
Non-invasive Monitoring of Knee Pathology based on 
Automatic Knee Sound Classification 

Abstract— Knee joint sounds, generated during the active flexion 
and extension of the leg, represent acoustic signals caused by 
joint vibration and can be used as useful indicators of the 
roughness, softening, breakdown, or the state of lubrication of 
the articular cartilage surface. This paper describes an efficient 
algorithm in order to improve the classification accuracy of the 
features obtained from the time-frequency distribution (TFD) of 
normal and abnormal knee sounds. Knee sounds were correctly 
segmented by the dynamic time warping and the noise within the 
TFD of the segmented knee sounds was diminished by the 
singular value decomposition method. The classification of the 
knees as normal or abnormal was evaluated using a back-
propagation neural network (BPNN). 1408 knee sound segments 
(normal 1031, abnormal 377) were used for evaluating our 
devised algorithm by a BPNN and, consequently, the mean 
accuracy was 91.4±1.7%. This algorithm could help to enhance 
the performance of the feature extraction and classification of 
knee sounds. 

Index terms -knee patholgy, back-propagation nerural network; 
singular value deconposition; dynamic time warping 

I.  INTRODUCTION 
Non-invasive techniques such as X-ray imaging, computed 

tomography (CT) and magnetic resonance imaging (MRI) [1-2] 
and invasive techniques such as arthroscopy [3] have been 
widely used as a diagnostic tool in order to detect articular 
pathologies. Arthroscopy, where the cartilage surface is 
inspected with a fiber-optic cable, has emerged as the “gold-
standard” for the relatively low-risk assessment of joint 
surfaces, in order to determine the prognosis and treatment for 
a variety of conditions. However, image-based techniques 
could provide only anatomical images of the joint cartilage and, 
consequently, they failed to characterize the functional integrity 
of the cartilage, in terms of its softening, stiffness, or fissuring 
[4]. Also, these methods may be limited to the early detection 
of cartilage pathologies [5]. Therefore, the drawbacks and 
limitations of imaging techniques have motivated researchers 
to look for alternative tools such as vibroarthrography (VAG).  
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VAG signals, generated during the active flexion and extension 
of the leg, represent acoustic signals caused by joint vibration 
and are considered to be associated with pathological 
conditions, such as the degeneration of the cartilage surface. 
Also, it is known that the acoustical characteristics of the VAG 
signals of a patient suffering from cartilage degeneration or a 
ruptured anterior cruciate ligament (ACL) can differ from those 
of a normal subject. Therefore, they can be used as useful 
indicators of the roughness, softening, breakdown, or the state 
of lubrication of the articular cartilage surface [6]. The 
detection of knee joint problems via the analysis of VAG 
signals could help avoid unnecessary exploratory surgery, as 
well as enabling the better selection of patients who would 
benefit from surgery. 

Several researchers have continued to classify the VAG 
signals of normal and abnormal knees according to the 
pathological conditions using modeling techniques such as 
autoregressive [7], least square [8] and linear prediction 
modeling [9]. Besides, various techniques such as time-
frequency analysis [10], wavelet decomposition [11] and the 
non-linear strict 2-surface proximal classifier based on 
statistical parameters, including the skewness, kurtosis and 
entropy [12], have been tested. 

The aim of this paper is to improve the classification 
accuracy of the features obtained from the time-frequency 
distribution (TFD) of normal and abnormal VAG signals using 
segmentation by the dynamic time warping (DTW) and 
denoising algorithm by the singular value decomposition 
(SVD) and to evaluate the performance of our algorithm using 
an artificial neural network (ANN). The SVD algorithm was 
applied in order to divide the TFD of the VAG signals into 
interesting and noise subspaces and to remove the noise 
component. Also, we determined the optimum learning rate 
and the number of hidden nodes of an ANN, which can provide 
the best classification accuracy. 

II. MATERIALS AND METHODS 

A. Participants 
Thirty one subjects were examined. Twenty subjects, 

having no anamnesis on either the knee or femoral joint, were 
enrolled as the normal group (7 males and 13 females, age: 
33.3±10.6 years). Eleven patients (7 males and 4 females, age: 
39.5±13.2 years), diagnosed as having degenerative arthritis by 
physical examination and MRI scan, were enrolled as the 
abnormal group. Patients with a surgical history such as total 
knee replacement or myopathy and neuromuscular disorders of 
the lower limbs, such as local spasticity, were excluded. 
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B. Data acquisition 
The VAG signals were transferred to a PC through an 

analog-to-digital converter (MP-100™, Biopac system, U.S.) 
for storage. The data were then digitized with a sampling rate 
of 6 KHz and 12 bits/sample. The electro-goniometer used to 
measure the knee joint angle was placed on the lateral aspect of 
the patella with the axis of rotation at the joint line.  

The contact area selected for auscultation was the medial 
condyle on the patella, in order to take into consideration the 
physiological structure and position which can remove the 
muscle contraction interference (MCI) [13]. A motion from full 
flexion to full extension is defined as ‘knee extension’, whereas 
‘knee flexion’ is defined as a motion from full extension to full 
flexion. ‘Full flexion’ means an angle of 90° between the femur 
and tibia, while ‘full extension’ means an angle of 0°. One 
cycle consisted of one flexion and one extension over an 
approximate angle range of 90°→0°→90° in 2 seconds.  

Each subject sat on a rigid chair in a relaxed position with 
the leg being tested freely. In the sitting position, each subject 
underwent active ‘knee flexion’ and ‘extension’ for 20 seconds, 
while keeping a constant velocity of 2 sec/cycle using a 
metronome. Measurements were performed three times at the 
same position with at least 10 minutes rest between sessions in 
order to avoid muscle fatigue. 

III. FEATURE EXTRACTION 

A. Segmentation, Preprocessing and Transformation 
Fig. 1 shows the procedure used for extracting the features, 

in order to classify the VAG signals into the normal and 
abnormal groups using the ANN. Firstly, the start and end 
points of the VAG signals during one cycle of knee movement 
were detected for the purpose of segmentation using the knee 
angle signals recorded simultaneously by an electro-
goniometer. Secondly, the time axis of the segmented VAG 
signals was normalized using the DTW algorithm at 2 sec/cycle 
in order to minimize the possibility that the variation of the 
velocity of knee movement could affect the frequency 
characteristics of the VAG signals. Thirdly, the harmonic and 
low frequency components, caused by motion artifacts and 
MCI, were removed by a 4th-order Butterworth band-pass filter 
(BPF), whose cut-off frequency was between 20 and 2000 Hz, 
with the transfer function as Eq. (1). The BPF minimizes low-
frequency movement artifacts and prevents aliasing effects. 
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The filtered VAG signals were transformed into the TFD by 
the Wigner-Ville distribution (WVD). The TFD of a signal is a 
joint representation in both the time and frequency domains. 
For a given signal, x(t), the TFD that belongs to the quadratic 
class can be expressed as Eq. (2), where g(υ, τ) is a two-
dimensional kernel that determines the characteristics of the 
TFD. By setting g(υ, τ)=1 we get the WVD. 
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Figure 1.  Procedure for feature extraction and classification of VAG signals 

B. Denoising in TFD 
In the case of VAG signals, relatively larger ambient noises 

could affect the acoustical characteristics of the VAG signals 
and cause the noise to be confused with the inherent VAG 
signals, due to the very low amplitude of the latter. In previous 
studies, adaptive filtering [9] has been widely used for reducing 
noise component such as MCI, mixed together with inherent 
VAG signals. However, this method needs the supplementary 
recording of the vibration of the muscles which are located 
around auscultation area. Moreover, the features of MCI-
filtered VAG signals did not increase the classification 
accuracy significantly compared with the classification 
accuracy obtained using the features of the original VAG 
signals [14]. Therefore, in this study, the SVD algorithm was 
applied to the TFD in order to separate the interesting signals 
from noisy VAG signals and remove noise unnecessarily 
mixed within the TFD, instead of adaptive filtering. 

A singular value decomposition of an M x N matrix X is of 
the form, where U (M x M) and V (N x N) are orthogonal 
matrices, and Σ is an M x N diagonal matrix of singular values 
(SVs) with various components. 

TVUX Σ= ,                      (3) 

In Eq. (3), X, can be divided into two subspaces, a strong 
interference subspace, Xi, and an orthogonal alternate subspace, 
Xa. The strong interference subspace contains the signal of 
interest, whereas the alternate subspace contains the ambient 
noise. Mathematically, the subspace separation can be 
expressed as follows; 
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In order to divide the matrix X into the signal of interest, Xi, 
and noise, Xa, the rank of the matrix U or V has to be 
prescribed. In this paper, the rank of the matrix (denoted by r) 
was estimated from the output of the derivative of the 
normalized SVs with respect to the rank order [15]. Finding the 
r using the derivative reduces the effect of space intersections 
on altering the structure of important information in the signal. 
Given that the derivative is smaller than a predefined threshold, 
the SVs are considered to be members of Σi. (The way to find 
the optimal threshold was explained in next section) 
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The separated interest matrix, Xi, can be expressed as Eq. 
(5), and the small amplitude fluctuations of the SVs of matrices 
Ui and Vi, were reduced using an 3rd-order polynomial 
Savizky-Golay smoothing filter, (Ui', Vi'), which frame size 
was 15.  

T
iiii VUX Σ=                    (5) 

The enhanced signal matrix, Xe, was obtained by 
multiplying together, Ue, Ve and Σe, as in Eq. (6), where the 
matrices Ue, Ve and Σe are the normalized versions of Ui', Vi' 
and Σi, respectively. 

T
eeee VUX Σ= ,                (6) 

C. Noise Attenuation of the Enhanced TFD 
It has been known that low frequencies below 500 Hz are 

clinically more important among all frequencies and they are 
clinically useful for diagnosis of pathological conditions [6]. So, 
it is important to minimize effectively the noise mixed within 
low frequencies band as keeping the interest signals. The rate 
of changes in SV is gradually reduced toward the larger index 
numbers. Also, values on lower index numbers have more 
information about the signal of interest. However, selecting 
excessively lower index could lead to the data loss, even 
interesting signals. Therefore, we determined the optimal 
threshold which can provide the maximum signal-to-noise ratio 
(SNR). SNR5% was defined as the ratio of the power of the 
energy of the TFD between 0 and 500 Hz (signal) to those 
between 500 and 3000 Hz (noise), while the threshold was 
defined as 5 percent of the minimum derivative of the 
normalized SVs. SNR10%, SNR20%, SNR30% and SNR40% were 
defined as the threshold of 10, 20, 30 and 40 % of the 
minimum derivative, respectively. The higher the SNR of the 
enhanced TFD obtained by the SVD algorithm is, the more 
noise attenuation is. 

Table 1 shows the comparison of the SNRs of the TFD 
enhanced by the SVD algorithm with those of the noisy TFD 
obtained from the raw VAG signals. SNRs increased gradually 
until the threshold of 20 % (SNR20%), but after that, they were 

Table 1   Means and Standard Deviations of the SNRs of                    
the Enhanced TFD with Those of the Noisy TFD according 
to the Threshold of the Derivatives of the Normalized SVs 

Noisy TFD 
(dB) Enhanced TFD (dB) 

37.4 
±29.2 

47.0 
±39.5 

49.9 
±42.1 

51.8 
±43.3 

52.2 
±43.7 

52.3 
±43.8 

*Percent (%) 125.6 133.1 138.3 139.3 139.7 

§p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 
*Percent : (SNRs of enhanced TFD) / (those of noisy TFD) * 100 

§p-value : comparison of the SNRs of enhanced TFD with those of noisy TFD 
Values are mean ± standard deviation 

 

saturated at about 52 dB. Also, the SNRs (51.8 ± 43.3 dB) of 
the TFD enhanced by the SVD algorithm at SNR20%  were 
relatively 38.3% higher than those of noisy TFD (37.4 ± 29.2 
dB) (p<0.01). Therefore, we determined the optimal threshold 
as 20 % of the minimum derivative of the normalized SVs 
(SNR20%). Fig. 2 shows a comparison of the raw TFD of the 
VAG signals with the enhanced TFD obtained by the SVD 
technique. 

 

  
(a) Noisy TFD                                      (b) Enhanced TFD 

Figure 2.  Denoising in TFD using SVD algorithm 

D. Feature Extraction and Classification 
The four time-frequency parameters of the enhanced matrix, 

Xe, which are derived from the TFD of the VAG signals, are 
the energy parameter (EP), energy spread parameter (ESP), 
frequency parameter (FP) and frequency spread parameter 
(FSP), as described by Eqs. (7) ~ (10), respectively [12], where 
fm is the maximum frequency present in the signal. 
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The four parameter arrays are dependent on the functional 
state of the cartilage surfaces in the knee joint, and are thought 
to be suitable for discriminating pathological knees from 
normal knees. The average (mEP, mESP, mFP, mFSP) and 
standard deviation values (sEP, sESP, sFP, sFSP) of each 
parameter, described above, were used as the features of the 
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input vector for the ANN. Each feature was normalized 
between -1 and 1. 

The classification of the knees as normal or abnormal was 
evaluated using a statistical pattern classifier, back- 
propagation neural network (BPNN). The BPNN used in this 
study was a multi-layer shape, input-hidden-output layer 
BPNN, and the input and output layers of the BPNN consisted 
of 9 nodes (8 features and 1 bias) and 1 node, respectively. The 
VAG signals were classified into the normal group in the case 
of a positive output from the output node or the abnormal 
group in the case of a zero or negative value. The classification 
accuracy of the BPNN can depend on the learning rate (α) and 
the number of hidden nodes (p). Therefore, in this paper, we 
determined the optimum values of α and p which can provide 
the maximum accuracy. The values of α tested were 1, 0.9, … , 
0.1, 0.05 and 0.01, and the values of p were 5, 10, … , 30 and 
35. 

 

Figure 3.  Schematic diagram of the BPNN used for classification of normal 
and abnormal VAG signals 

IV. RESULTS 
A total of 1408 VAG segments were used for training and 

testing the BPNN, where the numbers of VAG segments 
obtained from the normal and patient subjects were 1031 and 
377, respectively. Among the normal segments, only 377 
segments were selected after the random rearrangement 
because this different number can potentially skew the results. 
Then, the performance of our algorithm was evaluated by k-
fold cross validation method as follows; after the random 
rearrangement of all of the VAG segments, 80 percent of them 
(about 603 segments) were used for training and the remaining 
20 % (about 151 segments) were used for testing the BPNN. 
The mean and maximum values of the classification accuracy 
were calculated after repeating all procedures of rearranging, 
training and testing 20 times. 

In order to determine the optimal structure of the BPNN, 
we compared the accuracies according to the various learning 
rate and the number of hidden nodes of the BPNN. As a result, 
the optimum learning rate and number of hidden nodes were 
0.3 and 15, respectively, at the maximum and mean accuracies 
of 95.4 and 91.4 (S.D. ±1.7) %, respectively. Table 2 shows the 
maximum classification result of 151 VAG segments when 
applying these optimum values to the designed BPNN. 

Table 2  The Means and Standard Deviations of the                          
Classification Accuracies of the Normal and Abnormal VAG 

Segments using 8 Features per Signal 

Predicted group 
Actual group 

Normal Abnormal 

Normal 94.3 ± 3.7 % 5.7 ± 3.7 % 

Abnormal 11.6 ± 4.4 % 88.4 ± 4.4 % 

Total Accuracy : 91.4 ± 1.7 % 

 

V. DISCUSSIONS 
The VAG signals were recorded by an electro-stethoscope 

in this study, because VAG signals are sensitive and minute. 
However, because unwanted noise, which could be generated 
in the contact area between the skin and the probe of the 
stethoscope, might interfere with the inherent VAG signals. So, 
in this study, we removed the noise mixed with the TFD using 
the SVD algorithm, especially spread over low frequency band, 
because low frequencies are clinically useful among all 
frequencies for diagnosis of pathological conditions as reported 
in [6]. Consequently, the SNRs (51.8 ± 43.3 dB) of the TFD 
enhanced by the SVD algorithm were relatively 38.3% higher 
than those (37.4 ± 29.2 dB) of the raw TFD, hence, it was 
noticed that clinically useful information in low frequency band 
was increased while the noise distributed evenly among the 
whole frequency band was decreased by our developed 
algorithm. 

In preceding papers about the detection of VAG signals, 
most researchers prescribed the protocol only related to the 
range of knee movement without the velocity. However, this 
protocol had a serious problem in that they did not consider the 
physiological properties of the VAG signals due to the change 
of the muscle and cartilage, such as muscle fatigue during 
repetitive flexion and extension of the knee. Moreover, it could 
be difficult to separate correctly the VAG signals, generated 
during only one knee movement, from the whole VAG 
waveform, because there was no information about the knee 
joint angle. To minimize the possibility that the variation of the 
velocity of knee movement could affect the frequency 
characteristics of the VAG signals, we attempted to keep a 
constant velocity by normalizing the period of one cycle of 
knee movement using the DTW algorithm. Consequently, it is 
thought that our proposed method showed the relatively higher 
accuracies because the acoustical properties of normal and 
abnormal VAG signals such as the ‘clicking’, ‘creaking’ and 
‘crepitus’ were correctly reflected to the features of the BPNN.  

In the previous studies conducted since the 1990s, a 
classification accuracy of 75.6 % was obtained by logistics 
regression analysis using the cepstrum coefficients (CC-LRA), 
68.9 % by TF analysis (TFD-MP), 76.4 % by linear 
discriminant analysis using wavelet decomposition algorithm 
(WD-LDA), 74.2 % by the linear strict 2-surface proximal 
(GA-LS2SP) classifier using a genetic algorithm and 91.0 % by 
non-linear S2SP (GA-NS2SP) [12]. On the other hand, our 
results revealed a relatively higher accuracy than these methods 
with a maximum and average classification accuracy of 95.4 % 
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and 91.4 ± 1.7 %, respectively. Although it is difficult to 
compare the previous results with those obtained by our 
method, because of the absence of a standard protocol for 
recording VAG signals or authorized VAG database, we 
believe that our proposed method can enhance the classification 
accuracy and the higher accuracy resulted from our study can 
help to establish the standard protocol for recording the VAG 
signals. 

In order to have patients with the same pathological 
condition, we selected only patients with osteoarthritis for the 
abnormal group. However, as shown in Table II, the 
classification accuracy of the abnormal group (88.4 ± 4.4%) 
was relatively lower than that of the normal group (94.3 ± 
3.7%) (p<0.01). It is thought that that the pathological 
conditions of each patient, such as the sex, age, bone density, 
low extremity functional scale, onset and treatment duration, 
might be slightly different. In a future study, we plan to 
improve the classification accuracy by considering these 
conditions and obtaining VAG signals from more patients, and 
to develop supplementary signal processing techniques for 
reducing unwanted noise, generated unavoidably between the 
skin and stethoscope. Also, we will apply this technique to a 
larger number of patients with various joint disorders, such as 
rheumatoid arthritis, chondromalacia as well as osteoarthritis, 
and demonstrate its feasibility. 

VI. CONCLUSION 
In this study, we extracted the features of normal and 

abnormal VAG signals by TFD, and evaluated the 
classification accuracy using a BPNN. VAG signals, generated 
during one flexion and one extension of the knee, were 
segmented at 2 sec/cycle, in order to keep a constant velocity 
after the time axis of the VAG signals was normalized by an 
electro-goniometer and the DTW algorithm. Also, unwanted 
noise, which might interfere with the discrimination of the 
normal and abnormal VAG signals, was wholly eliminated by 
applying the SVD algorithm, in order to divide the TFD of the 
VAG signals into interesting and noise subspaces and, 
consequently, the SNR of the enhanced TFD by our algorithm 
was relatively 38.2 % higher than those of the raw TFD. 
Therefore, more enhanced TFD parameters could be selected as 
the features of the normal and abnormal VAG signals. 
Moreover, the optimum condition of the learning rate and the 
number of hidden nodes of the designed BPNN was determined 
by a repeatability test consisting of twenty cycles. The mean 
and standard deviation of the EP, ESP, FP and FSP obtained by 
TFD were used as the features of the input vector for the 
BPNN. In order to evaluate the performance of our devised 
algorithm, the VAG signals from a total of 1408 segments 
(normal 1031, abnormal 377) were used for training and testing 

the BPNN by k-fold cross validation method. As a result, the 
average accuracy was 91.4 (S.D. ±1.7) %. The proposed 
method showed good potential for the non-invasive diagnosis 
and monitoring of joint disorders such as osteoarthritis and 
chondromalacia. 
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