
 

 

 

 

Abstract—We have used the semi-parametric Cox 

proportional hazard regression model to estimate the 

microarray genes' survival significance and disease 

classification. We have developed a novel method that estimates 

the optimal partition (cut-off) of a single gene’s expression level 

by maximizing the separation of the survival curves related to 

the high- and low- risk of the disease behavior. Then, we extend 

our approach to construct two-gene signatures, which can 

exhibit synergetic influence on patient survival. We 

demonstrate the utility of our method on two Affymetrix U133 

breast cancer patient cohorts. We reveal a large number of 

genes/gene-pairs providing pronounced synergistic effect on 

patient’s survival time and identifying patients with low-risk 

and high-risk disease sub-types. We demonstrate that, among 

others, MELK-UQCRC1 and AP2S1-KARS gene pairs have a 

strong clinically-significant interaction effect in survival of the 

breast cancer patients. Our technique has the potential to be a 

powerful tool for classification, prediction and prognosis of 

cancers and other complex diseases. 

Index Terms— Cox proportional hazards model, data-driven 

grouping, synergetic pairs, breast cancer patients’ grouping.  

 

I. INTRODUCTION 

  Global gene expression profiles of cell transcriptomes, 

measured by DNA microarrays, are used to diagnose and 

classify human cancers into genetic sub-types related to 

different clinical outcomes, as well as to assign appropriate 

treatment to cancer patients [1]-[3]. These decision-making 

processes often involve class comparison analysis, which 

leads to the better understanding of the disease process by 

identifying gene expression changes in primary tumors 

associated with patient survival outcomes [1],[2],[4],[5]. An 

equally important task is class prediction, which improves 

disease prognosis and treatment prediction by the 

construction of the so-called “significant gene signature(s)”, 

that is, gene set(s) that provide a distinction of the given 

classes of patients at the given level of erroneous predictions 

[5],[6]. Though different, these two processes share a 

common gene selection step, which may be more crucial than 

the significant gene signature modeling or the multiple 

comparison procedure considered [2],[5].  At the primary 

stages of identification of the high- and low- risk patients, the 

selection of “optimal” individual and “synergetic” genes 

(gene pairs) that significantly correlate with patient’s survival 

may provide new and very important information on 

pathogenesis and etiology and further aid in the search for 

new molecular targets for drug design and therapy. 

We discuss a novel computational method to identify the 

groups of patients with different disease recurrence risk. The 

method is an extension of our data-driven grouping method 

described in [7]. The primary goal of data-driven grouping is 

to estimate the optimal partition (cutoff) of a single gene’s 

expression level by maximizing the separation of the survival 

curves related to high-risk and low-risk of the disease 

behavior. We further extend this approach to construct 

two-gene signatures, which can exhibit synergetic influence 

on patient survival. Using bootstrapping and statistical 

modeling, we evaluate the performance of our method by 

analyzing two Affymetrix U133 breast cancer patient 

cohorts, each consisting of 44,928 transcripts (approximately 

30,000 genes). We reveal a large number of gene pairs, which 

provides pronounced synergetic effect on patient’s survival 

time and identify patients with low-risk and high-risk disease 

sub-types. The selected survival significant genes are 

strongly supported by Gene Ontology (GO) analysis and 

literature data. We develop an approach to combine the 

patients’ grouping results from different synergetic genes and 

gene-pairs into one composite patients’ grouping scheme that 

further improves the separation of low-risk versus high-risk 

patients. Our composite grouping correlated strongly with 

available clinical data (cancer subtype and clinical grades). 

Finally, we propose an extension to identify three distinct 

patient groups. 

The idea of gene pairs has been successfully used 

previously for diagnostics and prognosis. In contrast to our 

work, several studies only used survival modeling for 

validation of selected gene pairs ([8] and [9]). Ref. [8] carried 

out the Predictive Interaction Analysis to examine whether 

any of the gene pairs generated from pre-selected genes (only 

300 single genes) of follicular lymphoma were able to 

discriminate the 5-year outcomes more reliably than either 

single gene of the pair. Only gene pairs with P values 10 

times smaller than the P value of their respective gene 

members were considered for further analysis. It was found 

that a high HOXB13/IL-17BR expression ratio is associated 

with increased relapse and death in node-negative, 

ER-positive breast cancer patients treated with tamoxifen [9]. 

However, the 303 gene pairs that passed that criterion were 

formed by only 15 unique genes due to redundant features or 

genes represented by multiple probes on the array. This case 

study suggested that appropriate gene pairs may identify 

patients in whom alternative therapies should be studied. 

 

II. DATA AND METHODS 

A. Survival analysis with Cox proportional hazards model 

One of the most popular survival models is the Cox 

proportional hazards model [10]: 
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where t is survival time, h(t) represents the hazard function, 

α(t) is the baseline hazard, β is the slope parameter of the 

model to be estimated and x is the regressor. In our work the 

regressor is a dummy variable denoting the patients’ groups. 

Fitting this model we attempt to estimate whether the groups 

have statistically different survival hazards. This can be 

evaluated by testing the significance of the β coefficient.  

The popularity of this model is due to the fact that it leaves 

the baseline hazard function α(t) unspecified (no distribution 

is assumed) and can be estimated iteratively by the method of 

partial likelihood of [10]. The Cox proportional hazards 

model is semi-parametric because while the baseline hazard 

can take any form, the covariates enter the model linearly. It 

is showed that β coefficient can be estimated efficiently by 

minimizing the Cox partial likelihood function: 

 

                         ���� 	 ∏ � ��� �����
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       (2) 

 

where R(t) = {j: tj ≥ t} is the risk set at time t and e is the 

clinical event at time t. The likelihood (2) is minimized by the 

Newton-Raphson optimization method for finding 

successively better approximations to the roots of a 

real-valued function [11]. The estimation is carried out in R 

using survival package.  

B. Selection of Prognostic significance genes 

Assume a microarray experiment with i = 1, 2, ..., N genes, 

whose intensities are measured for k = 1, 2, ..., K breast 

cancer patients. The log-transformed intensities of gene i and 

patient k are denoted as yi,k. Associated with each patient k are 

a disease free survival time tk (DFS time) and a nominal 

clinical event ek (DFS event) taking values 0 in the absence of 

tumor metastasis at tk or 1 in the presence of tumor metastasis 

at time tk. Additional information utilized in this work 

includes patients histologic grade (1, 2a, 2b and 3) and cancer 

subtype (Basal, ERBB2, Luminal A, Luminal B, No subtype, 

Normal-Like), extensively discussed in [2]. 

Without loss of generality, we define that given gene i 

patient k is assigned to the high-risk or the low-risk group by: 

 

                   
�� 	  1  ��"#� $ %"&'�, ") *�,� + ,�
0  �./0 $ %"&'�, ") *�,� 1 ,� 2     (3) 

 

where c
i
 denotes the predefined cutoff of the i

th
 gene’s 

expression level. After specifying 
�� , the DFS times and 

events are subsequently fitted to the patients’ groups by the 

Cox proportional hazard regression model: 
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where, as before, βi is the parameter to be estimated for each 

gene i. To assess the ability of each gene to discriminate the 

patients into two distinct genetic classes, the Wald statistic 

(W) [10] of the βi coefficient of model (4) is estimated by 

using the univariate Cox partial likelihood function (2). The 

Wald statistic for βi can be derived as 6 	 �7�8 9:%��7��⁄ . 

Alternatively, we can estimate the Wald P value for βi as: 

 

                     < $ 9:.=> 	 Pr A �BC
DEF��B� + GH8I       (5) 

where GH8 denotes the chi-square distribution with ν degrees 

of freedom. Typically, ν is the number of parameters of the 

Cox proportional hazards model and in our case ν = 1. 

Expression (5) can be derived from the proper statistical 

tables of the chi-square distribution. The genes with the 

lowest βi Wald P values are assumed to have better group 

discrimination ability and thus called survival significant 

genes. These genes are selected for further confirmatory 

analysis or for inclusion in a prospective gene signature set. 

From (3) notice that the selection of prognostic significant 

genes relies on the predefined cutoff value c
i
 that separates 

the low-risk from the high-risk patients. The simplest cutoff 

basis is the mean of the individual gene expression values 

within samples [6], although other choices (e.g. median, 

trimmed mean, etc) could be also applied. Two problems, 

associated with such cutoffs and discussed in details in [7], 

are: 1) they are suboptimal cutoff values that often provide 

low classification accuracy or even miss existing groups; 2) 

the search for prognostic significance is carried out for each 

gene independently, thus ignoring the significance and the 

impact of genes' co-expression on the patient’ survival. 

To solve problem 1), we develop a data-driven 

“goodness-of-split” method (DDg) that identifies the optimal 

partition of patients by model (4). In [7] we compared the 

performances of mean-based and our data-driven partition 

and showed the superiority of the latter approach. We also 

propose a solution to problem 2) by attempting to identify 

sets of survival significant gene pairs, which can further 

improve the accuracy of the patients’ classification. 

C. Patients and tumor specimens 

The clinical characteristics of the patients and the tumor 

samples of Uppsala and Stockholm cohorts are summarized 

in [2]. Stockholm cohort comprised of Ks = 159 patients with 

breast cancer, operated in Karolinska Hospital from 1 

January 1 1994 to 31 December 1996, identified in the 

Stockholm-Gotland breast Cancer registry. Uppsala cohort 

involved Ku = 251 patients representing approximately 60% 

of all breast cancers resections in Uppsala County, Sweden, 

from 1 January 1987 to 31 December 1989. Information on 

patients' disease-free survival (DFS) times/events and the 

expression patterns of approximately 30,000 gene transcripts 

(representing N = 44,928 probe sets on Affymetrix U133A 

and U133b arrays) in primary breast tumors were obtained 

from National Center for Biotechnology Information (NCBI) 

Gene Expression Omnibus (GEO) (Stockholm data set label 

is GSE4922; Uppsala data set label is GSE1456). The 

microarray intensities were calibrated by the Robust 

MultiChip Average (RMA) of [12] and the probe set signal 

intensities were log-transformed and scaled by adjusting the 

mean signal to a target value of log500 [2]. 

D. One dimensional (1D) data-driven grouping 

For each gene i, we compute the 10th quantile ( i
q 10

) and 

the 90th quantile ( iq 90
) of the distribution of the K

 
signal 

intensity values. Within ( iq 10
, iq 90

), we search for the cutoff 

value c
i
 that most successfully discriminates the two 

unknown genetic classes, which corresponds to the minimum  �JK P value (here z = 1, ..., Q). This procedure, called 

Data-driven grouping (DDg), is the following: 
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1. Form the sequence 0KLM� 	 0K� � &, z = 1, ..., (Q-1), where 

0M� 	 NMO� , 0P� 	 NQO�  and s is a sufficiently small number 

(e.g. s = 0.02) so that typically 400 ≤ Q ≤ 600. For i = 1 

and z = 1, …, (Q-1) use iteratively 

 


�� 	  1  ��"#� $ %"&'�, ") *�,� + ,�
0  �./0 $ %"&'�, ") *�,� 1 ,� 2 

 

to separate the K patients with ,� 	 0K�. 
2. Using this cutoff, evaluate the prognostic significance of 

gene i by estimating the ��K from 

 

log  ��� 3��4
�� , ��5 	 
����� � ��K
��  

 

The “optimal” cut-off for each i is the one with the 

minimum �JK  P value, provided that the sample size of 

each group is sufficiently large (formally above 25) and 

model Cox proportional hazards model is plausible. 

3. Iterate steps 1-2 for i = 2, ..., N. 

E. Two dimensional (2D) data-driven grouping 

We generalize the above procedure to consider synergism 

between genes. Our approach resembles the idea of 

Statistically Weighted Syndromes algorithm of [6], which 

classifies the objects (patients) of a training set using 

“informative” pairs of covariates (gene pairs). We will show 

that it provides the most accurate discrimination of the 

patients in terms of the Wald P values of βι. For a given gene 

pair i = 1, j = 2 with individual cutoffs c
i
 and c

j
, i ≠ j, we 

may classify the K patients by the seven possible two-group 

designs of Fig. 1.  

 

 
Fig 1. Grouping of a synergetic gene pair (genes 1 and 2 with respective 

cutoffs c1 and c2) and all possible two-group designs (Designs 1-7). 

 

The letters  “A”, “B”, “C” and ”D” are defined by the 

conditions: A: yi,k < ci and yj,k < cj; B: yi,k ≥ ci and yj,k < cj; C: 

yi,k < ci and yj,k ≥ cj; D: yi,k ≥ ci and yj,k ≥ cj. On the basis of this 

notion, our synergy algorithm works as follows: 

1. For i = 1 and j = 2, group the K patients by each of the 

seven designs of Fig. 1 (using individual gene cutoffs), fit 

model (4) for each design and estimate the seven Wald P 

values for βi. Provided that the respective groups sample 

sizes are sufficiently large and the assumptions of model 

(4) are satisfied, the best grouping scheme among the five 

“synergetic” (1 – 5) and the two “independent” (6 – 7) 

designs is the one with the smallest βi P value. 

2. Iterate 1 for all i and j combinations of the N genes (i = 1, 

…, N - 1, j = i + 1, …, N). 

F. Residuals bootstrap of Cox proportional hazards 

 To validate the significance of our findings (in terms of the 

estimated Wald P values) we bootstrap our samples (from the 

two cohorts) and estimate 99% confidence intervals for the βi 

coefficients of the Cox proportional hazards model. We use 

the non-parametric residuals bootstrap of [13] using the boot 

package in R. Specifically, the algorithm works as follows: 

1. Estimate βi of model (4) by maximizing the likelihood (2). 

2. Calculate the independent and identically (Uniform in 

[0,1]) distributed generalized residuals, calculated in [14] 

by the “probability scale data”: 

  

=� 	 R1 $ SO���T��� ��U�VB �,     k = 1, 2, …, K 

 

where SO��� 	 W�X 1 �| exp���]
�� 	 1�  denotes the 

baseline failure time distribution. Typically, ŜO���  is a 

step function with jumps at the observed failure times 

(estimated by the survival package), which does not affect 

the Uniformity of the generalized residuals [14]. 

3. Consider the pairs _�=M, >M�, … , �=a , >a�b and resample 

with replacement B pairs of observations (B bootstrap 

samples) c3=M�d�, >M�d�5, … , 3=a�d�, >a�d�5e, b = 1, …, B  

4. Calculate the probability scale survival times  

              

���d� 	 1 $ R=��d�TM ��� ��B��VB �⁄  

 

and estimate the bootstrap coefficients ���M�
, ���8�

,..., ���f�
 

by numerically maximizing the partial likelihood (2) for 

each b = 1, …, B. 

5. Based on these coefficients, estimate the Bias-Corrected 

accelerated (BCa) bootstrap confidence intervals for each 

βi coefficient that correct the simple quantile intervals of 

βi for bias and skewness in their distribution [15].  

 

III. RESULTS 

A. One dimensional (1D) data-driven grouping 

We correlate gene expression profiles with clinical 

outcome (DFS time) in the two cohorts and identify specific 

genes that predict survival among the patients. Our results 

show that a large fraction of genes could be used to predict 

survival. On the basis of the training data of each cohort (Fig. 

1), we estimate the data-driven cutoffs for each gene.  

 

 
Fig. 2. Plot of log P values against cutoff levels (left) and Kaplan-Meier 

curves (right) for the MELK prognostic gene in the Stockholm (top) and 

Uppsala (bottom) cohorts. Black lines indicate the low-risk group and red 

lines the high-risk group.  

 

Fig. 2 plots the log P values against the Q cutoffs of the 

MELK gene in the two cohorts. The cutoffs (Stockholm: 

7.49; Uppsala: 7.65) give the optimal patients’ grouping. 
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Comparison with the mean-based method is given in [7]. 

Data-driven grouping provides significant improvements on 

the prediction of patients’ survival.  

Generalizing for the set of 44,928 transcripts, data-driven 

grouping found 11,107 prognostic significant probesets by 

Wald test. Next we applied our residuals bootstrap method to 

further validate our findings thus reducing our survival 

significant list to 8665 probesets (approximately 78% of the 

Wald survival significant genes were validated by bootstrap).  

In such a large scale experiment, we naturally expect 

several false positive genes, which we would like to exclude 

from further analysis. A popular approach to reduce Type I 

error is to estimate the False Discovery Rate (FDR), initially 

developed by [16] for independent and positively correlated 

test statistics (positive regression dependence assumption). 

An easy way to check these assumptions is to estimate the 

variance-covariance matrix among all transcripts of the 

study. If the covariance elements are all positive then the 

positive regression dependence hold and the original FDR 

can correct for multiple testing. If not, the general regression 

dependence holds and [17] suggest using a corrected FDR P 

value estimated as ∑ M
� g log h � ij�kM , where m denotes the 

number of tests and γ ≈ 0.57721 is the Euler-Mascheroni 

constant. The FDR adjustment of [17] is conducted in the R 

package brainwaver. It produces an FDR threshold against 

which the Wald P values are tested for significance (if P value 

≤ FDR threshold the gene is survival significant). By 

correcting for multiple testing at corrected P value = 2.0E-04, 

we resulted in 1,677 survival significant genes in Stockholm. 

We applied the same series of methods in Uppsala and 

identified 9,426 Wald survival significant probesets, which 

were reduced to 1,039 after BCa confidence intervals and 

FDR correction (P value = 2.2E-04). We claim that the 

selected probesets of each cohort are highly survival 

significant and powerful in discriminating patients’ into two 

survival groups.  

 
Table I. Top-level survival significant genes 

B. Functional significance and reproducibility 

We check the functional significance and functional 

reproducibility of the results in the two cohorts. We seek for 

common survival significant probesets across the two 

independent cohorts in terms of Wald statistics, 1% BCa 

confidence intervals and FDR correction. These common 

elements are considered to be the most reliable probesets 

(genes) for further analysis. To this extend, we ended up with 

a set of 190 probe sets (166 unique genes and 7 non-annotated 

probesets), the top-level of which we present in Table I.        

    Among the top-level genes we find the breast cancer 

associated ZWINT (ZW10 interactor), PRC1 (protein 

regulator of cytokinesis 1) and CRIM1 (cysteine rich 

transmembrane BMP regulator 1 (chordin-like)), the 

cancer-associated KCTD12 (potassium channel 

tetramerisation domain containing 12; also known as Pfetin), 

which is a powerful prognostic marker for gastrointestinal 

stromal tumors and a few lesser known genes like the AP2S1 

(adaptor-related protein complex 2, sigma 1 subunit), which 

is one of two major clathrin-associated adaptor complexes. 

Information from the National Center for Biotechnology 

Information (NCBI; http://www.ncbi.nlm.nih.gov/sites/ 

entrez?db=gene) shows that AP2S1 is not cancer-associated. 

We run GO analysis of the 166 reproducible genes by 

Panther (www.pantherdb.org). The results indicated that our 

selected genes are strongly associated to breast cancer related 

processes such as cell cycle (P value = 2.5E-28), mitosis (P 

value = 4.9-14), chromosome segregation (P value = 

2.9E-09), p53 pathway (P value = 2.6E-05), microtubule 

binding motor protein (P value = 5.1E-13) etc. These results 

are in agreement with those from previous studies [2] and [3], 

identifying significant breast cancer associated processes.  

C. Two dimensional (2D) data-driven grouping 

We apply our synergetic two dimensional (2D) grouping 

algorithm of paragraph II.E to the data set to examine 

whether gene pairing improves the prognostic outcome for 

certain survival significant genes. We have considered all 

possible pairs of the top 570 reproducible probesets (in total 

162,165 pairs) as identified and subsequently sorted in terms 

of the Wald P values. Thus, our top 570 list contains all 190 

reproducible survival significant transcripts of the 1D 

analysis plus 380 non-significant transcripts. The inclusion of 

the latter (the 380 non-significant findings) in further analysis 

is of great importance since we are able to show that several 

of these probesets can be considered as survival significant 

when paired with other 1D significant or non-significant 

probes. In this way we show the importance of synergy in our 

study. 

Figs. 3-4 present two highly significant synergetic pairs. 

The first pair (MELK-UQCRC1) consists of two 1D survival 

significant genes that further improve patients grouping by 

2D analysis. MELK-UQCRC1 is the most highly significant 

pair of our analysis. In the second pair (AP2S1-KARS) 

KARS has not been identified by our 1D approach since it 

failed the FDR test in Uppsala. Nevertheless, we show that 

KARS gene is involved in a survival significant pair.  

In total, using Wald P values, 1% BCa confidence intervals 

and the FDR correction, our 2D synergetic algorithm 

identified 34,983 prognostic significant pairs in Stockholm 

and 34,121 in Uppsala, resulting to 28,029 common findings 

across the two cohorts (FDR corrected P value = 7.0E-05). 

These pairs have been chosen based on two additional, 2D 

-specific criteria: 1) Criterion 1:  their synergy (as indicated 

by the P values) is highly significant, 2) Criterion 2: Criterion 

1 is satisfied in both cohorts. Note that our list contains 551 of 

the 570 probesets we started with. Table II presents the top 7 

pairs (12 unique genes). Out of these 12 unique genes 8 are 

breast cancer associated, one is cancer associated and the rest 

have not been discussed in the literature. 

D. Identification of composite patients’ grouping 

Our next step involves determining the patients’ final 

grouping based on the significant gene pairs we have 

identified by our 2D data-driven algorithm. In this way we 

combine the information from all significant synergetic genes 

into a single final grouping scheme and then we test whether 

AffyID (Gene Symbol) Cut-off P value Cut-off P value 

 Stock Stock Upps Upps 

A.202551_s_at(CRIM1) 7.05 6.4E-09 7.30 2.0E-05 

A.212188_at(KCTD12) 8.02 7.8E-07 8.09 1.9E-07 

A.211047_x_at(AP2S1) 10.68 2.0E-06 10.56 1.6E-07 

A.204825_at(MELK) 7.49 3.3E-06 7.65 1.2E-05 

A.218009_s_at(PRC1) 7.21 3.2E-05 7.82 2.0E-07 

A.204026_s_at(ZWINT) 8.38 2.1E-04 9.05 3.4E-08 
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our algorithm was able to identify two biologically distinct 

 
Cohort Gene 1 Gene 2 PDD(group) PDD (ID1) PDD(ID2) 

Stockholm MELK  UQCRC1  8.0E-09(2)  3.3E-06 1.2E-05 

Uppsala MELK  UQCRC1 5.9E-14(2) 3.3E-06 3.2E-06 

 Fig. 3.  Synergetic grouping for MELK-UQCRC1 gene pair in Stockholm 

(top) and Uppsala (bottom). Left: 2D patients grouping; Right: 

Kaplan-Meier curves. The red lines/dots correspond to high-risk patients and 

the black lines/dots to low-risk patients. The table indicates the grouping P 

values of each method (and the design) along with the individual P values. 

 

 
Cohort Gene 1 Gene 2 PDD(group) PDD (ID1) PDD(ID2) 

Stockholm AP2S1  KARS  8.5E-11(2)  1.9E-07 6.2E-06 

Uppsala AP2S1  KARS 2.0E-08(2) 1.6E-06 1.1E-03 

Fig. 4.  Synergetic grouping for AP2S1-KARS gene pair in Stockholm (top) 

and Uppsala (bottom). Left: 2D patients grouping; Right: Kaplan-Meier 

curves. The red lines and dots correspond to high-risk patients and the black 

lines and dots to low-risk patients. The table indicates the grouping P values 

of each method (and the design) along with the individual P values. 

 

patients’ groups. Since we get much improved P values by 

using pairs of genes (compared to what we get by individual 

genes analysis), we will use the 2D information to estimate 

the composite grouping.  

First, we need sort all 2D data-driven pairs in terms of their 

synergetic P values (from lowest to highest P values) and 

then we select the top-level pairs for further analysis. 

Selection of top-level pairs is not a simple task since each 

gene is paired multiple times (e.g. MELK is present in 78 

survival significant pairs, UQCRC1 in 272 survival 

significant pairs etc). We wish to avoid redundancy in further 

analysis, so that for each gene we keep the partner with whom 

it gives the most significant Wald P values in the two cohorts. 

Finally, we resulted in 335 top-level, filtered, significant gene 

pairs. We combined these 335 patients’ groupings in order to 

assign each patient into a final group. We did this by 

calculating the number of times (out of 335) each patient is 

assigned to the low and high-risk groups (frequency). Using 

these counts as the class-representative votes each patient k (k 

= 1, …, K) was finally assigned to the group with the hiest 

frequency of votes. Note that approximately 75% of the 

patients in Stockholm and in Uppsala cohorts were assigned 

to its respective group with high confidence (more than 75% 

of the times the group was the same). 

Fig. 5 (black lines) shows Wald statistics P value results for 

the final groups in Stockholm and Uppsala. Notice that we 

were able to combine information of 335 significant gene 

pairs into one final grouping scheme and we managed to 

identify two highly significant biological grouping. The P 

value of the difference between these two groups is lower 

than the P value of any significant DDg gene or gene pair. 

 
Table II. Seven top-level significant and reproducible survival significant 

gene pairs. Ps = synergetic P value in Stockholm; Pu = synergetic P value in 

Uppsala;  P1 and P2 = individual gene P values; S is for Stockholm and U for 

Uppsala cohorts. “*” are cancer associated genes; “**” are breast cancer 

associated genes  

 

 

 
Cohort two groups 

LR vs HR 

three groups 

LR vs HR 

three groups 

LR vs MR 

three groups 

MR vs HR 

Stockholm 2.2E-15 1.4E-15 2.4E-06 1.4E-04 

Uppsala 1.0E-20 1.0E-22 1.5E-06 2.6E-05 

Fig. 5. Composite patients grouping in Stockholm (left) and Uppsala (right) 

based on 335 gene pairs (black lines) and three patients’ grouping (red lines). 

LR = low-risk; MR = medium-risk; HR = high-risk. 

 

Next, we show that re-classification of grade 2 breast tumors 

onto genetic grade 1-like and grade 3-like subtypes [2] can be 

related to two genetically and clinically distinct cancer 

subtypes (low- and high-risk survival groups). Table III 

shows that survival patients’ grouping is strongly correlated 

with the genetic classifications of breast cancers [2], [18]. 

Our survival composite grouping not only discriminates low- 

and high- aggressive tumors by G1&G1-like versus 

G3-like&G3 classification, but it also establishes strong 

prognostic association of this classification with a grouping 

normal-like, luminal A and “No subtype” patients versus  

Basal, Luminal B and ERBB2 tumor subtypes, respectively 

(Table III). In the studied cohorts strong associations of 

defined high-risk survival groups with observed distant 

metastases was also found. 

E. Classification on to three distinct patients’ groups 

In this paragraph we extend survival grouping approach to 

identify gene markers that can group the patients into three 

distinct biological groups. We call these groups low-risk, 

medium-risk and high-risk. Our approach considers the 

patients’ frequencies according to which each patient is 

assigned to one of the risk groups.   

   To do this, we have noticed that approximately 20% 

patients in Stockholm (29 patients) and 15% in Uppsala (37 

patients) cannot be easily assigned to the two composite 

groups described above because the low- and high-risk  
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Table III.  Frequency distributions of breast cancer subtypes based on 

composite grouping. LR = low-risk; HR = high-risk.  Genetic tumor grade 

signature [2]: G1 = Grade1, G2a = Grade2a, G2b = Grade2b, G3 = Grade3, 

Metastasis [2] and intrinsic molecular signature subtypes defined by 

k-means clustering [18]: Normal, Luminal A, No Subtype, ERBB2, Luminal 

B and Basal. Bold value: most probable association between classifiers. 

 Stockholm  Uppsala  

 % of LR % of HR % of LR % of HR 

G1 0.315 0.086 0.367 0.029 

G2a 0.335 0.057 0.433 0.087 

G2b 0.056 0.143 0.100 0.348 

G3 0.194 0.629 0.100 0.536 

Metastasis 0.070 0.600 0.150 0.520 

Normal 0.298 0.000 0.289 0.000 

Luminal A 0.274 0.143 0.394 0.159 

No Subtype 0.153 0.029 0.111 0.029 

ERBB2 0.065 0.200 0.061 0.246 

Luminal B 0.089 0.343 0.050 0.319 

Basal 0.121 0.286 0.094 0.246 

 

 
Table IV. Classification of breast cancer subtypes based on composite three 

groups design. LR = low-risk; HR = high-risk; MR = medium-risk. Other 

notations see in Table III. 

 
Stockholm Uppsala 

 
%  LR % MR % HR % LR % MR % HR 

G1 0.46 0.12 0.00 0.50 0.13 0.06 

G2a 0.50 0.13 0.00 0.49 0.26 0.00 

G2b 0.00 0.15 0.12 0.00 0.28 0.31 

G3 0.00 0.47 0.82 0.01 0.33 0.63 

Metastasis 0.05 0.34 0.71 0.15 0.36 0.53 

Normal 0.33 0.00 0.00 0.40 0.09 0.00 

Luminal A 0.27 0.24 0.09 0.43 0.27 0.08 

No Subtype 0.17 0.03 0.00 0.13 0.07 0.00 

ERBB2 0.04 0.24 0.14 0.01 0.14 0.11 

Luminal B 0.05 0.27 0.42 0.02 0.18 0.25 

Basal 0.11 0.20 0.33 0.01 0.25 0.56 

 

frequencies are similar. Those, we assigned automatically to 

the medium-risk group. Their composite low-risk group 

frequencies vary between 50-70% (their high-risk 

frequencies vary between 50-30%). 

Figure 5 (red lines) show the three group design in 

comparison to the composite two groups. Noticeably, our 

three groups improve patients’ high and low-risk groups in 

both cohorts, whereas indicate the existence of a separate 

medium-risk group. Table IV is the correlation of clinical 

characteristics versus the three groups. Evidently, there is a 

significant improvement in our high- and low- risk 

classification (Table III). The medium-risk group seems to be 

composed by very heterogeneous cancer patients, which can 

be studied in a future. 

IV. DISCUSSION 

We presented a novel approach to identify survival 

significant gene and gene pairs in genome-scale studies, 

which can be subsequently used as an input in reconstruction 

analysis of biological programs/pathways associated with 

aggressiveness of cancers and genetic diseases. Our 1-D and 

2-D survival significant gene signatures are significantly 

associated with survival of breast cancer patients and 

simultaneously provide biologically meaningful information 

and novel cancer-associated gene targets. Our composite 

patients’ grouping method sorts all 2D data-driven pairs in 

terms of their synergetic P values (from lowest to highest P 

values) and also selects the top-level genes using our 

voting-based classification algorithm. The composite 

patients’ grouping results are strongly correlated with current 

genetic classifications of breast cancers subtypes reported in 

[2, 18]. Strong association of our classification with 

metastasis events was also found.  

   Interestingly, many biologically essential and clinically 

important genes (e.g. MELK, BIRC5, ZWINT) can be found 

in our 335-gene signature; many genes and their products of 

the signature might be considered as potentially important 

risk-factors. Finally, we suggest that our survival composite 

grouping, genetic grade signature [2] and intrinsic molecular 

signature [18] could be used in concordant manner for 

reliable evaluation of aggressiveness of primary tumors and 

for individual prognosis of disease risks (metastases) of 

breast cancer patients after their surgery treatment. 
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