
Introductory Programming Course: From
Classics to Formal Methods

Juan Manuel Gutiérrez Cárdenas ∗

and
Ian Douglas Sanders †

Abstract—Introductory courses in CS, especially
those aimed at introductory programming concepts
or fundamental concepts in CS, represent the core
courses which give the student specific insight into
what the body of knowledge of Computer Science en-
tails. Due to this great importance the curriculum
planning of these courses should be undertaken with
special care. It is, however, a matter of some concern
that many of these introductory courses are deficient
in terms of a formal algorithmic approach to program-
ming. This leads to a situation where undergraduate
students base their algorithms and programs on “trial
and error” and are content if their code “runs” rather
than proving that the code they produce will always
work correctly. In the longer term, we believe, this
situation results in a great amount of low quality soft-
ware produced by CS graduates.

It is because of these problems that we argue that the
lecturing of formal methods and correctness proofs
must be taught as soon as possible in a student’s CS
studies. This paper presents a proposal that is aimed
at introducing the student to a more formal algorithm
and program development process, so that he/she be-
comes able to produce correct efficient software from
the beginning of his/her programming career. We
also feel that such an approach will give students a
much better idea of the nature of CS than many typ-
ical introductory courses do.

Keywords: Formal Specifications, Correctness Proofs,

Algorithm Complexity, Introductory Courses

1 Introduction

In many cases a student completing a course called
“Introductory Programming Concepts” (or some simi-
lar name) gets the impression that the algorithms de-
veloped and presented by the lecturer are arrived at by
some “magical” means. The students do not see that
the algorithms are developed by some logical process and
they are seldom shown that the algorithm is, in fact, a
correct solution to the problem being considered. The

∗Sociedad Peruana de Computación. Email:
wits.gutierrez@gmail.com

†School of Computer Science, University of the Witwatersrand,
Johannesburg, South Africa. Email: ian@cs.wits.ac.za

students are implicitly asked to trust their lecturer’s ex-
pertise and experience. This limited approach is then
reinforced when the students are asked to develop their
own programs without any instruction on how to do so.
The students often produce an incorrect or non proven al-
gorithm which they then transform into the source code
of a (hopefully) “working” program. This process often
results in the students erroneously thinking that if a pro-
gram is correctly executed, compiled or interpreted, or
maybe if it does not have any errors during a debugging
process, then the algorithm is also correct. Often nothing
is done to convince the students that their solution may
not actually be correct in all instances. An optimistic
way to deal with this issue would be to ignore these bad
habits as the student progresses through his/her career
in the hope that they will come to understand that more
is required in developing correct code. Unfortunately we
observe that this bad approach continues into graduate
levels resulting in the quality of software produced by CS
graduates being poor. An additional issue that we are
concerned about is that students do not reflect on the
algorithms that they have developed and do not consider
issues like time and space complexity.

In this paper we argue that proactive measures should be
taken to teach students that there is more to developing
correct working code than simply writing and rewriting
code until the program runs “correctly” on the given test
input (or some restricted input set). We believe that the
students should be shown that some kind of model or
formal specification of the problem based on the problem
description is required to be sure that the correct problem
is being tackled and that this should be followed by a
formal proof of correctness after the development of the
algorithm or program. The purpose of doing this would
be to help the student learn to abstract and to get to the
real essence of the problem that he/she wants to solve,
and also to be able to prove by mathematical means that
their solutions are correct. In addition, we would like
students to be able to argue about the efficiency of their
solutions. We believe that doing this will mean that the
students are taught a good way of developing code and
that the quality of programs/software that they produce
will improve.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



We feel that the approach taken by the University of the
Witwatersrand (Wits) [14] meets our requirements – see
details of their approach in Section 3 below. In this pa-
per we suggest that a similar approach could be applied
to the universities in our country (Perú). Adopting an
approach similar to that at Wits would address the prob-
lems mentioned above and at the same time prepare the
students better for their future careers as computer sci-
entists.

2 Background

2.1 General motivation

The need for the teaching of formal methods, proofs and
complexity analysis of algorithms, not only at an interme-
diate course level, but also in the beginning undergradu-
ate level, has clearly been specified in [7] who argues for
the need for a formal approach oriented to the construc-
tion of software and also discusses how to do correctness
proofs in the developing process of software. Another in-
teresting approach is the one made in [3] in which (as
well as discussing a very similar method to the made
in the introductory course of Fundamental Algorithmic
Concepts [14]) it quotes that “Students should learn to
examine every program they write, to be sure it is cor-
rect and efficient”. There also exist proposals like [11]
in which is mentioned, for example, a method called Re-
verse Derivation, which tries to be used as an alternative
to the teaching of formal methods in the first year of the
career of CS, this approach is based mainly in heuristic
methods. One of the more important conclusions derived
from the prior reference is the defense of a course based
on formal methods, because even though it does need an
adequate rigid academic approach, this does not imply
that the student will decrease his creativity at the mo-
ment of making programs.

The detractors to the teaching of these topics tend to ar-
gue that teaching these techniques along with the lectur-
ing of logic, mathematical proofs (direct, contradiction or
induction to name a few) and of the teaching of asymp-
totic complexity analysis of algorithms will lead to an
inadequate use of the assigned time for the introductory
topics in CS. For solving these issues we can take into
account the statement in [10] where it is mentioned that
for a first course in CS the student could work on small
well-known algorithms at the beginning in order for the
student to re-inforce and practice the correctness tech-
niques already learned and then later the student should
be encouraged to develop his own algorithms and pro-
grams based on the proofs and methodologies learned.

The need for inclusion of certain topics in mathematics,
specifically proofs and their applications to algorithms
has been already defined in [2]. In addition, in that ar-
ticle there is a mention about some tips and strategies
on how to approach this topic mainly in relation to tu-

torials. Some discussion about how to make an adequate
algorithm analysis in contraposition to the synthesis of
these is made in [8]. It should also be noted that this
author suggests that the lecturers or instructors should
personally be in charge of these courses; because they
are the ones that must take in account that the student
does not come with the necessary analytic capacities or
even worse if they know them, mainly learned in the high
school, are in the majority of cases erroneous.

2.2 The current situation in Perú

In our country the CS1 courses follow the Functional
First approach. The main reason for adopting this ap-
proach is because it facilitates the teaching of specific top-
ics, for example binary search trees, and because there
is less emphasis on learning the syntax of a particular
programming language (functional languages are seen as
being more accessible due to their simpler semantics[9]).
In addition, the functional first approach has been chosen
with the goal of leveling the playing field in that all the
students will at the same level in their first semester at
university because the functional paradigm is not taught
in high school. Note that these motivations are similar
to those of the School of Computer Science at the Uni-
versity of the Witwatersrand who chose to teach Scheme
in their first year course [13].

Unfortunately even though the functional approach is
chosen because of its versatility there are very few intro-
ductory programming courses which focus on the teach-
ing of good (formal) program development skills/habits
and most beginning programmers still develop their pro-
grams in an intuitive fashion [9]. The students will not
normally be concerned with establishing, in a formal way,
the correctness of their solution method and/or their final
program but will be content if their code works on some
limited test cases. The courses that the students take of-
ten do not make any attempt to introduce the students to
the need for or the skills of proving that their programs
are correct. This situation is very common in universities
in Perú.

Another situation which is very common, in Perú and
elsewhere, is that many students and instructors will have
encountered imperative programming before being intro-
duced to the functional paradigm and thus will impose
the imperative style onto the functional language. This
reduces the chances of the functional paradigm being used
as a basis of teaching a formal approach to programming.

Another factor which we believe detracts from the pos-
sibility of students learning to develop correct working
code is that in many cases the structure of the first year
CS curriculum seems to be badly defined. Topics such
as computational logic, mathematical proofs and basic
analysis of algorithms are either not included in the first
year courses or if they are offered at all then the top-

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



ics are lectured jointly with a basic mathematics or dis-
crete mathematics course. This means that the student
does not see the relevance of these topics and does not
know how to use the techniques as they do not see a real
Computer Science application of the techniques learned
in those split up courses. Again this situation applies in
Perú and in other parts of the world.

2.3 Summary

There are strong arguments for teaching formal methods
plus the tools/techniques for dealing with formal methods
as part of a first year computer science course. In addi-
tion, it seems that students from Perú would benefit from
a curriculum which includes such material and is based
on the functional first approach to teaching. The pro-
posal which appears in Section 3 below has been made
taking these factors into account as well as considering
the teaching of CS1 in different universities [5, 6] as is
specified on the web page of the Formal Methods Europe
[4]. The proposal is based largely on the course of Fun-
damental Algorithmic Concepts as presented in Sanders
and Mueller [13] and described in detail in Sanders [14].
We chose to follow the approach established by [14] be-
cause of the clear and precise treatment that it gives, and
also because it brings up a parallelism with other topics
such as: mathematics, discrete structures and software
engineering. Other factors which influenced the proposal
are that the chosen approach for CS1 in our institution
is based on the Functional First paradigm according to
the schemata made by [1] and because the undergraduate
students who come from the superior high schools of the
country where it was originally applied have a lot of sim-
ilarity with the social, economic and educational levels
that we currently find in Perú.

3 The Proposed Methodology

3.1 Overview

This methodology that we are proposing for introduction
in Perú has already been formulated in [12, 13] because
of the explicit need to

1. introduce the students to an approach which would
allow them to verify the development of their algo-
rithms and programs

2. give a real understanding of the nature of CS – tak-
ing away from the erroneous concept that CS is pro-
gramming and

3. provide the undergraduate student with a good and
accurate introduction to the real core of studying
CS.

The approach for developing correct efficient algorithms
and programs as used by Wits (as presented in [14]) is

composed of the following steps:

1. Problem Description: This is a draft of the problem
to be solved, at this stage it does not need to be
so accurate. This is an important issue because the
student will be faced with vague requirements and
asked to deal with imprecisely specified problems in
his/her professional career.

2. Developing a formal specification of the problem:
Here the “effect” of the computational procedure is
considered without knowing the “how” [14]. There
exist different kinds of notations and procedures to
develop the formal specification. In the proposed
methodology a simple mathematical notation has
been used which is easily understood by the students.

3. Developing an algorithm to solve the problem: Here
the conversion from the formal specification to the
algorithm is made. As described in [14] often this
conversion is direct – the formal specification leads
straight to a functional description of an algorithm
in the functional paradigm. Here the student will
have seen the formality of the mathematical notation
expressed in the former point and will have a clearer
view of what is required than if only he/she is only
presented with the algorithm or pseudocode.

4. Coding the algorithm: The use of any type of func-
tional language is recommended for this phase of the
process.

5. Reasoning about the algorithm or program: Here
simple mathematical proofs are used to show
whether the algorithm or program are correct or not.

6. Analysing the algorithm: Here asymptotic analysis
of the performance the developed algorithm is done.
To make this part more comfortable to the student,
who is a beginner in this topic, only the worst and
the best case in the algorithmic analysis are consid-
ered. The topic of average case complexity is left for
coming courses.

3.2 Syllabic Requirements

In order to follow the process outlined above the students
have to be taught some theory and thus it is necessary to
include the following topics in the CS1 course:

1. Mathematical Proofs: Direct, Contradiction and In-
duction, these kinds of proofs have been studied by
the students in courses in high school. If this is not
the case then this material could be taught in a pe-
riod of approximately two weeks.

2. Asymptotic Complexity: The student come to the
career with a basic knowledge of functions and

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



graphs, thus the lecturing of this topic will be
straightforward.

3. Functional Language: Our recommendation would
be Scheme with its GUI Dr Scheme – mainly because
of its attractive environment and also the ease of the
program development.

3.3 Case Studies

In this section we highlight the steps mentioned before
by means of some examples:

Case 1: A step function

1. Problem Description: Make a program that re-
turns the value of 1 if the input is 0 or more
and returns the value of 0 in any other case.

2. Formal Specification:

f(x)=1 if x>=0
f(x)=0 if x<0

3. Developing an algorithm

Step(x)
If x >= 0
Then

1
Else

0

4. Coding

(define (step x)
(if (>=x 0)
1
0))

5. Reasoning about the algorithm/program: It
can be easily seen from the formal specification
and our algorithm that the algorithm will only
return 1 if the condition x>=0 holds. For the
case of our program, in Scheme we have the use
of conditionals which evaluate according to the
following formula
if
<condition> <consequent> <alternative>.
In the program the if <condition> would
evaluate to #t in the case that the input ele-
ment is greater than or equal to 0 and it will re-
turn the value specified in <consequent>, that
is 1; in the other case it will evaluate to the
value of #f and will perform the statement
corresponding to <alternative> returning the
value of 0.

6. Analysing the Algorithm: The time of execu-
tion of this algorithm is O(1) because it does
not depend of the value of x. Only one compar-
ison is made to determine if x>=0.

Case 2: Searching a binary search tree

1. Problem Description: Make a program that will
allow for finding an element in a binary tree

2. Formal Specification: Let A be a binary tree
A(V,E), we have then a value b to be searched,
then Search(A,b)=True if ∃ v ∈ V, such that
v.key=b and Search (A,b)=False otherwise.

3. Developing the Algorithm: For this case we
would be need a recursive structure – so that
the algorithm looks for the element k in the root
of each sub tree and in the case of not finding
it, the search will continue in the right or left
subtree respectively.

Search(A,b)
If b=root then

True
Else

If b<root then
If the left subtree exists
then

Search (left_subtree, b)
Else

False
Else

If the right subtree exists
then

Search (right_subtree, b)
Else

False

4. Coding the algorithm

(define (search b tree)
(let
((root (car tree))
(left (cadr tree))
(right (caddr tree)))
(if (= b root)

#t
(if (< b root)

(if (null? left)
#f
(search b left))

(if (null? right)
#f

(search k right)))))

5. Reasoning about the algorithm/program:
There are two different cases for this algo-
rithm. The first case is when the element

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



to be found is in the tree and the second
case is when the element is not. Both cases
should be proved to be able to claim that the
algorithm/program returns the right answer.
In this example the first case is proved by a
proof by contradiction and the second case is
proved by inductive proof. These are as follows
below:
First Case: Proof by contradiction that the
algorithm will return #t if the element b is in
the tree
Let us assume that we have a tree T with n
elements containing some node v such that
v.key = b and that the algorithm returns #f
for this tree.
For this algorithm to return #f, we would have
to have either the case in which b<root.key
or b>root.key and the algorithm would then
search in either the left or right subtree until
there were no more elements. This would
happen recursively. The algorithm would
only reach an empty subtree if there is no
subtree along the path searched such that
subtree root.key = b. Such a node exists and
so we have a contradiction. Thus if the element
b is in the tree then the algorithm will return
#t
Second Case: Proof by induction that the
algorithm will return #f if the element b is not
in the tree
Base Case: Consider any tree T of height 0. If
root.key != b then the algorithm would search
in either the right or left subtree. Both of these
subtrees are empty so the algorithm will return
#f.
Inductive Step: We assume that for any tree
of height<=h-1 the algorithm will correctly
return #f when it does not find the element in
the tree (IH).
Now we will use the IH to determine that the
algorithm holds for a tree of height h.
The algorithm first considers the element at
the root of the tree. This will not equal b so
the algorithm will search for b in either the
left or right subtree Tl or Tr. Both subtrees
are of height at most h-1 and b is not in
either subtree. By the induction hypothesis
whichever subtree is considered the algorithm
will return #f and thus the algorithm will
return the value of #f for a tree of height h
composed of Tl ∪ root ∪ Tr.

6. Algorithm Analysis:
It is clearly seen that the best case would be
when the element is in the root, O(1), and the
worst case is according the height of the tree,
O(h).

If we consider the solutions to these trivial problems we
see an intermediate step between the problem definition
and the development of the algorithm. This step is the
formal specification of the problem based in mathemati-
cal notation and gives the student a problem description
without ambiguities. In addition, in most of the cases,
the transformation from a formal specification to the al-
gorithm is simple and so is the conversion of the algo-
rithm into a working program in a functional language.
In many introductory programming courses this step is
neglected but we believe it is an important step to help-
ing the student produce code which does not just “work”
but is actually correct and does what it is supposed to
do. The step of actually arguing about the correctness
of the program re-inforces this idea in the student. Fol-
lowing this approach means that the student proves his
algorithms and programs correct in a more real and ef-
fective way, preparing him/herself for the proofs of sys-
tems on a much greater scale such as those that he/she
will face in the next years of his career. The last step
in the process would be the performance analysis of the
algorithm – this is done in an accessible manner for the
first year students by using concepts and theory which
they already understand from high school mathematics
and by not attempting to cover the more difficult topics
such as the average case analysis or how to do an empir-
ical analysis of an algorithm. In this way we could also
accomplish the goal stated in [1] which specifies that in
many instances the careers in CS are related only with
programming, by employing this methodology we will be
giving the student greater breadth in the discipline.

3.4 Assessment of the method

The approach described in Sections 3.1 and 3.3 above has
been used in the School of Computer at Wits since 1998
as part of the revised first year course [13] that was put
into place in that year. The lecturers involved in teach-
ing the course believe that it is accomplishing what it
is designed to do – to teach the students fundamentals
of Computer Science, to dispel the idea that CS is only
about programming, to give the students a solid ground-
ing in CS. In addition, the lecturers involved believe that
the formal approach taken results in the students produc-
ing better code in later years of study and once they go
out to work in industry.

In early 2009 Wits CS embarked on a short study [15]
to test their graduates’ perceptions of what is taught in
first year – in particular when considering the process
described in Section 3.1 above. Twenty seven graduates
working in industry or in graduate programmes in vari-
ous parts of world completed a short survey. The results
of the survey showed that the Wits graduates feel that
the fundamental concepts (logic, proof techniques, etc.)
which are taught in the first year course are important
for computer scientists, that the process for developing
correct efficient code is important and that the process

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009



leads to the development of better code.

4 Conclusions

Many introductory computer science courses focus quite
intensively on programming. The students are, however,
not shown good ways of developing correct working code
but rather are taught syntax and then left to figure out
how to make their programs work by “brute force” meth-
ods. This leads to bad code as well as to the impression
that programming is hard.

In Perú the functional paradigm has been chosen in or-
der to make programming more accessible but the em-
phasis on teaching is still on syntax. This means that the
students do not see the importance of developing good
software. We believe it is of great importance to try to
improve the mistakes committed during the lecturing of
these introductory courses, taking into account the ex-
perience gained from other universities, so that we could
improve the syllabic content of the courses that entail the
core of CS in the first year or the undergraduate topics
inside our institutions. In short, we feel that students can
and should to be taught how to develop correct efficient
code.

In this paper we have presented a proposal for a teach-
ing methodology for introductory programming courses
in Perú based on the teaching of formal methods, mathe-
matical proofs and algorithmic complexity analysis along
with the normal content. The main aim of the proposed
approach is to start to instruct undergraduate students in
the importance of developing correct working code based
on a formal process rather than developing code by more
ad hoc means. In addition, the methodology is also in-
tended correct the common misconception among stu-
dents that Computation is Programming. The approach
we proposed is based on a method that has been used
successfully at Wits in South Africa for over 10 years and
we believe it will be successful in Perú as well.

References

[1] ACM and IEEE working group, Roberts E. and En-
gel, G. (editors), Computing curricula 2001 – Final
Draft, December 2001.

[2] Armoni, M., On the role of proofs in a course on
design and analysis of algorithms. SIGCSE Bulletin,
38, 4, pp 39–42, 2006.

[3] Fekete, A. 1993. Reasoning about programs: inte-
grating verification and analysis of algorithms into
the introductory programming course. In Proceed-
ings of the Twenty-Fourth SIGCSE Technical Sym-
posium on Computer Science Education, Indianapo-
lis, Indiana, United States, February 18 - 19, pp 198–
202, 1993.

[4] Formal Methods Europe, 20 Feb 2007, <http://
www.fmeurope.org/>

[5] Foundations of Computer Science, University of
Cambridge, 24 Feb 2007, <http://www.cl.cam.ac.
uk/Teaching/1998/\\FoundsCS/>

[6] Foundations of Computer Science, SUNY at Stony
Brook ; Department of Computer Science, 24 Feb
2007 <http://www.cs.sunysb.edu/~cse113/>

[7] Gries, D., Teaching calculation and discrimination:
a more effective curriculum. Communications of the
ACM, 34, 3, pp 44-55, March 1991.

[8] Henderson, P. B., Anatomy of an introductory com-
puter science course. In Proceedings of the Seven-
teenth SIGCSE Technical Symposium on Computer
Science Education, Cincinnati, Ohio, United States,
February 06 - 07, pp 257–264, 1986.

[9] Lau, K., Bush, V. J., and Jinks, P. J., Towards an in-
troductory formal programming course. In Proceed-
ings of the Twenty-Fifth SIGCSE Technical Sym-
posium on Computer Science Education, Phoenix,
Arizona, United States, March 10 - 12, pp 121–125.
1994.

[10] Marion, W., CS1: what should we be teaching?.
SIGCSE Bulletin, 31, 4, pp 35–38. 1999.

[11] McLoughlin, H. and Hely, K., Teaching formal pro-
gramming to first year computer science students. In
Proceedings of the Twenty-Seventh SIGCSE Tech-
nical Symposium on Computer Science Education,
Philadelphia, Pennsylvania, United States, February
15 - 17, pp 155–159. 1996.

[12] Mueller, C., Rock, S., and Sanders, I., An improved
first year course taking into account third world stu-
dents. In Proceedings of the Twenty-Fourth SIGCSE
Technical Symposium on Computer Science Educa-
tion, Indianapolis, Indiana, United States, February
18 - 19, pp 213-217, 1993.

[13] Sanders, I. and Mueller, C., A fundamentals-based
curriculum for first year computer science. In Pro-
ceedings of the Thirty-First SIGCSE Technical Sym-
posium on Computer Science Education, Austin,
Texas, United States, March 07 - 12, pp 227–231,
2000.

[14] Sanders, I. D., Fundamental Algorithmic Concepts
Course Notes, School of Computer Science, Univer-
sity of the Witwatersrand, Johannesburg, 2003.

[15] Sanders, I. D., An assessment of the formal aspects
of the Wits first year course, Technical Report CS-
TR-2009-01, School of Computer Science, University
of the Witwatersrand, 2009.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-17012-6-8 WCECS 2009


