
 

 

 

 

Abstract—In this paper, we present a distance 

transform-based geometric path planning algorithm suitable for 

robots with vision capability. We show that the proposed 

approach can reduce the computation time needed to find an 

optimal collision-free path compared to other path planning 

algorithms by utilizing the output of the computer vision module 

and by eliminating any extra work to model the workspace of 

the robot. We illustrate the application of this algorithm in 2D 

and 3D and present two optimization algorithms to reduce the 

number of waypoints and shorten the Euclidean distance of the 

path. Finally, we show how this algorithm can be incorporated 

in systems with on-board sensors and how the output of the 

vision module can be streamed to the algorithm to allow 

real-time path planning. 

 
Index Terms—path planning, collision avoidance, computer 

vision.  

 

I. INTRODUCTION 

Geometric path planning is a robust alternative algorithm 

for  computing a  collision free path  connecting  the  initial 

and  final   configurations of a  robot with  a minimal  number  

of  waypoints in 2D and 3D environments. It provides a 

geometric description of the robot motion given a mapping 

and a description of the obstacles in the workspace. The 

algorithm outputs the (x,y,z) coordinates of the path in the  

workspace  which is then passed to a custom inverse 

kinematics block to compute the revolute and prismatic joint 

variables in the configuration  space.  In   this   paper, we 

illustrate the application of this algorithm by computing an 

optimal path for the end-effector; however, this algorithm can 

be applied to all the origins of the Denavit Hartenburg frames 

or a set of floating control points in the links to ensure that the 

entire kinematic chain follows a collision free path. The 

motivation for this path planning approach is to minimize the 

computation time needed to find a collision free path for 

sensor-equipped robots by eliminating the representational 

cost incurred by modeling the workspace. This is done by 

designing the path planning algorithm around the output of 

the vision module, mainly the segmented image of the 

workspace. 

 

II. PRIOR WORK 

Most of the work on the motion planning for robots has 

 
Manuscript received July 5, 2009.  

Ziyad Aljarboua is with Harvard University, Cambridge, MA 02138 USA 

(phone: 617-955-1063; fax: 815-717-9838; e-mail: 

aljarb@fas.harvard.edu). 

approached the problem with the assumption that the 

environment in which the robot operates is completely or 

partially known. Based on the approach of this paper, path 

planning algorithms can be classified according to the 

extensiveness and the cost of the workspace representation. 

Methods like vertex graph and cell decomposition are 

examples of algorithms with low representational cost [1][2]. 

They, however, are too local and their modeling cost grows 

with the area of the workspace rather than the number of 

obstacles. The other category consists of methods that involve 

large overhead for the construction of the workspace model 

such as the quadtree and octree representations [3][4]. In 

these methods, the free space is hierarchically decomposed 

into smaller units and the findpath problem is essentially 

converted into a graph search problem. Algorithms like 

Dijkstra or A* are used in such algorithms to search the graph 

[5][6]. The computation cost of these methods takes  (n
2
) 

time where n is the number of vertices of the obstacles [7]. 

Randomized potential field is a sampling-based planning 

method based on performing best-first search on a high or 

multi resolution grid and a random walk to skip local minima 

[8]. This method exploits best-first heuristics to solve the 

findpath problem without searching all grid points. It, 

however, involves many heuristic parameters that need to be 

adjusted for each problem. Path planning has also been 

proposed in the configuration space. Randomized 

preprocessing schemes used for query processing in 

holonomic robots configuration space path planning through 

the use of random sampling in the preprocessing stage [9][10]. 

In such methods, a probabilistic roadmap is constructed and 

used in the query phase. The roadmap represents a graph 

where the nodes correspond to collision-free configurations 

and the edges correspond to the paths between these 

configurations. These methods suffer from extended learning 

time in environments with complicated geometry and are 

limited to static   workspaces. 

 

III. THE 2D ALGORITHM 

The 2D geometric path planning algorithm in which the 

world 𝒲=
 2
 is based on distance transform where the 

workspace is modeled as a digital image (or a distance map) 

with a set of occupiable positions (cells or pixels). Each cell 

can either be free, occupied by an obstacle or occupied by a 

point on the path of the robot. Figure 1 shows an example of a 

60×60 distance map in 2D with cylindrical obstacles 

uniformly distributed throughout the workspace and an 

optimal path connecting the initial and final configurations. 

Each cell is initialized to zero to indicate a free cell and then 

Geometric Path Planning for General Robot 

Manipulators 

Ziyad Aljarboua 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



 

 

 

the obstacle region φ ⊆ 𝒲 is systematically constructed by 

performing a one-time simple sequential scan of the 

workspace to assign a non-zero value to all cells occupied by 

obstacles. The free space  then becomes . In 

2D, the value of the occupied cell has no significance and it is 

only used to indicate the presence of an obstacle at that 

location. Figure 2 shows the 3D model of the workspace of 

figure 1 with arbitrary values assigned to the cells occupied by 

the obstacles. Given the initial and final position of the 

end-effector,   and , the path is computed by recursively 

reevaluating the distance to the final goal from each of the 

neighboring cells to select the next intermediate cell that lies 

on the path as illustrated in figure 3. K-neighborhood for the 

grid, the number of cells to evaluate at each time step to 

determine the search depth, is set to the 8 adjacent cells. The 

selection of the K-neighborhood represents a tradeoff 

between the computation time and the length of the path.  

Increasing the  k-neighborhood  value enables the path  to skip 

intermediate cells. This effect is offseted by the two 

optimization steps included in this algorithm. At each 

iteration, the Euclidean distance from all the 8 adjacent cells 

to the final position is initialized to infinity and then 

reassigned the actual distance if the cell is not occupied by an 

obstacle and it is not already part of the path. Finally, the cell 

with the shortest distance from the goal is selected and   added 

to the path. This process is repeated until the distance from the   

goal is less   than   the   specified tolerance ε. 

 

IV. PATH BACKTRACKING 

Similar to the local minima trap in the gradient descent, this 

algorithm can get trapped between a set of obstacles as shown 

in figure 4. Generally, the algorithm does not allow any cell 

that lies on the path to be occupied more than once in order to 

avoid overlapping. Configurations like the one depicted in 

figure 4 causes the algorithm to terminate the path short of the 

final goal. To avoid a premature termination, a backtracking 

algorithm is used to spring off a new path from one of the 

preceding cells that lie on the initial path. The execution of the 

backtracking algorithm is triggered by the detection of a 

distance equal to infinity at all the 8 adjacent cells because 

they are either occupied by obstacles or they are part of the 

path. In this case, the algorithm recursively returns the head of 

the path to the preceding cells starting from the nearest and 

blocks the natural path leading to the current trapped cell. At 

each iteration, a new path is computed starting from the new 

cell. If the path gets trapped again, the head of the path is 

reassigned to the previous cell and the path is recomputed 

again. 

 

 

 

 

 

 

 

 

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

x

y

Digital Image of Worksapce

 
Figure 1: A 2D Digital image of a 60x60 grid representing 

a 30x30 inch region with cylindrical obstacles 2 inch in 

diameter uniformly distributed throughout the 

workspace. The yellow line represents an optimal 

collision free path connecting the initial and the final 

positions located at (-14,-14) and (14,14) respectively. 

 

-10
0

10
-10

0

10

0

0.5

1

1.5

x

Digital Image of Worksapce

y

z

 

Figure 2: The 3D digital image of the workspace shown in 

figure 1 with arbitrary height (z-value) assigned to 

obstacles.  

 

 

Figure 3: 2D path planning algorithm. 

 

while( distance ≤ ε ): 

       for i =1 → 8: 

               dist( i ) = ∞ 

               if( cell( i ) is free & != history ) 

                      dist( i )=norm( cell( i ) –   ) 

        [distance I ]=min( dist ) 

       new cell = cell( I ) 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



 

 

 

 

 

Figure 4: A configuration leading to a premature 

termination of the path short of the goal. Backtracking 

algorithm is employed to reposition the head of the path 

to the subsequent waypoints and recompute a different 

path. 

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

 
Figure 5: An example of a path that can be optimized. An 

optimized path (yellow) is computed from the initial path 

(black) by detecting any unnecessary parts of the initial 

path. As shown in the plot, the yellow line does not include 

the loop found in the initial path. 

 

V. OPTIMIZATION 

A. First Optimization Phase 

Two optimization runs are carried out for the initial path to 

reduce the number of waypoints. Optimality criterion 

considered here is the Euclidean length of the path which 

inherently implies the least number of waypoints. The first 

optimization phase reduces the number of steps needed to 

reach the final position by eliminating any unnecessary parts 

of the path generated as a result of the nature of the algorithm. 

Figure 5 shows an example of a path with an extra loop that 

can be eliminated without affecting the path. This can be 

easily done by computing the midpoints of the path segments 

between the centers of the cells. These segments are 

interpolations of the path waypoints generated by the 

algorithm; thus, the requirement for single cell occupancy is 

not observed and overlapping can occur in these midpoints. 

The path is drawn by linearly interpolating the waypoints 

resulting in straight lines between the cell centers. The linear 

behavior of the line allows the inexpensive computation of the 

line center (midpoint) by simply computing the lengths of 

these line segments as illustrated in figure 6. This 

optimization step enables the reduction of the number of 

waypoints by percentages dependent on the amount of 

overlapping in the path. In figure 6, the length of the optimal 

path is 30% shorter that the initial one.  

B. Second Optimization Phase 

The second and final optimization step is amid at 

further reducing the length of the path by skipping any 

waypoints that do not lie on the critical path. This is done 

by evaluating alternative paths to the one generated by the 

first optimization level. Starting from the initial position, 

straight lines connecting the first waypoint and all other 

waypoints are computed. All lines that cross  are 

eliminated and the line connecting the current waypoint 

with the furthest waypoint while not crossing  is 

selected to replace that segment of the initial line. This 

process is done recursively to all waypoints until the final 

position is reached. This process generates the waypoints 

that lie on the critical path and eliminates all others. 

Figures 7 and 8 show two examples of optimized paths 

where the number of waypoints was reduced by 40% and 

95% respectively. 

 

 
 

Figure 6: Algorithm to calculate the location of the 

midpoints used in the first optimization level to detect 

overlapping. 

 
diag=norm(p(i) – p(i+1))/2 

xmid=( px(i+1) – px(i) )/2 

if( py(i+1) > py(i) ): 

       ymid=sqrt(diag2–xmid2) 

else: 

       ymid= – sqrt(diag2–xmid2) 

xmidpt=px(i) + xmid  

ymidpt=py(i) + ymid  

 

if ( distance ==  ∞ ): 

       for i = length(history) →  1: 

              new cell =  history( i ) 

       recompute path 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



 

 

 

 
 

Figure 7: 2
nd

 level of optimization in 2D. The (blue) path is 

further shortened by minimizing the number of 

waypoints. 

 

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

 
Figure 8: An example showing a collision free path in 2D 

with all 2 levels of optimization. Waypoints reduced from 

260 to 14. 

 

VI. COLLISION DETECTION 

The occupancy of a cell is determined using a collision 

detector which returns true for a cell in 𝒲 that lies in φ and 

false otherwise. This detection method permits the 

representation of obstacles as non-convex polygons. Collision 

detection for a path segment 𝑙 is performed by representing 𝑙 
as a set of cells in the digital image such that: 

. 

Where (x,y) are the coordinates of the points on the line and 

 is a function that maps points in the workspace to their 

corresponding cells. The collision detection executes in time 

 where n is the number of cells that represents the line 

segment. Another common approach for validating a path 

segment involves only evaluating samples of the path for 

collision. The resolution of sampling can be determined 

empirically or by employing a look-ahead detection 

algorithm. 

 

VII. THE 3D ALGORITHM 

The same algorithm can be extended to 3D environments 

by modeling the workspace as a 3D distance map where  

=  
3
. The third dimension is modeled by stacking 2D layers 

of cells spaced by an amount less than or equal to ε. The 26 

adjacent cells are evaluated to find the nearest cell to the final 

configuration as shown in figure 9. In 3D, the height of the 

obstacle is significant since the path now can go over objects 

and not just around them. The performance of the algorithm in 

3D is undermined by the added complexity of tripling the 

number of cells to evaluate at each iteration. Generally, all the 

three steps of computing an optimal path take significantly 

more time than in 2D. 

 

 
 

Figure 9: 3D path planning algorithm. 

 

 
 

Figure 10: Using a segmented image of the workspace to 

enable path planning algorithm. 

  
1. Image segmentation 

 Background = 0 

 Foreground = x (2D)         where x≠0 

                          = height (3D) 

2. Path planning  

 

while( distance ≤ ε): 

      for i=1 → 26: 

            dist(i) = ∞ 

            if( cell(i) is free & !=history) 

                  dist(i)=norm( cell(i) –    ) 

       [distance I ]=min(dist) 

      new cell = cell(I)  

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

 
i=1; 

for j=i+1 → length( path ): 

   while( line(i→j) is free): 

     j++ 

   path2(i+1)=path(j-1) 

  

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



 

 

 

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.2

0.4

0.6

0.8
ti
m

e
 t

o
 c

o
m

p
u
te

 i
n
it
ia

l 
p
a
th

 (
s
e
c
)

# cells in grid

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

ti
m

e
 t

o
 c

o
m

p
u
te

 o
p
ti
m

a
l 
p
a
th

1
 (

s
e
c
)

 
Figure11: Computation time grows as the size of the grid 

is increased. This relationship is obtained by modeling an 

obstacle-free workspace. 

 

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

# obstacles

ti
m

e
 t

o
 m

o
d
e
l 
w

o
rk

s
p
a
c
e
 (

s
e
c
)

 
Figure12: Time to map obstacles grows linearly as the 

number of obstacles is increased. A 60x60 grid is used to 

generate this plot. The time taken to map obstacles does 

not include the time to compute the path. 

 

VIII. COMPUTER VISION 

The main contribution of this algorithm is the improvement 

in the computation time needed to map a collision free path 

when used in sensor equipped robots by eliminating the 

representational cost. The digital map, an array of zeros and 

ones representing the workspace that this algorithm requires 

in order to be able to compute the distance to the final 

position, can be substituted by a segmented image of the 

workspace from the vision module. This eliminates the 

computation time needed to model the workspace and map the 

obstacles in order to generate the digital map. This is 

particularly important for real time path planning where the 

workspace is constantly changing. Figure 10 shows an 

example of the process of transitioning from an image to a 

digital map by segmentation. Figure 10 shows the image 

before and after segmentation where the background is now 

represented by zeros and the foreground by any non-zero 

value. This representation of the workspace is sufficient for 

the algorithm to be able to compute a collision free path with a 

minimal number of waypoints. 

IX. CONCLUSION 

We presented a distance transform-based algorithm for 

obstacle avoidance and path planning that is suitable for 

robots with on-board sensors. Geometric path planning is 

characterized by low representational cost compared to 

similar algorithms. Designing the algorithm around the output 

of the vision module can further reduce the computation time 

by eliminating the representational cost. Geometric path 

planning algorithms have their limitations when used in 

mobile robots since they are too local and cannot compute 

long paths efficiently. Doing so would require increasing the 

size of the grid to represent a larger region of the workspace. 

This represents a tradeoff between the size of the grid and the 

computation time. The computation cost increases as the 

number of cells to evaluate at each time step grows. Figure 11 

shows the relationship between the time taken to compute the 

initial and optimal paths and the grid size. Unlike other 

probabilistic algorithms, the computation time is proportional 

to the grid size rather than the number of obstacles. Moreover, 

the path generated by geometric path planners clips obstacles’ 

corners as shown in most examples above. This represents an 

undesired behavior in most robot applications. Over all, 

geometric path planning is an efficient algorithm for localized 

workspaces with reasonable error margins.  

REFERENCES 

[1]     Thrope, “path relaxation: path planning for a mobile robot.” 

Proceedings of the National Conference on Artificial Intelligence, 

1984. 

[2]      H. Moravec, “Rover visual obstacle avoidance,” Proceedings of the 

Seventh International Joint Conference on Artificial Intelligence, 

1981. 

[3]     S. Kambhampati, L. Davis, “Multiresolution path planning for mobile 

robots,” IEEE Journal of Robitcs and Automation, 2(3):135-145, 

1986. 

[4]     B. Faverjon, “Obstacle avoidance using an octree in the configuration 

space of a manipulator,” Proceedings of IEEE International 

Conference on Robotics and Automation, 1984. 

[5]     R. Mohring, H. Schilling, “Partitioning graphs to speed up Dijkstra’s 

algorithm,” ACM Journal of Experimental Algorithmics, Vol. 11, 

Article No. 2.8, 2006. 

[6]     P. Hart, N. Nilsson, B. Raphael, “A formal basis for the heuristic 

determination of minimum cost paths,” IEEE Transactions of System 

Science and Cybernetics, Vol. ssc-4, No. 2, 1968. 

[7]     E. Welzl, “Constructing the visibility graph for n line segments in 

O(n2) time,” let.20 pp.167-171, 1985. 

[8]     S.M. LaValle, “Planning algorithms,” Cambridge University Press, 

New York, pp.228-240, 2006. 

[9]     L. Kavraki, J.-C. Latombe, R. Motwani, P. Raghavan, “Randomized 

query processing in robot path planning,” Proceedings of the 27th 

Annual ACM Symposium on Theory of Computing, 1995. 

[10] L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars, “Probabilistic 

roadmaps for path planning in high dimensional configuration spaces,” 

IEEE Transactions on Robotics and Automation, 12(4), 566-580, 

1996. 

 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009


