

Abstract—In this paper, we investigate the problem of

8-directional robot motion planning where the goal is to find a
collision-free path from the starting to the target position in the 2D
space containing point and rectangular obstacles. In contrast to the
traditional approaches frequently based on decomposition methods
combined with heuristic methods, we propose a method for solving
this problem using rectilinear Voronoi diagrams whose bisectors are
restricted only to horizontal, vertical and diagonal directions.

Index Terms—decomposition methods, case-based reasoning,
motion planning, Voronoi diagram.

I. INTRODUCTION
The task of planning trajectories of a mobile robot, has

received considerable attention in the research literature [1]-
[3]. This task can be formulated in many ways depending on
various conditions, e.g. on the fact whether the terrain
contains obstacles, which shape they have, or whether the
obstacles are movable. Further constraints may represent
knowledge of the scene (complete or partial), the metric
under consideration and so on. In this paper, we concentrate
on a special case of motion planning in the 2D completely
known scene with static point and polygonal obstacles that
can be composed from rectangular parts and where possible
movements of a robot are reduced only to horizontal, vertical
and diagonal directions. This problem is usually solved by
heuristics applied to a grid representation of the plane e.g. [2]
and can include a case-based reasoning procedure [4], [5].
We will briefly sketch this approach for the case of
8-directional motion using genetic algorithm and discuss its
limitations.

Unfortunately the cardinality of the search space of
possible paths in the grid has exponential dependence on the
granularity of the plane.

Therefore we propose an entirely different approach based
on an application of a rectilinear Voronoi diagram using only
steps of polynomial time complexity and avoiding all the
other drawbacks of the previous approach. In contrast to [6],
we will start with the classical Voronoi diagram in the
Euclidean plane and later adapt it to the rectilinear case and
define a way of replacing its diagonal segments to apply it
also to constructing a horizontal/vertical trajectory between

Manuscript received June 26, 2009. This work has been supported by the
Czech Science Foundation GA ČR in the frame of GA ČR 102/09/1668
project “Control Algorithm Design by Means of Evolutionary Approach”
and by the Ministry of Education, Youth and Sports of the Czech Republic
under research plan MSM 0021630518 "Simulation Modelling of
Mechatronic Systems".

M. Šeda and T. Březina work in the Institute of Automation and Computer
Science, Faculty of Mechanical Engineering, Brno University of
Technology, Technická 2896/2, CZ 616 69 Brno, Czech Republic (e-mail:
seda@fme.vutbr.cz, brezina@fme.vutbr.cz).

the starting and target position.

II. DECOMPOSITION METHODS
In this section, we will assume 8-directional robot motion

in the plane with static rectangular obstacles. In such case, the
scene can be easily modelled by a grid and then we only
concentrate on navigating the robot from the starting to the
target position choosing allowed directions without collisions
with obstacles. That means that the path is defined as a
sequence of adjacent cells between start and target to given
constraints and its total length is expressed by the sum of
distances between adjacent cells.

If there are more feasible solutions (i.e. paths between start
and target satisfying defined constraints), then we try to
determine the paths of a minimal value of a cost function
considering both the length and the difficulty of a path. For
calculations, it is necessary to assign values to possible
directions, e.g. by Fig. 1.

Fig. 1: Valid directions of robot motion

A grid representation of the plane with obstacles is shown

in Fig. 2. The robot is represented by a little disk and its
starting and target positions are situated in cells in the left
upper and right lower corners.

Fig. 2: Grid representation of 2D space with starting and
target positions of the robot and static obstacles.

In Fig. 3 a path from a starting to a target position in the
configuration from Fig. 2 and its coding is shown.

Robot Motion Planning in Eight Directions
Miloš Šeda and Tomáš Březina

 3

 7

2 4

 8 6

1 5

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Fig. 3: A path with coding
 (5,5,6,8,7,7,6,5,7,8,7,8,5,5,5,5,3,5,5,6)

It is obvious that the problem is of a combinatorial nature

and its time complexity depends on the granularity grid and
distribution of obstacles. Even if we restrict our
considerations to the case where paths have fixed lengths, the
complexity remains exponential.

Assume m=n (square grid). Then the cardinality of the
search space is equal to 82n = (23)2n = 26n, which, even for not
very high values of m and n, leads to a rather intractable
amount of possible paths, for m=n=20, for example, we get
26n = 2120 = (210)12 = (1024)12 > 1036 paths, which gives no
chance to achieve the optimal solution in a reasonable
amount of time.

Fig. 4: Collisions with obstacles and collision-free paths

However, besides the exponential explosion, the cell

decomposition-based path planning in 8 directions has many
other drawbacks as follows:
• Robot size must be smaller than cell size. In the opposite

case, we are not able to determine uniquely the robot
position. This decreases the possible range of grid.

• If we use stochastic heuristic techniques (genetic
algorithms, simulated annealing, tabu-search, …) for
finding trajectories, then their crossover, mutation and
neighbourhood operators generate many infeasible

solutions (movements out of grid, collisions with
obstacles). In Fig. 4 we can see that, although the
neighbouring cells are free, the robot cannot move
between them without colliding with obstacles.

The computation may include a case-based reasoning
procedure [4], [5].

Case-based reasoning (CBR) is based on the retrieval and
adaptation of old solutions to new problems.

A general CBR cycle may be given by the following steps:
• Retrieve the most similar case or cases;
• Reuse the information and knowledge in that case to solve

the problem;
• Revise the proposed solution;
• Retain the parts of this experience likely to be useful for

future problem solving.

Fig. 5: 1-2-3-4 = old solution;
 1’-1-old solution-4-4’ = new solution;
 1’-2-3-4’ = optimal solution

If, for a given start cell cs
0 and a given goal cell cg

0, the
case-base does not contain a path leading from cs

0 to cg
0, a

similar path is retrieved according to the formula
(){ }δδ ≤≤=′′),(,),(),(minarg),(00

ggssgsgs ccdccdccPFccP

 (1)
The problem is that the new solution gained as an

adaptation of the most similar case in old solutions can be
worse than a new computation that is not based on the stored
cases as Fig. 5 shows.

The approach demonstrated by Fig. 5 has also another
drawback that occurs mainly in databases that contain only a
few solutions where a new problem cannot be very similar to
the solutions stored in a database. It can be partially
improved if, in addition to taking into consideration the start
and target positions of the old solutions, we first try to
investigate the neighbouring cells of the new start and target.
If these neighbours intersect some of the paths stored in a
database, then these intersections are used for joining to the
old solutions. This is shown in Fig. 6.

 Robot motion planning algorithms can be modified by
considering a robot as a point and enlarging the obstacles in
the workspace accordingly. We “add” the size of robot to the
obstacles using Minkowski sums [1] and thus the robot is
reduced to a point.

1

2

3 4

1’

4’

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Fig. 6: “Neighbour-intersection” strategy

III. ROADMAP METHODS
Now we will describe another approach that does not

guarantee finding the shortest path but takes into
consideration motion safety in the sense of minimising
possible collisions with obstacles. It is based on geometric
data structures and therefore we define necessary notions.

A Voronoi diagram of a set of points (called sites) in the
Euclidean plane is a collection of regions that divide up the
plane. Each region corresponds to one of the sites and all the
points in one region are closer to the site representing the
region than to any other site.

More formally [1], [7], [9]:

Definition 1 Let P be a set of n points in the plane. For two
distinct sites pi, pj ∈ P, the dominance of pi over pj is defined
as the subset of the plane that is at least as close to pi as to pj.
Formally,
 dom(pi, pj)={x∈ℜ2 | d(x, pi) ≤ d(x, pj)}, (2)
where d denotes the Euclidean distance.

Clearly, dom(pi, pj) is a closed half-plane bounded by the
perpendicular bisector of pi and pj.

Definition 2 Voronoi region (or Voronoi polytope, Voronoi
cell, Voronoi face, Dirichlet polygon, Thiessen polygon) of a
site pi∈P is a close or open area V(pi) of points in the plane
such that pi∈ V(pi) for each pi, and any point x∈ V(pi) is at
least as close to pi as to any other sites in P (i.e. V(pi) is the
area lying in all of the dominances of pi over the remaining
sites in P).

Formally,

{ }2

{ }

() | (,) (,) : ({ })

dom(,)
i

i i i

i
q P p

V P x d x p d x q q P p

p q
∈ −

= ∈ℜ ≤ ∀ ∈ − =

= ∩ (3)

Since the Voronoi regions are formed by intersecting n−1

half planes, they are convex polygons. Thus the boundary of
a region consists of at most n−1 edges (maximal open
straight-line segments) and vertices (their endpoints). Points
on the boundary of V(pi) and V(pj) are equidistant to pi and pj.

Definition 3 A Voronoi diagram (or Voronoi tessellation)
for a given set P={p1, p2, … , pn} of points (or sites) is a
polygonal partition of the plane into Voronoi regions
V(p1),V(p2), … , V(pn). The vertices of polygons V(pi) are
called the vertices of the Voronoi diagram, and their edges
are called the edges of the Voronoi diagram. A Voronoi
diagram is called degenerate if four or more of its Voronoi
edges have a common endpoint.

Clearly, each edge of the Voronoi diagram belongs to just
two Voronoi regions and
 () ()

i

i
p P

V P V P
∈

= ∪ (4)

Consider a disc-shaped robot. If a set of obstacles is only

by points, these point obstacles can be considered as sites of a
Voronoi diagram and the robot can use for its tour the
shortest path along the Voronoi diagram edges that represent
passable channels among obstacles, see Fig. 7.

This allows us to reduce the robot motion problem to a
graph search problem again. However, in practice, obstacles
very often have more general shapes than point ones and thus
we must generalise the algorithm for constructing Voronoi
diagrams. We take the vertices of polygonal obstacles to be
point obstacles, then compute the corresponding Voronoi
diagram and, finally, remove from the diagram all the edges
intersecting the obstacles.

For time complexity considerations it is necessary to know
the properties of the Voronoi diagrams and algorithms of
their constructions. Therefore, we will briefly summarise
them in the next paragraphs.

Fig. 7: Motion planning in a scene with point obstacles

Assume that Voronoi diagrams are non degenerate (no

four or more of its Voronoi edges have a common endpoint).
Then the following is satisfied [1], [7]-[9]:
• Every vertex of a Voronoi diagram V(P) is a common

intersection of exactly three edges of the diagram.
• A point q is a vertex of V(P) if and only if its largest

empty circle CP(q) contains three points on its boundary.
• The bisector between points pi and pj defines an edge of

V(P) if and only if there is a point q such that CP(q)
contains both pi and pj on its boundary but no other point.

• For any q in P, V(q) is convex.
• Voronoi diagram V(P) of P is planar.

start

target

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

• Polygon V(pi) is unbounded if and only if pi is a point on
the boundary of the convex hull of the set P.

The number of vertices in the Voronoi diagram of a set of n
point sites in the plane is at most 2n−5 and the number of
edges is at most 3n−6.

The fundamental algorithms and their modifications
include the incremental algorithm, random incremental
algorithm, divide and conquer algorithm and plane sweep
algorithm (or Fortune’s algorithm). More details can be
found e.g. in [1], [7]-[9]: The time complexity of the
incremental algorithm is O(n2) in the worst case, and O(n log

n) for the other three algorithms.

Fig. 8: Motion planning in 8 directions in a scene with point

obstacles

Consider rectilinear (or Manhattan) metric
 ||||),(jijiji yyxxppd −+−= (5)

If we use the rectilinear metric for a Voronoi diagram,
then, due to the rectilinearity, each straight-line segment of a
bisector in the now rectilinear Voronoi diagram will be either
horizontal, vertical, or inclined at 45° or 135° to the positive
direction of the x-axis [6]. This finding suggests using the
rectilinear Voronoi diagram for the 8-directional motion
planning. This approach avoids all the drawbacks of classical
plane decomposition methods (combinatorial explosion, low
boundaries for grid representation and generating many
infeasible solutions).

The rectilinear Voronoi diagram can be constructed by a

simple modification of the random incremental algorithm for
the Euclidean metric.

In Fig. 8 an example of disc-shaped robot motion planning
in eight directions for a set of eight point obstacles is shown.

Now consider a more general case of a scene where,
besides point obstacles, rectangular obstacles occur. Fig. 9
shows such a scene with the rectilinear Voronoi diagram
constructed for point obstacles only. After the construction of
the rectilinear Voronoi diagram for point obstacles, we
increase the width and height of the rectangular obstacles by
the diameter of the disc-shaped robot and a certain small
number representing a reserve for finding a collision-free
path. For the optimal path between the starting and target
position, we search in the graph whose edges create the edges
of the “extended” rectangular obstacles and edges of the
rectilinear Voronoi diagram without their parts inside the
extended obstacles.

Fig. 9: Motion planning in 8 directions in a scene with point and

rectangular obstacles

IV. CONCLUSION
In this paper, we proposed applications of the Voronoi

diagrams to 8-directional motion planning. As algorithms for
constructing the Voronoi diagrams run in polynomial time,
the number of their edges is linearly dependent on the number
of obstacles, algorithms for searching the shortest paths in
graphs are also polynomial, and this holds for all additional
operations for finding a collision-free path of a robot
(replacements, extensions of the rectangular obstacles), the
overall time complexity of all proposed algorithms is

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

polynomial. This approach avoids all the drawbacks of
classical methods (combinatorial explosion, low boundaries
for grid representation and generating many infeasible
solutions).

In future, we will try to generalize this approach for cases
of more complex shapes of obstacles and movable obstacles.
Further investigating will also include the case when the
environment is totally or partially unknown, varying over
time or a combination of both.

REFERENCES
[1] M. de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry: Algorithms and Applications. Berlin:
Springer-Verlag, 2000.

[2] K. Sugihara and J. Smith, “Genetic Algorithms for Adaptive Planning
of Path and Trajectory of a Mobile Robot in 2D Terrains,” IEICE
Transactions on Information and Systems, vol.E82-D, vo.1, 1999, pp.
309-317.

[3] A. Zilouchian and M. Jamshidi, Intelligent Control Systems Using Soft
Computing Methodologies, CRC Press, Boca Raton, 2001.

[4] J. Dvořák and P. Krček, Using Case-Based Reasoning and Graph
Searching Algorithms for Mobile Robot Path Planning, in Proceedings
of the 12th International Conference on Soft Computing MENDEL
2006, Brno, Czech Republic, 2006, pp. 151-156.

[5] M. Kruusmaa and J. Willemson, “Covering the Path Space: A Casebase
Analysis for Mobile Robot Path Planning,” Knowledge-Based Systems,
vol.16, 2003, pp. 235-242.

[6] S. Guha and I. Suzuki, “Proximity Problems for Points on a Rectilinear
Plane with Rectangular Obstacles,” Algorithmica, vol. 17, 1997, pp.
281-307.

[7] F. Aurenhammer, “Voronoi Diagrams – A Survey of a Fundamental
Geometric Data Structure,” ACM Computing Surveys, vol. 23, no. 3,
1991, pp. 345-405.

[8] S.M. LaValle, Planning Algorithms. Cambridge: University Press,
2006.

[9] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessellations
and Applications of Voronoi Diagrams. New York: John Wiley &
Sons, 2000.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

