

� ���
���
�� ��� ��������
��������
�
�
�

���
����

��
��

1 2

0.
80

0.
85

0.
90

0.
95

povray, wavelet,
poec = 0.22

cluster

L2
 h

itr
at

e

��

�

�

�
�����
�

��
���
����������
����� ������������������������������� ��

1 2

0.
4

0.
6

0.
8

gcc, wavelet,
poec = 0.41

cluster

L2
 h

itr
at

e

�

�
��� ���

��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�
��
���
��
��
����
��
���
������
��������
��

1 2

0.
55

0.
65

0.
75

0.
85

astar, wavelet,
poec = 0.44

cluster

L2
 h

itr
at

e

�

�

�
�
��������

�
�
�
��
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
����
�����
���
����
��
���
���
���
�

1 2

0.
3

0.
4

0.
5

0.
6

mcf, wavelet,
poec = 0.56

cluster

L2
 h

itr
at

e

�

�

�

�

�

������
�
�
��
��
��
���
��

1 2

0.
2

0.
4

0.
6

0.
8

milc, wavelet,
poec = 0.94

cluster

L2
 h

itr
at

e

�
�

�
�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
��
��
���
�����
��������������
��������������������

1 2

0.
75

0.
85

0.
95

soplex, wavelet,
poec = 0.97

cluster

L2
 h

itr
at

e

�

�

�

�
�
���

1 2

0.
00

0
0.

01
0

0.
02

0

lbm, wavelet,
poec = 0.97

cluster

L2
 h

itr
at

e

��
���
��
����
����
�����
�

�

�

�
��
�
��
����������������������
�������������

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bzip2, wavelet,
poec = 1.00

cluster

L2
 h

itr
at

e

�

�

� ��
�

�
�
�

�
�
�

�
�

�
�
�

���
� ���
� ��
� ��� ��� ��� ���� �� �� ���� ������

���� ��� ��

1 2

0.
90

0.
92

0.
94

0.
96

hmmer, wavelet,
cov = 0.02

cluster

L2
 h

itr
at

e

�
�

�
�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
��
��
���
�����
��������������
��������������������

1 2

0.
75

0.
85

0.
95

soplex, wavelet,
cov = 0.03

cluster

L2
 h

itr
at

e

�

�
�

�
�

�

�

�
�

�

�
�
�
�
��
��
��
��

� ���
���
�� ��� ��������
��������
�
�
�

���
����

��
��

1 2

0.
80

0.
85

0.
90

0.
95

povray, wavelet,
cov = 0.04

cluster

L2
 h

itr
at

e

�

�

�
�
�

�
��

� ��
� ���� ��� ��� ��� ���� ��� ��� ��� ���� ��� ��� ���� ��� ���� �� ���

1 2

0.
65

0.
75

0.
85

0.
95

libquantum, wavelet,
cov = 0.05

cluster

L2
 h

itr
at

e

��

�

�

�
�����
�

��
���
����������
����� ������������������������������� ��

1 2

0.
4

0.
6

0.
8

gcc, wavelet,
cov = 0.07

cluster

L2
 h

itr
at

e

�

�

�

�

�

������
�
�
��
��
��
���
��

1 2

0.
2

0.
4

0.
6

0.
8

milc, wavelet,
cov = 0.09

cluster

L2
 h

itr
at

e

�

�

�

�

�
�
�
�
�
�
��
��
��
��
���
��
����
���
������
������
����������������������

1 2

0.
5

0.
6

0.
7

0.
8

0.
9

specrand, wavelet,
cov = 0.10

cluster
L2

 h
itr

at
e

�

�
��� ���

��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�
��
���
��
��
����
��
���
������
��������
��

1 2

0.
55

0.
65

0.
75

0.
85

astar, wavelet,
cov = 0.13

cluster

L2
 h

itr
at

e

��
���
��
����
����
�����
�

�

�

�
��
�
��
����������������������
�������������

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bzip2, wavelet,
cov = 0.19

cluster

L2
 h

itr
at

e

�

�

�
�
��������

�
�
�
��
�
��
�
�
�
�
�
�
�
�
�
��
�
��
��
����
�����
���
����
��
���
���
���
�

1 2

0.
3

0.
4

0.
5

0.
6

mcf, wavelet,
cov = 0.21

cluster

L2
 h

itr
at

e

�

�
�
�����
��������

�

�

�

� ���
�
�
�
��

� ����������
���
���
���
���
���

�
�
��
� �����

1 2

0.
0

0.
2

0.
4

0.
6

gobmk, wavelet,
cov = 0.52

cluster

L2
 h

itr
at

e

�

�

�

�
�
���

1 2

0.
00

0
0.

01
0

0.
02

0

lbm, wavelet,
cov = 1.38

cluster
L2

 h
itr

at
e

Figure 2: Comparison of CoV and PoEC metric

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009

