
Avoiding Unnecessary Calculations in Robot Navigation

Weiya Yue, John Franco ∗

Abstract— For solving problems of robot navigation over un-
known and changing terrain, many algorithms have been in-
vented. For example, D* Lite, which is a dynamic, incremen-
tal search algorithm, is the most successful one. The improved
performance of the D* Lite algorithm over other replanning al-
gorithms is largely due to updating terrain cost estimates rather
than recalculating them between robot movements. However,
the D* Lite algorithm performs some recalculation every time a
change in terrain is discovered. In this paper, it is shown that re-
calculation is often not necessary, particularly when several opti-
mal solutions (shortest paths) exist, and an efficient test for deter-
mining this is presented. These ideas are packaged in a modified
version of D* Lite which we call ID* Lite for Improved D* Lite.
We present experimental results that show the speedups possible
for a variety of benchmarks. Also, a novel realistic benchmark is
described.

Keywords: robot navigation, uncertainty, planning

1 Introduction

Advances in robot replanning have made possible the devel-
opment of serious autonomous vehicles that may be used to
explore other planets, gather data in areas considered too dan-
gerous for humans, and even park themselves without human
involvement. Notable among these advances is the marriage
of incremental search algorithms with sophisticated search
heuristics that exploit learned terrain information to narrow
the search space and thereby speed up the replanning process.
The D* Lite algorithm [3, 4] represents the state-of-the-art in
such replanning algorithm development. A descendant of the
A* and D* [1, 2] algorithms, D* Lite is easily implemented
and its “experimental properties show that D* Lite is at least
as efficient as D*.” It has been used successfully in a variety
of roles.

The terrain information that is used by D* Lite is repre-
sented abstractly as a directed graph G(V, E) with distin-
guished start vertex vs, goal vertex vg , and positive integer
costs c : V × V 7→ Z+ on edges. A “robot” initially occupies
vs and moves along edges to vg . On every movement through
a single edge, called a transition, edge costs can change. The
cost of a robot’s path from vs to vg is the sum of the costs of
the edges traversed when they are traversed. D* Lite attempts
to determine the lowest cost sequence of transitions that will
take a robot from vs to vg . The problem is complicated by the
fact that edge cost changes are not predictable.

∗Department of Computer Science, University of Cincinnati, Cincinnati
OH, 45220. Email: weiyayue@hotmail.com, franco@gauss.ececs.uc.edu

It is unlikely that D* Lite will find the lowest cost sequence
of transitions that advances the robot from vs to vg because it
never has complete information about edge cost changes un-
til the last transition. Moreover, current edge costs are known
to D* Lite only within the robot’s view which consists of the
edges out to vertices that are within a fixed distance, called the
sensor-radius, from the current position of the robot, which
we will always designate as vc below. But D* Lite can al-
ways find the lowest cost sequence from vc to vg based on the
known edge costs within the view and assuming that current
estimates of other edge costs are their actual costs. We will
use the term shortest path to refer to such a sequence and we
will use ce(w, u) to represent the estimated cost of any edge
〈w, u〉: if 〈w, u〉 is in the view then ce(w, u) = c(w, u), other-
wise ce(w, u) does not change from round to round. When a
shortest path is computed, the algorithm moves the robot along
that path, one transition per round, until the edge cost assump-
tion is violated at some vertex vx that is within the view and
on the path. At that point D* Lite recomputes a new shortest
path from vc to vg and repeats the above two steps until the
robot occupies vg .

D* Lite is assisted by two functions which take a vertex v as
input and return the cost of the shortest path from v to vg based
on current edge costs and estimated costs. One function, g(v),
is identical to the function of the same name that is used by
the A* algorithm to estimate costs from vs but in this role es-
timates the cost to vg . The other, rhs(v), is a more informed,
one-level-lookahead function whose output is expressed as

rhs(v) = min
v′∈Succ(v)

g(v′) + ce(v, v′)

if v 6= vg and otherwise rhs(vg) = 0, where Succ(v) is the
set of all vertices, referred to as successors below, that are
reachable from v through a single edge. A vertex v for which
rhs(v) = g(v) is said to be locally consistent. If g(v) >
rhs(v) then v is locally overconsistent and if g(v) < rhs(v)
then v is underconsistent. Shortest path costs from all vertices
to vg are known precisely if and only if all vertices are locally
consistent. In that case, shortest paths can be computed by
following minimum edge costs, ties being broken arbitrarily.

When a vertex becomes locally inconsistent due to edge cost
changes D* Lite attempts to eagerly update g(v) values to
make all vertices locally consistent. During the update, the al-
gorithm propagates changes in g(v) to all neighbors of v until
a new shortest path has been found; it will not update a ver-
tex if it remains consistent from the previous round. In some
variations, for example delayed D* [5], it will delay updating

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

underconsistent vertices since, intuitively, it is more likely that
the shortest path traverses overconsistent vertices.

The improvement to D* Lite that is proposed here is motivated
by the observation that in many replanning problems there are
typically more than one shortest path from vc to vg . The im-
provement is to find one of the alternative shortest paths that
is not affected by the terrain change which invoked the replan-
ning step, if one exists. If the cost of an alternative shortest
path is no greater that the current shortest path, a switch to the
new path may be made without recomputing any values of g.
Also, we will show that if the new path is shorter, only part of
the changes need to be propagated.

In Section 2 an overview of the proposed modification to D*
Lite will be introduced and pseudo code presented. In Sec-
tion 3 an example will be discussed. In Section 4 the results
of some experiments on random benchmarks will be shown.
Section 5 contains an analysis and some theoretical results.

2 Improved D* Lite
This section contains the motivation for and description of an
algorithm we call ID* Lite which is short for Improved D*
Lite. ID* Lite follows D* Lite in searching from goal to start
and in selecting the next edge to traverse. ID* Lite also uses
rhs, and g as D* Lite does and it maintains a priority queue
as D* Lite does. As in the case of D* Lite, ID* Lite traverses
a current shortest path to vg until an inconsistency is detected.
However, in computing a new shortest path, ID* Lite may only
calculate part of the changes or even skip all the recalculation.
The conditions that allow recalculations to be skipped will be
given later along with a proof that they do not prevent ID*
Lite from finding a shortest path to vg . Upon completion of
the algorithm it may be the case that at least some skipped
g(v) were never recomputed. Because of this, ID* Lite can
potentially outperform D* Lite, especially if there are many
shortest paths to vg , or the new path will not be longer.

Some definitions are needed prior to discussing ID* Lite. In
Succ(v), all the vertices v′ whose g(v′) + c(v, v′) = rhs(v)
are called children of v, and v will be called v′’s parent. I.e.,
on vertex v, robot can choose arbitrary vertex in children of it
for next move. A type in the form of a number will be assigned
to every vertex during execution of ID* Lite as follows:

−3: The vertex is temporarily unavailable because it is not
locally consistent and caused by the changes. This is also
called inconsistent source.

−2: The vertex is temporarily unavailable, but caused by in-
consistent source. Because the shortest path between it
and vg must cross a type −3 vertex.

−1: The vertex has never been searched. I.e., never appears
in priority queue before.

0: The vertex has been visited but is not in the current short-
est path.

≥ 1: The vertex has been visited, is in the current shortest path,
and the type number is the number of children whose type
value is not −3 and −2 it has.

The length of a path is the number of edges it contains. The
distance between two vertices is the minimum length of paths
connecting those two vertices. All vertices that are no further
than distance sensor-radius away from vc are said to be in the
view of vc and those that are exactly distance sensor-radius
away from vc are said to be fringe vertices. Complete path
information is always known within the view of vc. The cost
of the current shortest path will be designated as Ω.

The goal of ID* Lite, when an inconsistency is discovered at
a vertex w, is to consider replacing the current shortest path
with an alternative shortest path from vc to vg which passes
through some vertex u on the path from vc to w with priority
in increasing order of distance from u to w. If there exists such
a path with cost less than Ω, that path will replace the current
shortest path. Otherwise, if the current shortest path is unaf-
fected by the inconsistency, it will remain the shortest path into
the next round. If neither of the above applies a new shortest
path will have to be computed in the same manner that a new
shortest path is computed by D* Lite. In other words, there
are two cases where a new shortest path is partially and fully
recomputed and vertex information is recomputed to be made
consistent respectively: 1) when a path to vg that is shorter
that the current shortest path is found; and 2) when all shortest
paths from brothers that are successors to vc are affected by
the inconsistency.

Reduced processing time for ID* Lite depends on the abil-
ity to find the shorter path and unaffected alternative shortest
paths; one of the new shortest paths will be found if there are
more than one. The shorter path can be found by partially
computing where only the potential vertices which may lead
to a better solution will be processed. Alternative paths can be
located with a simple and efficient test and, if determined to
exist, they can be efficiently computed by traversing a chain of
vertices according to vertex type, possibly changing the type
of some vertices during the traversal. The test is merely to
determine whether ce(w, u) has changed for some w and u
vertices in the view. There may be several such changes on
a round and all may be taken into account when looking for
a shortest path to vg . This is different than for D* Lite and
its variants: they will always eagerly recompute g and rhs to
remove inconsistencies and then compute a new shortest path
based on the new values. If ID* Lite is not forced to recompute
g and rhs values it will not do; that presents the opportunity
to seek and investigate alternative shortest paths. If recom-
pute cannot be avoided, similar to delayed D*lite [5], ID*lite
will try to only update part of the changes. But unlike delayed
D*lite, the need to test whether to recompute more than once
in every round to guarantee optimality is avoided by ID*lite.

An outline of the action of ID* Lite is displayed in Figure 1.
ID* Lite uses the variables and functions of D* Lite but some
have been modified slightly to support vertex types. For ex-

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

01) bool get-alternative(vertex p)
02) vertex R = p.
03) while(R 6= vg)
04) update R’s type value.
05) if(type(R) > 0) R = one child y of R
06) else if(type(R) = 0)
07) type(R) = -2.
08) if(R = vc) return FALSE.
09) R = parent(R).
10) return TRUE.

11) bool mini-compute()
12) while (U.TopKey() < key(vc))
13) u = U.Top(), kold=U.TopKey(), knew=CalculateKey(u).
14) if(kold < knew) U.Update(u,knew).
15) else if(g(u) > rhs(u))
16) g(u) = rhs(u).
17) U.Remove(u).
18) for all s ∈ Pred(u)
19) if(s 6= vg) rhs(s) = min(rhs(s), c(s,u)+g(u)).
20) if(s ∈ catch) catch.Remove(s).
21) UpdateVertex(s).
22) else U.Remove(u).

23) getbackvertex(vertex p)
24) if(p 6= NULL and type(p) < 0)
25) if(rhs(p) 6= g(p))
26) return;
27) type(p) = 0;
28) p=parent(p);
29) getbackvertex(p);

30) process-changes()
31) boolean better=FALSE, recompute = FALSE.
32) For every observed edge 〈u, v〉 where
33) ce(u, v) has changed since the previous round:
34) Update u’s rhs value.
35) if(type(u) = −3) getbackvertex(u).
36) if(rhs(u) = g(u)) type(u)=0.
37) else
38) If h(vc, u) + rhs(u) < Ω,
39) better = TRUE, UpdateVertex(u).
40) else catch.add(u), type(u)=-3.
41) if (better = TRUE) mini-compute().
42) recompute=!get-alternative(vc).
43) if recompute = TRUE
44) move type 6= 0 vertices in catch to U
45) set all 6= 0,−1 type value to be 0.
46) compute shortest path as in D*lite.

47) move()
48) Set Array catch=∅, and all type values to be −1;
49) Initialize and compute as D* Lite does at beginning.
50) while vc 6= vg

51) if (EdgesCostChanged()) process-changes().
52) type(vc) = 0, vc = one type > 0 child of vc.

Figure 1: Main functions of ID* Lite

ample, every time a vertex is added into priority queue (U),
its type value will be set as 0, the other modifications of type
value have been shown in outline. The reader is referred to [4]
for a description of those functions.

The function that determines what happens on a round is
process-changes. For every changed edge e =< u, v >, rhs
value of vertex u will be updated. In line 35, if a vertex had
been changed before, function getbackvertex will be called.
We will explain this function later. In line 38, if a change may
cause a shorter path, line 39 will executed, or this change will
be temporarily stored in catch. Lines 41 and 42 will find a
path if the length of the new shortest path is less than or equal
to the length of the old one. If it fails, the last three lines of
process-changes are invoked to perform a D* Lite recomputa-
tion. Function getbackvertex is used to get back the vertices
which are abandoned by a previous change. mini-compute
will only propagate the vertices for which rhs < g (over-
consistent), so only better solutions can be found in function
mini-compute; if there is vertices with rhs > g (undercon-
sistent), it must has been catched, so we can delete it directly.
get-alternative will find a path from p to vg if and only if
there exists one. The main function is move which is invoked
one time, at startup. Its operation is similar to that of the move
function of D* Lite except that on every round it calls process-
changes to try to avoid recomputation of g and rhs values.

As a note, in line 05, when a child of R is chosen, it is better
to get the one with type > 0 if possible. This way, if the old
shortest path can be still used, it will be found with priority.
Upon termination of process-changes, only part of vertices in
catch need to be transferred to U with the order of increasing
key value. More vertices in catch will be moved into U if and
only if no shortest path has been found. It follows that the in-
formation in catch and U should be synchronized. However,
for simplicity we chose not to do this in running our experi-
ments. Also because we are investigating a new method which
can even skip catch. For space limit, this wont be discussed
here.

3 An example

Figure 2 presents a simple example of grid world that shows
how ID* Lite can avoid recomputation that is required by D*
Lite and delayed D*. It is a 3 × 5 grid-world where shaded
squares are impassable obstacles. A vertex is a square and is
identified by its row and column position; the vertex associ-
ated with the ith row and jth column is referred to as vi,j . It is
4-directional. The cost of each edge connecting two unshaded
squares is 1. The start vertex is v1,0 and vg is v1,4. The sensor-
radius is 1. Squares may become shaded or unshaded at any
time during movement. The heuristic function is h(w, u) = 0.
The left of it shows (g, rhs) values calculated as in D*lite, a
‘-’ symbol denotes ∞; there are several shortest path choices
with cost Ω = 5, consider that we use the one marked by doted
line. Then the type values in ID*lite are shown as the right of
Figure 2.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Figure 2: 3× 5 4-directional Grid World

Figure 3: Example of ID* Lite Execution

Now the robot moves from (1, 0) to (1, 1), and (0, 2) is found
to be blocked as shown in Figure 3(a). After updating rhs of
those vertices, h((1, 1), (0, 2))+rhs((0, 2)) = 0+∞ > Ω, so
mini-compute is not needed. In get-alternative, going from
(1, 1) to (0, 1), because of the blockage of (0, 2), (0, 1)’s type
value is 0, so its type value is updated to be −2 and the algo-
rithm backtracks to (1, 1). Then (1, 1)’s type value is updated
to be 1 now, and the only child is (2, 1). The new shortest path
is shown by the dotted line in Figure 3(a). Figure 3(c) is the
type graph corresponding to Figure 3(a). In D*lite, recompu-
tation is needed: both (0, 2), (0, 1) will be inserted into prior-
ity queue to propagate the change. Here, if the robot is still
on (1, 1) and finds (0, 2) is unblocked, getbackvertex will be
used: vertices (0, 1) and (0, 2) will be set available again.

Now, considering robot is on vertex (2, 3), two changes are
observed: (1, 3) is unblocked and (2, 4) is blocked as shown
in Figure 3(b) with the old path weight Ω = 2. After updating
rhs, because h((2, 3), (1, 3))+rhs((1, 3)) = 0+1 < Ω, vertex
(1, 3) will be inserted into priority queue and mini-compute
is triggered. Similarly, as (0, 2) in Figure 3(a), it is not nec-
essary to insert (2, 4) into the priority queue. After execution
of mini-compute, the (g, rhs) value will be as in Figure 3(b).
Then get-alternative is called. The corresponding type value
is shown in Figure 3(d), and the new shortest path is shown
as the dotted line in Figure 3(b). In D*lite, it is necessary for
both changed vertices to be inserted into the priority queue to
propagate.

D* Lite would have found all the changes to rhs values that
ID* Lite did. Then it would have begun a new search, updating
all g and rhs values as usual. Algorithm delayed D* would
have operated as D* Lite except that it would need to make
an extra check to make sure it has the shortest path: i.e., there
is no inconsistent vertices on its current path. This step is
necessary to be sure the path found by delayed D* is shortest.

4 Experiments

In this section, the performance of ID* Lite is compared exper-
imentally to the D* Lite and delayed D* algorithms on random
grid world terrains. In each experiment the initial terrain is a
blank square 8-direction grid world of size2 vertices, where
vs and vg are chosen randomly. Several other parameters are
used: 1. percent is used for exactly percent% ∗ size2 of the
vertices are selected randomly and blocked; 2. sensor-radius
is used as the maximum distance to a node that is observable
from the current robot position. First, results of random rock-
and-garden benchmarks is given: i.e., a blockage is found it
will not move or disappear later. Then, experiments are run
on a collection of benchmarks that model robot navigation
through changing terrain. The results are average of more than
100 independent runs of each algorithm.

1.00^{3}

2.50^{3}

4.00^{3}

5.50^{3}

7.00^{3}

2 5 10 15 20

H
ea

p
P

er
co

la
tio

ns

sensor-radius

D* lite
delayed D*

ID* lite

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 5 10 15 20#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
delayed D*

ID* lite

Figure 4: size = 200 and percent = 30

In Figure 4, the results in rock-and-garden benchmarks are
shown: the graph on the left shows the relation between num-
ber of heap operations and sensor-radius given the other pa-
rameters. Heap operations make the most significant contribu-
tion to time complexity in such algorithms and the plots show
only the heap operations in recomputation: i.e., they do not
count the number of operations used when initializing a short-
est path from vs to vg , because all of the family of algorithms
discussed here do the same as the A* algorithm in this phase.
On the right side of the figure is a graph showing the ratio of
the number of recomputations to the number of changes ob-
served. The D*lite, curve is flat at 1 because every time an
inconsistency is observed, exactly one recomputation must be
performed. The delayed D* curve is always above 1 because at
least one recomputation must be performed for every round in
order to guarantee local optimality [5]. The curve for ID*lite
stays much below 1 since recomputations are skipped when
alternatives are found. We note that the numbers plotted in the
figure include calls to mini-compute.

To some extent, the graph explains why ID*lite can outper-
form the other algorithms. The right graph of Figure 4 shows
that ID* lite can save almost 90% of the recomputations that
would be done by D* Lite. However, this does not mean
that a corresponding savings applies for heap operations since
changes are transferred from catch to the priority queue every
time a full recomputation occurs.

Since there are less recomputations, more changes are pro-
cessed in each recomputation and many changes with big key
values are not propagated. The more vertices affected by such
changes, the more heap operations can be saved. Generally

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

speaking, decreasing changes can affect more vertices than in-
creasing changes. In rock-and-garden benchmarks there are
only increasing changes and in the benchmarks below there
are many decreasing changes.

In [5] significant delayed D* performance advantages are re-
ported. In particular, delayed D* performs well when there
are only a few decreasing changes that cause overconsistent
vertices. But in rock-and-garden benchmarks, there are no de-
creasing changes so the performance of delayed D* is not as
good as the other algorithms. Delayed D* performance also
suffers in the terrain changing benchmarks since half of the
inconsistent vertices are overconsistent. This is especially true
when robot movement is blocked. Since showing the perfor-
mance results of delay D* would force a change of scale of
the plots, we do not show them.

The second set of benchmarks is intended to model robot nav-
igating in terrain changes, for example if a robot is moving in
a parking lot along other vehicles. In these benchmarks a fixed
percentage of vertices are initially blocked and, on succeeding
rounds, each of the blocked vertices moves to some adjacent
vertex with probability 0.5, the particular target vertex being
chosen randomly from all available adjacent vertices. The ex-
periments are done in the same way as the rock-and-garden ex-
periments except we also plot, in Figure 7, the effect of chang-
ing the percentage of blocked vertices for fixed sensor-radius.

Figures 5 to 6, left, show that ID* Lite uses fewer heap op-
erations to compute a path from vs to vg . In the right plot
of Figure 6 the ratio of the number of recalculations to the
number of changes tends to 1 as sensor-radius is increased.
But we note that significantly many recomputations are calls
to mini-compute which complete faster than a full recompu-
tation. From Figure 7, we can see that the number of re-
computations done in ID*Lite remains below that of D*Lite
for a wide range of blocking percentages. We conclude that
for these benchmarks ID*lite has a better ability to handle in-
tensely changing environments. Because ID* lite can skip re-
computations and then update all the changes at one time, it is
more efficient to update changes per round.

In the case of the terrain changing benchmarks, although all
three algorithms find and traverse optimal cost paths in every
round, they can find different final paths if they use differ-
ent ways to break ties when there is more than one child to
consider. Because ID* Lite exploits alternative shortest paths
which try to avoid the area with more intense changes, ID* lite
has a better ability to avoid crashes with sliding obstacles.

5 Analysis and theoretical results

In this section it is shown that on every round, given a current
shortest path from vc to vg , ID* Lite computes a new shortest
path, if one exists: that is, a path whose cost is the minimum
over all paths P from vc to vg of the sum of costs ce of edges
in P . It is assumed that the cost of any edge with at most
one endpoint in the view does not conflict with the g values
of any of its endpoints that are not in the view. Finally, it

1.00^{3}
5.00^{3}

2.00^{4}

4.00^{4}

6.00^{4}

2 5 10 15 20

H
ea

p
P

er
co

la
tio

ns

sensor-radius

D* lite
ID* lite

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 5 10 15 20#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
ID* lite

Figure 5: size = 200 and percent vertices blocked = 30

0.00^{0}

3.50^{4}

7.00^{4}

1.05^{5}

1.40^{5}

1.75^{5}

2 5 10 20 30

tim
e

to
 c

om
pu

te
 p

at
h

(s
ec

)

sensor-radius

D* lite
ID* lite

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 5 10 20 30#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
ID* lite

Figure 6: size = 300 and percent vertices blocked = 30

0.0^0

1.5^4

3.0^4

4.5^4

6.0^4

7.5^4

10 20 30 40

tim
e

to
 c

om
pu

te
 p

at
h

(s
ec

)

percent

D* lite
ID* lite

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 30 40#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

percent

D* lite
ID* lite

Figure 7: size = 200 and sensor-radius = 20

is assumed that the heuristic function h(w, u) is the same as
that of D* Lite and is therefore always a lower bound on the
minimum cost path from w to u using ce costs and is such
that the triangle inequality holds. We will use e = 〈w, u〉 to
denote an edge in process-changes of ID* Lite that is in the
view, whose cost ce(w, u) has changed to be c′e(w, u) since
the previous round.

Lemma 5.1 If e is greater than it was in the previous round,
then any path passing through e without decreased edges has
a cost that is greater than Ω which is the cost of previous round
shortest path.

proof 1 Assume there is a path p of cost less than or equal
to Ω and passing through e without a decreased edge. It is
straightforward to see that the cost of p in the previous round
is less than Ω. This contradicts the hypothesis that Ω is the
shortest path of the previous round.

Lemma 5.2 e = 〈w, u〉’s cost has been decreased. If after
updating rhs of w, u, h(vc, w) + rhs(w) is no less than Ω
of previous round, then any path passing through e, without
other decreased edges after e along the path, has a cost that
is not less than Ω.

proof 2 Suppose an arbitrary path p passing through e, then
the cost of p, η, has the property: η ≥ h(vc, w) + c′e(w, u) +
g(u). By definition of rhs, we have η ≥ h(vc, w) + rhs(w) .
I.e., η ≥ h(vc, w) + rhs(w) ≥ Ω.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Lemma 5.3 If in e = 〈w, u〉, w’s type value is −1, then any
path passing through e without other decreased edges after e
along that path has a cost that is not less than Ω which is the
cost of previous round shortest path.

proof 3 If w’s type value is −1, i.e., w has not been inserted
into the priority queue, then key(u) ≥ Ω. Therefore, any path
p passing through e will have cost η ≥ h(vc, w) + c′e(w, u) +
g(u) ≥ h(vc, u) + g(u) ≥ Ω.

Theorem 5.4 Only the e, whose cost is less than it was on
the previous round and after updating rhs has h(vc, w) +
rhs(w) < Ω may cause a shorter path then the shortest path
in previous round.

proof 4 By Lemma 5.1, 5.2 and 5.3, we can see that the only
non-trivial condition needed to be proved is whether one path
p having more than one decreased edge may be shorter. With-
out loss of generality, supposing p has e = 〈w, u〉 as the last
decreased edge with the direction from vc to vg . Then e satis-
fies the precondition of 5.2, i.e., p ≥ Ω.

Lemma 5.5 In ID* lite, only vertices which may cause
shorter path than the shortest path in previous round will be
propagated in function mini-compute.

proof 5 By theorem 5.4 and line 38, 39, 41 in Figure 1, this
lemma can be proved straightforwardly.

Lemma 5.6 Function get-alternative returns TRUE if and
only if a shortest consistent path from vc to vg is found.

proof 6 get-alternative returns TRUE if and only if a path
from vc to vg has been found. By the way the next step is cho-
sen, no abandoned (i.e., inconsistent) vertices will be chosen,
so the path must be one of the shortest consistent paths.

Theorem 5.7 Function process-changes will find the shortest
path in every round if and only if there exists one.

proof 7 If the new shortest path is shorter than the one in
the previous round then, by Lemma 5.5, all the shorter paths
will be found by function mini-compute and will be updated
to be consistent. If the new shortest path is as long as the one
in the previous round, then the shortest path in the previous
round is not affected by changes and will still be consistent.
By Lemma 5.6, all shortest paths can be found correctly.

Therefore, lines 43 to 46 in Figure 1 will be executed if and
only if the new shortest path is greater than the one in pre-
vious round. In this case ID*Lite behaves like D* lite so the
correctness of the new shortest path follows from the correct-
ness of D* lite.

Lemma 5.8 The changes which have been skipped in a round
when the shortest path’s cost is Ω, will not affect the result
anymore unless the new shortest path is greater than Ω.

proof 8 For a change of e = 〈w, u〉, if it was skipped, then
the low bound η of any path passing through it has η ≥ Ω. If
the new shortest path’s length Ω′ is not greater than Ω, then
we have η ≥ Ω′. So it will not affect the new shortest path.

Theorem 5.9 ID* Lite finds a shortest path from vc to vg on
a round, if and only if one exists.
proof 9 Follows directly from theorem 5.7 and Lemma 5.8.

The following theorem explains, in part, the relative efficiency
of searching for alternative shortest paths.

Proposition 5.10 After a full recomputation, all the new
shortest paths will be found.
proof 10 Since ID* Lite uses the same data structures as D*
Lite, if one child of a vertex has been updated to be consistent,
then all the children of it will be updated to be consistent. So
if one shortest has been found, supposing an arbitrary path p
from vc to vg is also shortest, then the child of vc on p must
be updated and consistent too. Iteratively, all the vertices on
p are updated and consistent. I.e., it has been found.

6 Conclusion

A modification to the D* Lite algorithm for planning has been
introduced and packaged as an algorithm called ID* Lite. The
modification is to update vertices as less as possible and to
seek alternative shortest paths when inconsistencies are dis-
covered, rather than recompute to remove all inconsistencies
before finding a new shortest path. It is shown that the modifi-
cation results in far better performance on random grid prob-
lems. The modifications proposed for D* Lite can coexist with
other D* Lite variants such as delayed D* Lite easily.

References

[1] Anthony Stentz,“Optimal and Efficient Path Planning
for Partially-Known Environments,” IEEE International
Conference on Robotics and Automation, San Diego,CA,
pp. 3310–3317, 5/94.

[2] Anthony Stentz, “The Focussed D* Algorithm for Real-
Time Replanning,” Proceedings of the International
Joint Conference on Artificial Intelligence, Montral,
Qubec, Canada, pp. 1652–1659, 8/95.

[3] Sven Koenig, Maxim Likhachev, “Improved Fast Re-
planning for Robot Navigation in Unknown Terrain,”
IEEE International Conference on Robotics and Au-
tomation, Washington DC, pp. 968–975, 8/02.

[4] Sven Koenig, Maxim Likhachev, “D*lite,” Eighteenth
national conference on Artificial intelligence,Menlo
Park, CA, USA, pp. 476–483, 2002.

[5] Dave Ferguson, Anthony Stentz, “The Delayed D* Al-
gorithm for Efficient Path Replanning,” IEEE Interna-
tional Conference on Robotics and Automation, Wash-
ington DC, pp. 968–975, 4/05.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

