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Abstract—Voltage instability is one phenomenon that could 
happen in a power system due to its stressed condition. The 
result may be the occurrence of voltage collapse which leads to 
total blackout to the whole system. Therefore voltage collapse 
prediction is very important in power system planning and 
operation so that the occurrence of voltage collapse could be 
avoided. Artificial Neural Networks (ANN) are emerging as an 
Artificial Intelligence (AI) tool which gives fast and acceptable 
solutions in real time. This paper presents the application of 
ANN for voltage collapse prediction in a power system to guide 
the operator in Energy Control Center (ECC) to take the 
necessary control action. In this study a comparison of the 
performance of two different ANN-based voltage collapse 
indices was investigated. The effectiveness of the proposed 
algorithm is tested under a large number of different operating 
conditions on the standard IEEE 14 bus system. The results 
show the back propagation ANN gives very encouraging results.  

Index Terms— Artificial Neural Network, Back propagation 
Voltage Collapse, Voltage proximity indices. 
 

   I.     INTRODUCTION  
Recently, power systems are changing rapidly because of 

deregulation and fast growing demand. This fast growing 
forced the power utilities to increase the utilization of existing 
transmission facilities to operate closer to the limits of stability 
in order to meet the continual increase in demand without 
constructing new transmission lines [1], [2].  It is somewhat 
difficult to construct new lines due to economic and 
environmental limitations. One of the major problems that 
may be associated with such a stressed power system is 
voltage instability that leads to a voltage collapse and system 
blackout. The phenomena of voltage stability can occur due to 
slow variation in system load or large disturbances such as 
loss of generators, transmission lines or transformers. The 
impact of these changes leads to a progressive voltage 
degradation in a significant part of the power system causing 
instability. Many utilities have experienced major blackout ca- 
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used by voltage instabilities [3], [4]. In planning and  
operating power systems, the analysis of voltage stability for a 
given system state involves the examination of two aspects: 

• Proximity: how close the system to voltage 
instability? 

• Mechanism: how does voltage instability occur?, 
what are the key contributing factors?, what are 
the voltage-weak points?, and what are involved? 

Proximity gives a measure of voltage security whereas 
mechanism provides information useful in determining   
modifications or operating strategies which could be used to 
prevent voltage instability [5].  

ANN have recently received widespread attention from 
researchers for online voltage monitoring. Most ANN 
applications have been implemented using multi-layered feed 
forward networks trained by back propagation. 

This paper is organized as follows. In section II, the two 
voltage instability indices, Minimum Singular value (MSV) 
and L-index are explained. Section III presents the design of 
the suggested network and data generation. Section IV 
explains the methodology of testing the suggested network. 
The results and discussion are done in section V and section 
VI concludes the paper. 

 

     II.   FORMULATION OF THE PROBLEM 

A.  Minimum Singular value 
The use of the singularity of the power flow Jacobian (J) 

matrix as an indicator of steady-state stability was first 
pointed out by Venikov et al [6]. The sign of the determinant 
of J was used to determine if the studied operating point was 
stable or not. Singularity of the power flow Jacobian matrix 
corresponds to the point at which the inverse of the Jacobian 
does not exist and there is an infinite sensitivity in the 
solution to small perturbations in the parameter values. The 
point where this will occur is called a static bifurcation point 
of the system. The minimum singular value of the power flow 
Jacobian matrix has earlier been proposed as a static voltage 
stability index (i.e. a voltage collapse security index) by 
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Thomas and Tiranuchit, see e.g. [7]. The minimum singular 
value is used to indicate the distance between the studied 
operating point and the steady-state voltage stability limit. It 
could also be observed that several reports have pointed out 
that the use of voltage magnitudes only may not give a good 
indication of the proximity to the static voltage stability limit, 
see e.g. the discussions in [8, 9]. For the real n x n matrix J 
the singular value decomposition is given by, 
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where U and V are n × n orthornomal matrices whose ith 

columns are singular vectors ui and vi, respectively and Σ is a 
diagonal matrix of positive real singular value σi such that σ1 
≥σ2 ≥ …≥σn. Based on the singular value decomposition of 
the power flow Jacobian matrix the following interpretations 
can be made for the minimum singular value and the 
corresponding left and right singular vectors [10]: 

 
1. The smallest singular value, σn, is an indicator of the 

proximity to the steady-state stability limit. 
2. The right singular vector, Vn, corresponding to σn 

indicates sensitive voltages (and angles). 
3. The left singular vector, Un corresponding to σn 

indicates the most sensitive direction for changes of 
the active and reactive power injections.  

 
        An important property of the singular value 
decomposition which could be worth noticing is that by 
adding a column to the studied matrix the largest singular 
value will increase and the smallest singular value will 
diminish [11]. The size of the power flow jacobian matrix 
will increase with one row and one column each time a 
generator node (PV-node) hits its limitation for the reactive 
power capability and changes into a PQ-node. This change in 
dimension of the matrix will, as described above, reduce the 
numerical value of the minimum singular value for the 
studied matrix. The matrix J under consideration in this case 
is the power flow Jacobian matrix (FJ) which is expressed as; 
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The MSV of FJ and different sub-matrices (J1, J4 and J4R) 

can be also used as an indicator. MSV of sub-matrices can be 
analyzed in real practice because it can save computing 
burden from computing MSV of FJ and providing meaningful 
sensitivity information. J4 and J4R provide sensitivity 
information between reactive power injection and voltage at 
buses (Q-V sensitivity). J4R considers further the weak 
coupling between reactive power and angle (by assuming ΔP 
in (2) equal to zero) where J4R= J4 - J3J1

-1
 J2.  Fig. 1 shows the 

minimum singular value for matrices J and J4R plotted versus 
the load as a percentage from the base load. In this paper, 

MSV of J4R is used in the proposed ANN-based monitoring 
index. 
 
B. L-Index 

A static voltage stability L-Index has been proposed in 
[12] based on normal load flow solution. The authors have 
shown that the value of this L-index must lie within a unit 
circle, with a range L= 0 (no load on the system) to L=1 (static 
voltage stability limit). 

Consider a system where, n=total number of busses, with 
1, 2... g generator busses (g), g+1, g+2... g+s Static Var 
Compensator (SVC) busses (s), g+s+1,..., n the remaining 
busses (r =n-g-s) and t =number of  On Load Tap Changer 
(OLTC) transformers. 

A load flow result is obtained for a given system operating 
condition, which is otherwise available from the output of an 
on-line state estimator. Using the load flow results, the L-
index [12, 13] is computed as: 
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Where j=g+1, ..., n and all the terms within the summation 
on the RHS of (3) are complex quantities. The values Fji are 
obtained from the Y bus matrix as follows: 
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Where IG, IL and VG, VL represent currents and voltages at 
the generator nodes and load nodes. Rearranging (4) we get 
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Fig. 1:  The minimum singular value of matrices J and J4R for different 
values of load 
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Where FLG = − [YLL]−1 [YLG ] are the required values. The 
L-indices for a given load condition are computed for all load 
busses. 

For stability, the bound on the index Lj must not be 
violated (maximum limit=1) for any of the nodes j. Hence, the 
global indicator L describing the stability of the complete 
subsystem is given by L=maximum of Lj for all j (load buses). 
An L-index value away from 1 and close to zero indicates an 
improved system security. For a given network, as the 
load/generation increases, the voltage magnitude and angles 
change, and for near maximum power transfer condition, the 
voltage stability index Lj values for load buses tend to close to 
1, indicating that the system is close to voltage collapse.  The 
stability margin is obtained as the distance of L from a 
unit value i.e. (1-L). 

 

 III.   PROPOSED ANN-BASED METHODS  

A.  Data generation 
Training, validation and testing data sets for the ANNs are 

generated using the power system toolbox (PST) [14] and 
MATLAB.  

• By increasing both real and reactive power at all load 
buses at constant power factor until the system 
collapses. 

• By increasing the active and reactive power keeping 
constant power factor at a particular load bus with 
other buses remaining at constant load until the 
system collapses, then the process is repeated at 
every load bus. 

 The corresponding voltage stability indicators, MSV and 
L-index are calculated at every step.  

 
 

B. BACK PROBAGATION-ANN 
      A multi-layered feed-forward neural network has been 
proved suitable for most power system problems. The 
architecture of the ANN used in this paper consists of an 
input layer, two hidden layers and an output layer. The 
number of inputs depends on the number of used features. 
The number of output neurons is equal to the number of load 
buses for L-index-based method and one for MSV-based 
method.  The sigmoid activation function (logsig) is chosen 
for the hidden layers, while the linear activation function 
(purelin) is chosen for the output layer. The number of 
neurons in hidden layers is variable based on the best results. 
The ANNs are trained by back propagation algorithm using 
Lavenberg-Marquartdt (LM) optimization. Validation 
technique is applied to improve ANN generalization by 
preventing the training from overfitting the problem. In the 
context of neural networks, overfitting is also known as 
overtraining where further training will not result in better 
generalization. The error of the validation set is periodically 
monitored during the training process. The training error 
usually decreases as the number of iterations grows, and so 

does the validation error initially. When the overtraining 
starts to occur, the validation error typically tends to increase. 
Therefore, it would be useful and time saving to stop the 
training after the validation error has increased for some 
specified number of iterations [15].  

 

         IV.   METHODOLOGY 
     The PST is used to simulate the IEEE 14 bus system 

[16].  Fig. 2 shows the IEEE 14 bus system. 

The steps in this study are carried out as follows: 

1. Input bus and line data which include generation 
active and reactive power, load active and reactive 
power, and line parameters. 

2. Run load flow at base case and calculate the MSV 
and L-index for every load bus. 

3. Simulations were carried out to get the data as 
follows: 

• Changing the load at all load buses by 1% 
from base case and calculating the MSV and 
L-index for every load bus. 

 

• Changing the load at only one load bus by 
10% from the base case with the load at the 
other load buses remaining constant, then 
repeat the process at every load bus and 
calculate the MSV and L-index for every 
load bus. 

4. Create a data base for the input vector based on the 
selected features and for the target vector based on 
the selected index. 

5. Normalize the input vector. 

6. Divide input data into training, validation and testing. 

7. Select ANN parameters to train the network. 

8. Compute the validation error periodically. 

9. Check if the validation error starts to increase or not. 

10. Stop the training and start testing process if the 
validation error starts to increase. Else repeat steps 
from 8 to 10. 

11. Calculate the estimation error and stop. 

 

V.      RESULTS AND DISCUSSION 
In order to test the ability and effectiveness of the proposed 

ANN in predicting voltage instability in a power system, the 
standard IEEE 14 bus system is used. It consists of five PV 
buses, buses (1, 2, 3, 6 and 8), and nine PQ or load buses. In 
this study, active and reactive load   power were increased at 
constant power factor with a constant step size until the   
collapse is reached, at every step power   flow program was r- 
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un. The voltage magnitude (V) and  angle (δ), active   and  
reactive  power  demand  (Pl,Ql)  and  active  and  reactive 
power generation (Pg,Qg) at every bus were obtained. A 
total of 84 features for that system (14 bus x 6 
measurements for every bus) can be used as input vector for 
the neural network. 1309 different cases were generated, 
60% of them were used for training, 20% for validation and 
the rest 20% were used for testing the generalization of the 
neural network. The simulation result shows that bus 14 is 
the most critical load bus, while bus 5 is the strongest load 
bus. 

Fig. 2:  IEEE 14 bus system 

In this paper there are four different neural networks, two 
for MSV index and two for L-index. Two different numbers 
of features were used; one has 53 inputs which represent all 
the measurable variables in the system   while the other used 
12 inputs selected after studying the results of power flow 
simulation. The details of the four different neural networks 
are shown in Table I. 

Many trials were done for every network until reaching 
the best results which confirmed by post regression analysis. 
Figs. 3, 4 and 5 show the MSV at different loading levels 
for both the target and neural network output using 53 input 
features under three different scenarios which are: load 
increase at all load buses  simultaneously; load increase  at 
bus 14 only  ( the weakest bus);   and load increase at bus 5 
only ( strongest bus) respectively. While the MSV at 
different loading levels for both the target and neural 
network output using 12 input features under  the same 
three scenarios: load increase at all load buses  
simultaneously;  load increase  at bus 14 only  ( the weakest 
bus);   and load increase at bus 5 only ( strongest bus)  are 
depicted  in Figs. 6, 7 and 8 respectively. The MSV, 
estimation absolute error and the percentage error with 12 
different scenarios for the whole system with 53 and 12 
input features are shown in Figs. 9 and 10 respectively. 
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Fig. 3: Minimum singular value for 53 input features network at different 

load levels with load increase at all the load buses simultaneously 
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Fig. 4: Minimum singular value for 53 input features network at different 

load levels with load increase at bus 14 (weakest bus) only 
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Fig. 5: Minimum singular value for 53 input features network at different 

load levels with load increase at bus 5 (strongest bus) only 
 

The results for the L-index with two different ANNs with 
53 and 12 input features are shown in Figs. 11 and 12 
respectively, every figure has nine curves; each curve 
represents the result for one load bus. 
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In the MSV case as shown from Figs. 9 and 10 the 
absolute error is less than 0.02 for 53 inputs and less than 0.1 
for 12 inputs, which means that 53 input is more accurate in 
the case of MSV, but on the other hand there are some errors 
due to synchronization between different measuring devices, 
where in L-index case (as shown from Figs. 11 and 12) the 
absolute error is almost the same in both cases and less than 
0.007. This means that using 12 inputs only rather than 53 
almost gives the same results in the case of L-index.  
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Fig. 6: Minimum singular value for 12 input features network at 
different load levels with load increase at all the load buses 

simultaneously 
 
 

0 5 10 15 20 25 30 35 40 45
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

case #

M
in

im
um

 s
in

gu
la

r v
al

ue
 

load at  bus 14 (weakest load bus)increased with constant  PF
12 I/P & single

 

 
 Neural network output
Target

Fig. 7: Minimum singular value for 12 input features network at 
different load levels with load increase at bus 14 (weakest bus) only 
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different load levels with load increase at bus 5 (strongest bus) only
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Fig. 9: Minimum singular value estimation error for 53 input features 

network at different load levels  a) Minimum singular value b) absolute error c) 
Percentage error 
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Fig. 10: Minimum singular value estimation error for 12 input features 

network at different load levels  a) Minimum singular value b) absolute error c) 
Percentage error 

 
Table I: Four different ANN architectures 

No. of features MSV net work 
architecture

L-index net work 
architecture

53 53:18:7:1 53:18:8:9 
12 12:18:8:1 12:18:10:9 
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VI.    CONCLUSION 
 In this study an ANN approach is proposed to 
predict voltage instability proximity in order to reduce the 
computational time. In this paper two different indicators are 
used, MSV and L-index, to predict the proximity of voltage 
collapse, both MSV and L-index networks are used to predict 
the proximity of voltage collapse on IEEE 14 bus system. 
One objective of this study is to compare different numbers 
of input features; the other is to compare the accuracy of two 
different indicators. Regarding the number of input features, 
53 input features gave better results but still comparable to 
the results of the 12 input features network in the case of L-
indicator, which make the 12 input features more preferable 
to reduce the error from the measuring devices and the 
synchronization between them, while in the case of MSV 
there is a noticeable difference in the errors between the two 
networks. Fortunately the maximum error occurs in save 
region (close to 1.0), where there is no problem in the system 

stability, the dangerous arises when the value of MSV 
becomes close to 0.0, which means the system on the verge of 
collapse. On the other hand MSV gives information about the 
status of the whole system, while L-index gives information 
about each load bus. The obtained results for voltage 
instability proximity in the case of L-index from the proposed 
two networks are very close to the actual value, while in the 
case of MSV, the obtained results from 53 input features 
network is very close to the actual value, but the results 
obtained from 12 input features network have a small 
difference from the actual value, but still reliable. ANN can 
respond very fast compared to the traditional analytical 
methods, which means that it is more suitable for online 
application. 

Error between Taget and Neural network output

0.01
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Fig. 11: L-index estimation error for 53 input features network at different 
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