
 
 

 

  
Abstract— An array antenna system with innovative signal 

processing can enhance the resolution of a signal direction of 
arrival (DOA) estimation.  The performance of DOA using 
estimation signal parameter via a rotational invariant technique 
is investigated in this paper.  The DOA angles are derived from 
the auto-correlation and cross-correlation matrices. Three 
matrix estimation methods, (1) temporal averaging, (2) spatial 
smoothing, (3) temporal averaging and spatial smoothing are 
used to evaluate the performance. Extensive computer 
simulations are used to demonstrate the performance of the 
processing algorithms.   
 

Index Terms—DOA estimation, array antenna, advanced 
signal processing.  
 

I. INTRODUCTION 
Accurately estimating the direction of arrival (DOA) has 

many important applications in communication and radar 
systems. Using the conventional fixed antenna, the resolution 
of DOA is limited by the antenna mainlobe beamwidth. 
Using the array antenna and advanced signal processing 
techniques, the DOA estimation variance can be greatly 
reduced. 

Two important classes of signal processing techniques are 
the model based approach and the eigen-analysis method[1]. 
The model based method assumes that the received data is 
modeled as the output of a linear shift invariant system. The 
DOA information can be obtained indirectly from the 
estimated model parameters. Several eigen-analysis methods 
such as multiple signal classification (MUSIC)[2], root 
MUSIC[3,4], polynomial root intersection for 
multi-dimensional estimation (PRIME)[5,6] have been 
investigated by many authors. This paper studies DOA 
finding using estimation signal parameter via a rotational 
invariant technique (ESPRIT)[7]. Two different array 
antennas are used in this simulation study. In this paper DOA 
performance is discussed as a function of signal to noise ratio 
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(SNR), number of snapshots and the effect of spatial 
smoothing. 

 

II. ESPRIT ALGORITHM 
Two different array antennas are considered in this paper, a 

square array with 9 elements and a honeycomb array with 19 
elements. Array elements are uniformly placed on an x-y 
plane as shown in Figure 1. The inter-element spacing d 
equals half of the signal wavelength. 
 

 

 
 

Figure 1 Two Dimensional Arrays with 9 and 19 Elements 
 

Assume a narrowband signal impinging on the array from 
an elevation angle θ and azimuth angle φ as shown in Figure 
2. Using the signal received by the center element sc(t) as the 
reference, the signal received by the ith element si(t) is 
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Figure 2 Coordinate of array system and signal direction 

 
 si(t) = sc(t) iβje  (1) 

 
where the electrical angle of the ith element βi is 
 

 )siny  cossinθ(x
λ

2π  β iii φ+φ=  (2) 

 
where (xi, yi) are the coordinates of the ith element. 

Equation (2) shows that the signal DOA angles (θ, φ) are 
related to the electrical angle β. The ESPRIT algorithm 
derives the DOA angles from the phase factor β. Determining 
two angles (θ, φ) requires two different phase factors. Two 
independent phase factors can be derived from two 
independent position shifts. A brief description of ESPRIT 
using a 9 element square array is as follows: 

The waveform y received by the subset consists of elements 
(1, 2, 4, 5) and can be expressed as: 
 
 y(n) = s5(n)s + [w1(n), w2(n), w4(n), w5(n)]T (3) 
 
where s5(n) is the signal received by center element, s = 
[ 1jβe , 2jβe , 4jβe , 1]T, and wk(n) k = 1, 2, 4, 5 are the white 
noise received by the elements of this subset. The correlation 
matrix Ryy of this subset is 
 
 Ryy = E[yyH] = 2

sσ ssH + 2
wσ I (4) 

 
where 2

sσ  and 2
wσ  are the variance of signal and noise 

respectively. 
Shifting this subset horizontally to the right forms a new 

subset consisting of elements (2, 3, 5, 6). The received 
waveform of this new subset z(n) is 
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The cross correlation matrix Ryz is 
 Ryz = E[yzH] = 2

sσ 6jβe ssH + 2
wσ Q   (6) 
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Arranging the eigenvalues of matrix Ryy λ1, λ2, λ3, λ4 in 
descending order, the noise variance 2

wσ  can be estimated 
by the following equation. 
 
 2

wσ  = ( λ2 +  λ3 +  λ4)/3 (7) 
 
Define matrices Cyy and Cyz as 
 
 Cyy = Ryy - 

2
wσ I  = 2

sσ ssH (8) 
 
 Cyz = Ryz - 

2
wσ Q  = 2

sσ 6jβe ssH (9) 
 
Then Cyy – λCyz = 2

sσ (1 -  λ 6jβe )ssH, thus λ = 6-jβe  is one 

of the roots of det(Cyy – λ Cyz). One phase factor β6 can be 
obtained by finding the root of det(Cyy – λ Cyz) closest to the 
unit circle. 

Forming subset (4, 5, 7, 8) by shifting the subset (1, 2, 4, 5) 
down by d, the second independent phase factor can be 
obtained. The received data vector of this subset v is: 
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The cross correlation matrix Ryv is 
 
 Ryv = E[yvH] = 2

sσ 8jβe ssH + 2
wσ Q1 (11) 

 

where Q1 = 
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Define matrices Cyy and Cyv as: 

 
 Cyy = Ryy - 

2
wσ I  = 2

sσ ssH (12) 
 
 Cyv = Ryv - 

2
wσ Q1  = 2

sσ 8jβe ssH (13) 
 
Then Cyy – λCyv = 2

sσ (1 - λ 8jβe )ssH, thus λ = 8-jβe  is one of 

the roots of det(Cyy – λ Cyv). The second phase factor β8 can 
be obtained by finding the root of det(Cyy – λ Cyv) closest to 
the unit circle. 

Since β6 = πsinθcosφ, β8 = -πsinθsinφ, DOA information 
can be obtained by solving φjπsinθcose = r1 = 1je α where r1 is 
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the root of det(Cyy – λ Cyz) closest to unit circle and 
φ-jπsinθsine = r2 = 2je α where r2 is the root of det(Cyy – λ Cyv) 

closest to unit circle. 
 
 πsinθcosφ = α1 (14) 
 
 −πsinθsinφ = α2 (15) 
 
The azimuth and elevation angles can be found from the 
following equations. 
 
 φ = tan-1(-α2/α1) (16) 
 
 θ = sin-1(α1/πcosφ) (17) 
 
DOA information using the 19 element honeycomb array can 
be obtained in similar manner. 

 

III. MATRIX ESTIMATION  
Section 2 shows that the DOA angles are derived from the 
auto-correlation and cross-correlation matrices. DOA 
performance depends on the accurate estimation of matrices 
Ryy, Ryz, Ryv. Elements of matrices are estimated from the 
received data y(n) = s(n) + w(n) where s(n) and w(n) are the 
signal and white noise of the received data. Three matrix 
estimation methods, (1) temporal averaging, (2) spatial 
smoothing, (3) temporal averaging and spatial smoothing, are 
described in this section[8]. 

 

A. Temporal Averaging Method 
This method estimates the matrix element rij by averaging 

the products of data received by the ith and jth elements over N 
snapshots according to the following equation: 
 

 rij = (n)(n)yy
N
1 N

1n

*
ji∑

=

 (18) 

 

B. Spatial Smoothing Method 
Since the number of elements in the array is larger than the 

size of the subset, instead of discarding the data from 
elements outside of the subset, those data can be used to 
improve the estimation of rij. For example, elements of the 
correlation matrix of square array for subset (1, 2, 4, 5) are 
computed from the following equations. 
 

r11(n) = r22 = r44 = r55 = (n)(n)yy
9
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 r25(n) = r14(n) (24) 
 
 r45(n) = r12(n) (25) 
 

Elements of the cross-correlation matrices can be computed 
in a similar manner. 

 

C. Temporal Averaging and Spatial Smoothing Method 
This method combines spatial smoothing and temporal 

averaging. After estimating the matrix elements rij(n) from 
spatial smoothing, an estimated rij is obtained by further 
averaging over N snapshots according to the following 
equation.  
 

 rij = (n)r
N
1 N

1n
ij∑

=

 (26) 

 

IV. SIMULATION RESULTS  
Assume a tone signal impinging the array from azimuth 

angle φ = 60˚, and elevation angle θ = 30˚. The signal to noise 
ratio SNR = 10 dB. Using 4 element subset, Figure 3(a) 
shows the scatter plot based on 1000 independent simulations 
using the 9 element square array. The estimated 4 × 4 
matrices are obtained by temporal averaging over only 32 
snapshots. Most of the data points are centered on the true 
signal direction (30˚, 60˚). There are also points scattered 
over the other angles. With temporal averaging and spatial 
smoothing, Figure 3(b) shows an improved scatter plot where 
most of the data points are concentrated on (30˚, 60˚). The 
averaged estimated angle errors for (a) and (b) are 11.84˚ and 
2.19˚, respectively. The estimated angle error ε is computed 
by the following equation. 
 
 ε = cos-1( kk ˆ• ) (27) 
 
where k is the signal direction vector and k̂ is the direction 
vector of the estimated DOA. 
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Figure 3 Scatter Plots Based on 1000 Independent Simulations 
 

Figure 4 shows the scatter plots using a 19 element 
honeycomb array and 4×4 matrices. Figure 4(a) shows the 
scatter plot of 1000 independent simulations assuming SNR 
= 10 dB using temporal averaging over 32 snapshots. The 
result of the combination of temporal averaging and spatial 
smoothing is shown in Figure 4(b). The estimated angle 
errors are 12.98 ˚  and 0.97 ˚  for (a) and (b) respectively. 
Comparing Figures 3 and 4, the 19 element honeycomb array 
provides much better performance with special smoothing. 
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Figure 4 Scatter Plots Based on 1000 Independent Simulations 
 

Increasing the number of temporal averaging improves 
DOA performance. Figure 5 shows the estimated angle error 
as a function of number of snapshots N using a 19 element 
honeycomb array. Increasing the number of temporal 
averaging improves the matrix element estimation; 
consequently the estimated angle error is reduced. The 19 
element array provides sufficient number of spatial 
smoothing in matrix element estimation. The estimated angle 
error after spatial smoothing is considerably smaller than the 
estimated angle error without spatial smoothing. After spatial 
smoothing, temporal averaging over 200 snapshots provides 
a very good estimation. Further increasing the number of 
snapshots does not significantly reduce the estimation error. 
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Figure 5 Estimated Angle Error as a Function of the Number of Temporal 

Averaging N  
 

Better SNR help improves the DOA performance. Figure 6 
shows the estimated angle error using 19 element honeycomb 
array with N = 32. 
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Figure 6 Estimated Angle Error as Function of SNR 

 
With the elevation angle fixed at θ = 30o, Figure 7 shows 

that the estimation error is fairly independent of the azimuth 
angle. This result is based on using a 19 element array with 
SNR = 10 dB, temporal averaging over 32 snapshots; all 
matrices are 4 × 4. Figures 7 also indicate that estimation 
error can be reduced by an order of magnitude if the elements 
of matrix rij are estimated by spatial smoothing and temporal 
averaging methods. 

 
(a) 

-200 -150 -100 -50 0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20
Estimated angle error vs. Azimuth angle

φ

E
st
im
at
ed
 a
n
gle
 e
rro
r

without spatial smoothing
with spatial smoothing

 
 Figure 7 Estimated Angle Error as a Function of Elevation and Azimuth 

Angles 
 
 

At high elevation angle, there are some special azimuth 
angles that yield a very large estimated angle error. The 
estimated angle error as a function of azimuth angles for 9 
element arrays for signal impinging the array at high 
elevation angle (θ = 89o) is shown in Figure 8. This result is 
based on SNR = 10 dB and matrix elements are estimated by 
temporal averaging over 32 snapshots and spatial smoothing 
method. If the signal impinging the 9 element array from 
azimuth angle of 0o, 90o, 180o and 270o, the estimated angle 
error is very large. This is due to the fact that the received 
signal vectors of subset (1, 2, 4, 5) and subset (2, 3, 5, 6) are 
very close if the signal impinging the array from 90o or 270o. 
The received signal vector of subset (1, 2, 4, 5) and subset (4, 
5, 7, 8) are very close if the signal impinging the array from 
0o or 180o. The 9 element array produces very large 

estimation error whenever signal impinging the array from 
those special azimuth angles. Similarly, if 19 element array is 
used to estimate signal’s DOA, using the subset (1, 2, 4, 5) 
and shifting this subset to (2, 3, 5, 6) and (4, 5, 8, 9) would 
result a large estimated angle error the signal impinging the 
array from 90o, 270o, 150o and 330o. 

 

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Φ (degree)
E

st
im

at
ed

 E
rro

r A
ng

le
s

Estimated Error Angle vs Azimuth Angle (Φ)(with Spaital Smoothing)

 

 
9-element Square

 
Figure 8 Estimated Angle Error vs Azimuth Angle for 

Elevation Angle θ = 89o 
 

V. CONCLUSION 
The conclusions based on the results of this simulation 

study are summarized as follows: 
1. The ESPRIT method estimates signal DOA by finding the 

roots of two independent equations closest to the unit 
circle. This method does not require using a scan vector 
to scan over all possible directions like the MUSIC 
(Multiple Signal Classification) algorithm. 

2. Estimation error is relatively independent of signal 
azimuth angle if the signal impinging the array from low 
elevation angle. 

3. When the signal impinging the array from high elevation 
angle, there are some critical azimuths angles that yield a 
very large estimation error. This is due to the fact that at 
those critical azimuth angles, the received data vectors 
are very close. Thus there is not sufficient information to 
process the received data. To avoid large estimation 
error, we suggest to alternatively choosing a different 
subset and shifting the subset in different directions. 

4. Estimation error can be reduced by (a) using an array 
containing a large number of elements, (b) increasing the 
number of temporal averaging in matrix element 
estimation. 

5. Array element position may deviate from the ideal 
position. Position deviation will degrade DOA 
performance. Sensitivity analysis due to imprecise 
element position will be carried out in future study. 
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