
 
 

 

  
Abstract—In this paper, we investigate the problem of 

8-directional robot motion planning where the goal is to find a 
collision-free path from the starting to the target position in the 2D 
space containing point and rectangular obstacles. In contrast to the 
traditional approaches frequently based on decomposition methods 
combined with heuristic methods, we propose a method for solving 
this problem using rectilinear Voronoi diagrams whose bisectors are 
restricted only to horizontal, vertical and diagonal directions. 
 

Index Terms—decomposition methods, case-based reasoning, 
motion planning, Voronoi diagram.  
 

I. INTRODUCTION 
The task of planning trajectories of a mobile robot, has 

received considerable attention in the research literature [1]- 
[3]. This task can be formulated in many ways depending on 
various conditions, e.g. on the fact whether the terrain 
contains obstacles, which shape they have, or whether the 
obstacles are movable. Further constraints may represent 
knowledge of the scene (complete or partial), the metric 
under consideration and so on. In this paper, we concentrate 
on a special case of motion planning in the 2D completely 
known scene with static point and polygonal obstacles that 
can be composed from rectangular parts and where possible 
movements of a robot are reduced only to horizontal, vertical 
and diagonal directions. This problem is usually solved by 
heuristics applied to a grid representation of the plane e.g. [2] 
and can include a case-based reasoning procedure [4], [5]. 
We will briefly sketch this approach for the case of 
8-directional motion using genetic algorithm and discuss its 
limitations.  

Unfortunately the cardinality of the search space of 
possible paths in the grid has exponential dependence on the 
granularity of the plane.  

Therefore we propose an entirely different approach based 
on an application of a rectilinear Voronoi diagram using only 
steps of polynomial time complexity and avoiding all the 
other drawbacks of the previous approach. In contrast to [6], 
we will start with the classical Voronoi diagram in the 
Euclidean plane and later adapt it to the rectilinear case and 
define a way of replacing its diagonal segments to apply it 
also to constructing a horizontal/vertical trajectory between 
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the starting and target position. 
 

II. DECOMPOSITION METHODS 
In this section, we will assume 8-directional robot motion 

in the plane with static rectangular obstacles. In such case, the 
scene can be easily modelled by a grid and then we only 
concentrate on navigating the robot from the starting to the 
target position choosing allowed directions without collisions 
with obstacles. That means that the path is defined as a 
sequence of adjacent cells between start and target to given 
constraints and its total length is expressed by the sum of 
distances between adjacent cells.  

If there are more feasible solutions (i.e. paths between start 
and target satisfying defined constraints), then we try to 
determine the paths of a minimal value of a cost function 
considering both the length and the difficulty of a path. For 
calculations, it is necessary to assign values to possible 
directions, e.g. by Fig. 1. 

   
Fig. 1:  Valid directions of robot motion 

 
A grid representation of the plane with obstacles is shown 

in Fig. 2. The robot is represented by a little disk and its 
starting and target positions are situated in cells in the left 
upper and right lower corners. 

  
Fig. 2: Grid representation of 2D space with starting and 
target positions of the robot and static obstacles. 
 

In Fig. 3 a path from a starting to a target position in the 
configuration from Fig. 2 and its coding is shown. 
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Fig. 3:  A path with coding 
 (5,5,6,8,7,7,6,5,7,8,7,8,5,5,5,5,3,5,5,6) 
 
It is obvious that the problem is of a combinatorial nature 

and its time complexity depends on the granularity grid and 
distribution of obstacles. Even if we restrict our 
considerations to the case where paths have fixed lengths, the 
complexity remains exponential. 

Assume m=n (square grid). Then the cardinality of the 
search space is equal to 82n = (23)2n = 26n, which, even for not 
very high values of m and n, leads to a rather intractable 
amount of possible paths, for m=n=20, for example, we get 
26n = 2120 = (210)12 = (1024)12 > 1036 paths, which gives no 
chance to achieve the optimal solution in a reasonable 
amount of time.  

 

 
Fig. 4:  Collisions with obstacles and collision-free paths 

 
However, besides the exponential explosion, the cell 

decomposition-based path planning in 8 directions has many 
other drawbacks as follows: 
• Robot size must be smaller than cell size. In the opposite 

case, we are not able to determine uniquely the robot 
position. This decreases the possible range of grid.  

• If we use stochastic heuristic techniques (genetic 
algorithms, simulated annealing, tabu-search, …) for 
finding trajectories, then their crossover, mutation and 
neighbourhood operators generate many infeasible 

solutions (movements out of grid, collisions with 
obstacles). In Fig. 4 we can see that, although the 
neighbouring cells are free, the robot cannot move 
between them without colliding with obstacles. 

The computation may include a case-based reasoning 
procedure [4], [5]. 

Case-based reasoning (CBR) is based on the retrieval and 
adaptation of old solutions to new problems.  

A general CBR cycle may be given by the following steps: 
• Retrieve the most similar case or cases;  
• Reuse the information and knowledge in that case to solve 

the problem;  
• Revise the proposed solution;  
• Retain the parts of this experience likely to be useful for 

future problem solving.  
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Fig. 5:  1-2-3-4 = old solution;  
 1’-1-old solution-4-4’ = new solution;  
 1’-2-3-4’ = optimal  solution 

If, for a given start cell cs
0 and a given goal cell cg

0, the 
case-base does not contain a path leading from cs

0 to cg
0, a 

similar path is retrieved according to the formula  
( ){ }δδ ≤≤=′′ ),(,),(),(minarg),( 00

ggssgsgs ccdccdccPFccP

 (1) 
The problem is that the new solution gained as an 

adaptation of the most similar case in old solutions can be 
worse than a new computation that is not based on the stored 
cases as Fig. 5 shows.  

The approach demonstrated by Fig. 5 has also another 
drawback that occurs mainly in databases that contain only a 
few solutions where a new problem cannot be very similar to 
the solutions stored in a database.  It can be partially 
improved if, in addition to taking into consideration the start 
and target positions of the old solutions, we first try to 
investigate the neighbouring cells of the new start and target. 
If these neighbours intersect some of the paths stored in a 
database, then these intersections are used for joining to the 
old solutions. This is shown in Fig. 6.     

 Robot motion planning algorithms can be modified by 
considering a robot as a point and enlarging the obstacles in 
the workspace accordingly. We “add” the size of robot to the 
obstacles using Minkowski sums [1] and thus the robot is 
reduced to a point. 
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Fig. 6:  “Neighbour-intersection” strategy 
 

III. ROADMAP METHODS 
Now we will describe another approach that does not 

guarantee finding the shortest path but takes into 
consideration motion safety in the sense of minimising 
possible collisions with obstacles. It is based on geometric 
data structures and therefore we define necessary notions. 

A Voronoi diagram of a set of points (called sites) in the 
Euclidean plane is a collection of regions that divide up the 
plane. Each region corresponds to one of the sites and all the 
points in one region are closer to the site representing the 
region than to any other site.  

More formally [1], [7], [9]:   

Definition 1 Let P be a set of n points in the plane. For two 
distinct sites pi, pj ∈ P, the dominance of pi over pj is defined 
as the subset of the plane that is at least as close to pi as to pj. 
Formally,  
 dom(pi, pj)={x∈ℜ2 | d(x, pi) ≤ d(x, pj)},  (2) 
where d denotes the Euclidean distance.  

Clearly, dom(pi, pj) is a closed half-plane bounded by the 
perpendicular bisector of pi and pj. 

Definition 2 Voronoi region (or Voronoi polytope, Voronoi 
cell, Voronoi face, Dirichlet polygon, Thiessen polygon) of a 
site pi∈P is a close or open area V(pi) of points in the plane 
such that pi∈ V(pi) for each pi, and any point x∈ V(pi) is at 
least as close to pi as to any other sites in P (i.e. V(pi) is the 
area lying in all of the dominances of pi over the remaining 
sites in P). 

Formally, 
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Since the Voronoi regions are formed by intersecting n−1 

half planes, they are convex polygons. Thus the boundary of 
a region consists of at most n−1 edges (maximal open 
straight-line segments) and vertices (their endpoints). Points 
on the boundary of V(pi) and V(pj) are equidistant to pi and pj. 

Definition 3 A Voronoi diagram (or Voronoi tessellation) 
for a given set P={p1, p2, … , pn} of points (or sites) is a 
polygonal partition of the plane into Voronoi regions 
V(p1),V(p2), … , V(pn). The vertices of polygons V(pi) are 
called the vertices of the Voronoi diagram, and their edges 
are called the edges of the Voronoi diagram. A Voronoi 
diagram is called degenerate if four or more of its Voronoi 
edges have a common endpoint.  

Clearly, each edge of the Voronoi diagram belongs to just 
two Voronoi regions and 
 ( ) ( )

i

i
p P

V P V P
∈
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Consider a disc-shaped robot. If a set of obstacles is  only 

by points, these point obstacles can be considered as sites of a 
Voronoi diagram and the robot can use for its tour the 
shortest path along the Voronoi diagram edges that represent 
passable channels among obstacles, see Fig. 7. 

This allows us to reduce the robot motion problem to a 
graph search problem again. However, in practice, obstacles 
very often have more general shapes than point ones and thus 
we must generalise the algorithm for constructing Voronoi 
diagrams. We take the vertices of polygonal obstacles to be 
point obstacles, then compute the corresponding Voronoi 
diagram and, finally, remove from the diagram all the edges 
intersecting the obstacles.  

For time complexity considerations it is necessary to know 
the properties of the Voronoi diagrams and algorithms of 
their constructions. Therefore, we will briefly summarise 
them in the next paragraphs. 

 
Fig. 7: Motion planning in a scene with point obstacles 
 
Assume that Voronoi diagrams are non degenerate (no 

four or more of its Voronoi edges have a common endpoint). 
Then the following is satisfied [1], [7]-[9]: 
• Every vertex of a Voronoi diagram V(P) is a common 

intersection of exactly three edges of the diagram. 
• A point q is a vertex of V(P) if and only if its largest 

empty circle CP(q) contains three points on its boundary. 
• The bisector between points pi and pj defines an edge of 

V(P) if and only if there is a point q such that CP(q) 
contains both pi and pj on its boundary but no other point. 

• For any q in P, V(q) is convex.  
• Voronoi diagram V(P) of P is planar. 

start 

target 
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• Polygon V(pi) is unbounded if and only if pi is a point on 
the boundary of the convex hull of the set P.  

The number of vertices in the Voronoi diagram of a set of n 
point sites in the plane is at most 2n−5 and the number of 
edges is at most 3n−6. 

The fundamental algorithms and their modifications 
include the incremental algorithm, random incremental 
algorithm, divide and conquer algorithm and plane sweep 
algorithm (or Fortune’s algorithm). More details can be 
found e.g. in [1], [7]-[9]: The time complexity of the 
incremental algorithm is O(n2) in the worst case, and O(n log 

n) for the other three algorithms. 
 

  
 

  
 
Fig. 8: Motion planning in 8 directions in a scene with point 

obstacles 
 

Consider rectilinear (or Manhattan) metric 
 ||||),( jijiji yyxxppd −+−=  (5) 

If we use the rectilinear metric for a Voronoi diagram, 
then, due to the rectilinearity, each straight-line segment of a 
bisector in the now rectilinear Voronoi diagram will be either 
horizontal, vertical, or inclined at 45° or 135° to the positive 
direction of the x-axis [6]. This finding suggests using the 
rectilinear Voronoi diagram for the 8-directional motion 
planning. This approach avoids all the drawbacks of classical 
plane decomposition methods (combinatorial explosion, low 
boundaries for grid representation and generating many 
infeasible solutions). 

The rectilinear Voronoi diagram can be constructed by a 

simple modification of the random incremental algorithm for 
the Euclidean metric.  

In Fig. 8 an example of disc-shaped robot motion planning 
in eight directions for a set of eight point obstacles is shown. 

Now consider a more general case of a scene where, 
besides point obstacles, rectangular obstacles occur. Fig. 9 
shows such a scene with the rectilinear Voronoi diagram 
constructed for point obstacles only. After the construction of 
the rectilinear Voronoi diagram for point obstacles, we 
increase the width and height of the rectangular obstacles by 
the diameter of the disc-shaped robot and a certain small 
number representing a reserve for finding a collision-free 
path. For the optimal path between the starting and target 
position, we search in the graph whose edges create the edges 
of the “extended” rectangular obstacles and edges of the 
rectilinear Voronoi diagram without their parts inside the 
extended obstacles.  

 

 

 
Fig. 9: Motion planning in 8 directions in a scene with point and 

rectangular obstacles 
 

IV. CONCLUSION 
In this paper, we proposed applications of the Voronoi 

diagrams to 8-directional motion planning. As algorithms for  
constructing the Voronoi diagrams run in polynomial time, 
the number of their edges is linearly dependent on the number 
of obstacles, algorithms for searching the shortest paths in 
graphs are also polynomial, and this holds for all additional 
operations for finding a collision-free path of a robot 
(replacements, extensions of the rectangular obstacles), the 
overall time complexity of all proposed algorithms is 
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polynomial. This approach avoids all the drawbacks of 
classical methods (combinatorial explosion, low boundaries 
for grid representation and generating many infeasible 
solutions). 

In future, we will try to generalize this approach for cases 
of more complex shapes of obstacles and movable obstacles. 
Further investigating will also include the case when the 
environment is totally or partially unknown, varying over 
time or a combination of both. 
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