New Series Active Power Filter for Computers Loads and Small Non-Linear Loads

Mohamed Tarnini

Abstract—This paper contains a new series single phase active power filter based on high input power factor and low input harmonics, it is for electrical power quality purposes. We developed it in order to define new control schemes characterized by simple control algorithms and a reduced number of current transducers. The filter is designed to meet the requirements of voltage-sourced harmonic loads it is based on a load current estimation using a DC capacitor voltage of active power filter sensing the load current. The proposed filter can improve the problems of conventional small and medium non-linear loads like as computers, system of computers, washing machines, faxes, photocopier machines printers...etc and it also can suppress the harmonic current and compensate for the reactive power at the float charge mode. In general, this paper deals with a non-linear loads like as a house loads. The experimental results verify that the proposed filter has the expected performance [1][2].

Index Terms—Series active power filter (SAPF), non linear loads, power system harmonics

I. INTRODUCTION

The power conversion using the thyristor rectifier and all electronic devices or computers machines will result in the problems of poor input power factor and high input harmonic current and hence causes much distorted voltage. If the mains voltage is undistorted, but non-linear loads are connected to the electrical grid, the current harmonics produced will cause voltage distortions at the load terminals, hence, the loads absorb distorted currents causing heat lost exceeds in most cases 35% of the consumed power [3].

The experimental measurement, of both, load current iL and load voltage (VL) are done, before and after correction, to ensure that the relative large phase difference, between the main voltage (V_s) and the line currents, becomes very small and the power factor (PF) becomes approximately one (PF=1), as well as the shape of the current becomes clearly sinusoidal and in-phase with the main-voltage, after adding an additional voltage (Vf) extracted from the proposed filter. Where the resistance R and the capacitance C with the four diodes are represent the non linear Load [4].

The proposed prototypes filter achieving both tasks by using digital signal processor (pic16f877). The main target here is to compensate for voltage sag and voltage unbalance very effectively. Fig. (1) illustrates the distorted system that is formed of a non-linear load; the load is formed of 40 μf capacitor in parallel with 33 Ω resistor, across a diode bridge. This non-linear load is approximately similar to a load formed of 2 or 3 personal computers.

A passive filter can be used to compensate the mentioned problems, but it is very limited, namely: they only filter the frequencies for which they have been previously tuned, its operation cannot be limited to a certain load, resonances can occur.

II. CONTROL ALGORITHM AND THE GENERAL DESCRIPTION OF THE CONTROL THEORY

Active power filter (APF) has been proposed since 1970s. An APF is configured from switching converters or better known as inverters that are based on pulsed operation and can be categorized as a nonlinear dynamic system [5].

A. Connection and operating mode

Fig. (2) shows the connection of the SAPF and the main components of the proposed system, the SAPF, the adjustable controller, current sensor, current limiter, nonlinear load and a power resistor R used to show the instantaneous current of the load before and after corrections.
The current flows through T1&T3.

In the positive half cycle, the operating transistors are (T1&T3), the operating diodes are (D2&D4) while during the negative half cycle the operating transistors are (T2&T4), and the operating diodes are (D1&D3).

At steady state case the capacitor will neither receive or deliver energy or power ($P_C=0$)

$$\int_{0}^{T} v_{L} \cos(\omega t) \, dt = 0$$

Moreover, this gives,

$$V_m = \frac{4}{\pi} U_{dc}$$

Equation (8) gives the relation between the maximum of the source voltage and the required DC voltage of the load, in order to have constant voltage on the filter capacitor at steady state when operates in unity power factor mode.

III. EXPERIMENTAL SETUP

The main goal of the series active power filter is to eliminate the voltage harmonics. In this case, the reference voltage is always known and it is installed in a pic16f877 as 80 points (point by point of known reference voltage and of known fundamental value) the time difference between two consecutive points is $\Delta t = 250 \mu s$. Then, it is possible to generate the reference synchronized with the main voltage and thus we can use the controller algorithm. Also it can be noted that the active filter performance is dependent on the time responses of the AC current and DC voltage control loops. However, the dynamic behavior of the filter is mainly affected by the time response of the AC current loop that must be designed in order to track the reference current waveforms closely.

The reference current is obtained by extracting the fundamental from the nonlinear load current off-line. Then the reference current is discretized into HEX into samples with sampling period $\Delta t = 250 \mu s$. Taking into consideration the scaling of the Hall Effect sensor and the signal conditioning circuits.
The simple control circuit consists of five parts as well as the software program procedures is described. and detailed description for each part of the control circuit PIC16F877 microcontroller. In the following, a complete circuit describes clearly, and the controller used is circuit parameters specified in table 1. The complete control phase active power filter, of Fig. (5), with the same power respectively.

The Hall-effect sensor used is RS-286-333 in order to obtain voltage output; pin 1 and 4 must be linked. The output voltage. A LM324 OP-AMP is used to perform both drift (positive DC bias) associated with the instantaneous waveform and fast response time (<1 μs).

The instantaneous voltage output must be amplified before being applied to the microcontroller and then added with a small DC negative voltage to neutralize the small drift (positive DC bias) associated with the instantaneous output voltage. A LM324 OP-AMP is used to perform both tasks. Finally the output must be full wave rectified because the microcontroller does not accept negative voltage and also the output must be limited by a 5V zener-diod.

E. Microcontroller
The microcontroller used in this paper is PIC (16f877). The instantaneous output voltage of the Hall Effect and signal conditioning circuit is applied to the external interrupt of the microcontroller. According to the inputs, and based on the assemble program, installed in the PIC, the controller give the order to a specific MOSFETs through the driving circuit to work. The software is assembled using MPLAP and the generated HEX file is downloaded through any downloader deals with PIC microcontroller.

F. Driving Circuit
The 4 output gating of the microcontroller is applied to a 4 optocoupler units to isolate the control circuit from the power circuit, using 4 isolated 12v DC power supplies to provide isolation between the gate signals of the 4 MOSFETs. A 4049 CMOS inverter is used at the output of the optocoupler as a driver to turn on/off the MOSFETs with high speed [11].

G. The Inverter Bridge
The inverter bridge mainly consists of 4 IRF-740 MOSFETs each one is rated at 400v and 10A, each one has a built in freewheeling diode. From the data sheet of such element, we found that 12v is sufficient to drive it.

H. Software Program
We can summarize the program of the experimental work in the flow chart of Fig. (11).

IV. EXPERIMENTAL RESULTS

Fig. (6) shows the experimental results of the proposed series active power filter supply voltage and current before filtering (we observe the current and the voltage of the load without any filtration). Fig. (7) shows the experimental results of the proposed series active power filter supply voltage and current after filtration. The current after filter approaches the sinusoidal shape, it is in-phase with the supply voltage, and that proves the validity of the proposed filter. Similarly, in Fig. (8) and (9) we show the variation of the load current before and after filtration by adjusting the variable potentiometer of the current sensor. We can use this controller for different type and values of non-linear load currents.

The reference current is 0.9 A peak the fundamental of the load current.

Note: during experiment we measure i across 2.2Ω series resistor then the exact value of the maximum obtained when we divide by the scale which is 2.22

| TABLE 1 |
| PARAMETERS OF THE SAPF |
Supply voltage v_s	110v
Frequency f	50Hz
Load resistor R	33Ω
Load capacitor C	40 μf
Limiter L	100mH
Filter capacitance C_{dc}	2000 μf

V. CONCLUSION

The proposed single-phase series active power filter, of Fig. (10), reduces effectively the voltage total harmonic distortion and providing better power quality than it is available on the mains. Referring to Fig. (13) and (14) for the total harmonic content before and after compensation we
can conclude that the total harmonic distortion decreases by 25-30%. Within a certain limits, it is also capable of correcting fundamental voltage amplitude as in Fig. (7) the voltage of the main becomes totally sinusoidal while in Fig. (6) the distortion in the main voltage is very clear. Although the tested series compensator was a single-phase version, it may be easily adapted to a three-phase system. A series active power filter, working as a sinusoidal current source, in phase with the mains voltage, has been developed and tested. The amplitude of the fundamental current in the series filter is controlled through the microcontroller or PIC16f788 between the load voltage and a pre-established reference. The control allows an effective correction of power factor, harmonic distortion, and load voltage regulation and reaching its steady state in about two cycles of the fundamental. Compared with other methods of control for a series filter, this method is simpler to implement, because it is only required to generate a sinusoidal current, in phase with the mains voltage, the amplitude of which is controlled through the proposed circuit [8], [9].
Fig. 13 Load Harmonics of Uncompensated System

Fig. 14 Load Harmonics of compensated System

Fig. 12 Over All Control Schematic Diagram

ACKNOWLEDGEMENTS

The author would like to thank Prof. Amer El-zwawe for their help in this work. The authors are grateful to HCU University for the great help in all steps.

REFERENCES

(Modified on 15-9-2009 and the modifications include
1- The personal details at the footnote
2- The description of figure 13)