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Abstract— Modeling and predicting lifetimes of
smart power ICs has become more and more impor-
tant during the last years. Higher demands on relia-
bility and economy require prediction methods which
save time and money. In this work two modeling ap-
proaches are discussed: (a) Bayesian linear models
and (b) Bayesian linear models with mixed distribu-
tions. Both are based on the test parameters and
include prior information. The information for the
parameters of the prior distributions is taken from
previous tests and the prior distribution itself is se-
lected with help of global and local sensitivity analy-
sis.
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1 Introduction

In semiconductor industry the reliability of a device is es-
sential, but gaining this information is not always straight
forward. For the decision whether a device fulfills the re-
quirements, lifetime tests are necessary. These tests are
time and cost consuming, therefore reliable methods for
predicting lifetime are needed.
The measured lifetimes of the devices under test (DUT)
can not be modeled with known acceleration models like
Arrhenius or Coffin Manson[1], therefore Bayesian Linear
Models (LM) are used. The advantages of this method
are: (a) available prior knowledge of previously measured
data is integrated into the model, so not only current data
have an impact on the model parameters. (b) higher flex-
ibility and more information in the prediction.
In the first part the data and their characteristics will be
described. Then follows the model definition, the prior
selection and the global and local sensitivity analysis. In
the last part of this work an advanced model is investi-
gated and an outlook for further investigation topics will
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be presented.

2 Used Data

For this study datasets containing lifetimes of Smart
Power ICs [2], tested with a temperature cycle stress test
system [3] at KAI, have been used. Smart means that
each device includes several protection functions against
over-temperature, over-current, open load, etc. These de-
vices are frequently used in automotive applications, e.g.
to replace mechanical relays.
The power switches have been tested under different elec-
trical stress conditions. The test system measures and
records the state of every DUT. The Cycles to Failure
(CTF) of each DUT are determined by the test parame-
ters. The four most important parameters are:

• clamping voltage (VCl[V])

• peak current (Î[A])

• pulse length (tp[μs])

• repetition time (frequency) (trep[ms])

The model is based on 8 tests, all with the same device
type and the same package. In these tests the four above
mentioned test parameters have been changed. Accord-
ing to previous investigations [4] it is known that the data
follow a log-normal distribution, hence on the x-axis the
logarithmic CTFs and on the y-axis the quantiles of the
normal distribution are plotted to achieve linearity. The
lifetimes of the DUTs for each test are shown in figure 1.

The gap between the first two tests (T12, T15 ) and the
others is not attributable to significantly higher stress.
This leads to the assumption that two failure mechanisms
are dominating. To verify this, devices from both groups
have been sent to the failure analysis (FA) with the re-
sults shown in figure 2.
Devices of the second group (right side) show a burn
mark, but for the first group (left side) no obvious fail-
ure cause can be identified, because focused ion beam
(FIB) analysis showed that cracks in the top metaliza-
tion, which can be found at all devices from the first
group, are only superficial. These results strengthen the
theory of two failure mechanisms.
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Figure 1: Results of tests
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Figure 2: FA pictures

As a first modeling approach a linear model (LM) will be
used, in section 7 the assumption of two failure mecha-
nisms will be integrated into the model, which implies a
mixture of two distributions.

3 Bayesian Linear Model Theory

Bayesian LMs are derived from the Bayesian law[5],
which is:

p(θ|y) = p(y|θ) · p(θ)
p(y)

(1)

with p(θ|y) the posterior distribution (the distribution
of the model parameters (θ) after measuring the CTF),
p(y|θ) the joint probability for the given data vector y
and the model parameters, p(θ) the prior distribution of
the model parameters (before measuring the CTF) and
p(y) the probability of the given data, which can be ne-
glected under the assumption of proportionality, because
it is constant. Furthermore the joint probability can be
expressed by the likelihood function (L(·)) of the data.
The likelihood is the product of the probabilities of each
value (yi) from the given set of data y dependent on the
model parameters (θ):

L(θ|y) =
n∏

i=1

p(yi|θ) (2)

hence the Bayesian law converts to:

p(θ|y) ∝ L(θ|y) · p(θ) (3)

which states that the posterior distribution is propor-
tional to the product of the likelihood of the data and
the prior distribution of the model parameters. In the
prior distribution the information of previous tests will
be included.
LMs can be used for normal distributed data. Since
the given data follow a log-normal distribution, a loga-
rithmic transformation leads to normal distributed data.
The transformed data (log10 CTF = y) are normal dis-
tributed with μ the vector of means and Σ = σ2I (vari-
ance times identity matrix) the covariance matrix:

y ∼ N(μ, σ2I) = (2πσ2)−
1
2 exp− 1

2σ2 (y−μ)′(y−μ) (4)

Next the dependency on the four test parameters (the
covariates) is integrated into the model by using a LM
for the mean μ:

μ = βX = β0 +β1 ∗VCl +β2 ∗ Î +β3 ∗tp +β4 ∗trep +ε (5)

where X is the matrix of normalized covariates and with
ε ∼ N(0, σ2I) the random errors.
Combining equations 4 and 5 leads to a likelihood func-
tion dependent on a total of six model parameters:

L(β, σ2|X, y) = (2πσ2)−
n
2 exp− 1

2σ2 (y−Xβ)′(y−Xβ) (6)

The likelihood is only the first step needed to get a pos-
terior distribution, an appropriate prior is also required.
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4 Prior Selection

Selecting the prior distribution is essential for Bayesian
inference, because the influence on the posterior distri-
bution of the parameters can be significant. If there is
no scientific reason for selecting one dedicated prior dis-
tribution, basically there is no restriction for it, even an
improper prior (does not fulfill the conditions for a dis-
tribution function) can be used. Nevertheless, selection
must be made carefully because a bad prior can lead to
a bias in the model.
Prior selection can be supported by global sensitivity
analysis, a method for comparing resulting posterior dis-
tributions of possible prior distributions. In this work
a set of uninformed and informed priors is used. Unin-
formed means that no knowledge about the parameters
is given, informed means knowledge, e.g. mean and stan-
dard deviation, from given data or from experts is avail-
able.
Possible distributions for the βis are the following:

• diffuse normal: βi ∼ N(0, 106)

• informed uniform: βi ∼ U(mi − 3 ∗ si, mi + 3 ∗ si)

• informed normal: βi ∼ N(mi, s
2
i )

• non centralized student t with 1 df: βi ∼ nct(mi, 1)

• gamma or negative gamma distributions: βi ∼
±Gam(ai, bi)

The prior information for the means m =
(6.71,−13.85,−23.88,−16.41, 6.28) and the standard
deviations s = (0.13, 1.04, 1.65, 1.15, 0.93) of the model
parameters are extracted from the given data.
When normal priors for the βis and an inverse gamma
(IG) prior for σ2 are used, than the resulting posterior
distributions for the parameters can be calculated
analytically (βi|y ∼ t and σ2|y ∼ IG), but in all other
cases the posterior distribution needs to be simulated
numerically. This has been done with the slice sampling
algorithm in MATLAB1, with a sample size of 10000
and a burn in period of 1000.
The densities of the resulting posterior distributions
for the five β parameters show similar characteristics,
therefore only β0 is visualized in figure 3. The global
sensitivity analysis shows a division into two groups.
Densities with less variation descend from highly in-
formed priors (gamma and normal) and the flatter ones
from diffuse and little informed priors (diffuse normal,
uniform and non-centralized t). Furthermore, the
posteriors differ only in shape not in location, this means
that all assumed prior distributions are acceptable, but
the choice for the degree of information integrated needs
to be made.

1MATLAB R2008, MathWorks

For calculating the parameters of the prior distributions
reliable data have been used and it is intended that the
prior contains as much information as possible without
manipulating the results, hence an informed normal
distribution will be used as prior.
σ2 requires a global sensitivity analysis too. As possible
priors informed lifetime distributions (inverse gamma,
log-normal and Weibull) are considered, because they
are restricted to R

+. For completeness also a diffuse
normal and a uniform prior are used. Although the
shapes and the degrees of information of the used priors
differ significantly, the influence on the posterior distri-
bution of σ2 is negligible. Therefore the inverse gamma
distribution will be used, because it is the conjugate
prior for normal distributed data. In Bayesian modeling
conjugate means that the posterior distribution is from
the same family as the prior distribution[5].

After selecting a proper prior local sensitivity analy-
sis needs to be performed, this means evaluating if the
posterior distribution is sensitive to reasonable changes
in the parameters of the prior distribution. Sensitive
posteriors can lead to big variations in the model and
poor prediction quality will be the result. Reasonable
changes according to Gill [5] are shifts in prior mean
of plus/minus one prior standard deviation respectively
multiplying/dividing the prior standard deviation by two.
If the resulting posterior of the transformed prior shows
significant differences in location or shape, a less informed
prior for this parameters should be chosen.
Figure 4 shows the resulting posterior densities of two
parameters after local sensitivity analysis. Only β0 and
σ2 are visualized, since they show the biggest variations.
The results shown in figure 4 indicate that shifting the
mean has only slight influence on the posterior distribu-
tion. Using a transformed standard deviation has no in-
fluence on σ2, but reducing the prior standard deviation
of β0 by 50% leads to a reduce of 25% in the posterior
distribution, hence this posterior distribution is sensitive
to transformations. This problem can be solved by using
a less informed prior (e.g. use two times the variance).
With this modificated prior the effect for the mean re-
duces and the sensitivity to transformations in the stan-
dard deviation vanishes.

5 Model Definition

After selecting the prior the full Bayesian LM can be
defined as:

y ∼ N(μ, σ2I)
μ = Xβ + ε

βi ∼ N(mi, si)
σ2 ∼ IG(a, b) (7)

Equation 3 shows that the joint posterior distribution of
data and model parameters is proportional to the likeli-
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Figure 3: Simulated posterior distributions for β0
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Figure 4: Results of local sensitivity analysis

hood times the prior distribution of the parameters. In-
tegrating the specific joint posterior distribution of the
model defined in equation 7 with respect to β and σ2, re-
spectively, leads to student t distributions for the βis and
to an inverse gamma distribution for σ2. The summary
statistics for the model parameters are given in table 1.

Table 1: Summary statistics of posterior distributions
Quantiles

parameter mean st.dev 5% 95%
β0 (intercept) 6.71 0.08 6.58 6.84

β1 -13.82 0.91 -15.30 -12.32
β2 -24.03 1.14 -26.02 -22.21
β3 -16.38 0.73 -17.61 -15.22
β4 6.38 0.54 5.54 7.29
σ2 0.71 0.05 0.64 0.79

The standard deviations of the model parameters vary
between 1-8% of the mean and the percentages of the
simulation errors are in the same range, this means that
simulation results are reliable, although they might be
improved since < 5% simulation error is desired.

6 Posterior Predictive Distribution

The main intention for finding an appropriate model for
CTFs of semiconductor devices is to predict reliable life-
times. In case of Bayesian LMs predictions are no point

estimates but posterior predictive distributions of the
data. The output is the distribution of new data after
observing and including the information of the old data.
For a given set of new data (ynew), the posterior predic-
tive distribution is[5]:

p(ynew) =
∫

Θ

p(ynew, θ|Y )dθ

=
∫

Θ

p(ynew, θ|Y )
p(θ|Y )

p(θ|Y )dθ

=
∫

Θ

p(ynew|θ, Y )p(θ|Y )dθ (8)

which is the integral over the product of the joint prob-
ability of data and model parameters (p(ynew|θ, Y ))
and the posterior distribution of the model parameters
(p(θ|Y )). For the Bayesian LM defined in equation 7
with a new set Xnew of covariates the posterior predic-
tive distribution of the resulting log10 CTF (= ỹ) is:

p(ỹ) =
∫

Θ

p(ỹ|β, σ2, Xnew, X, y) p(β, σ2|X, y) dθ (9)

In special cases this distribution can be calculated, but
since simulation data of the involved distributions are
available, sampling from them is also a solution.
A first check concerning model quality can be made by
predicting the CTF for the given data and looking at the
goodness of the fit (GoF) with a Bayesian χ2 test. This
test is similar to Pearsons χ2 test[6], but with the dif-
ference that it is performed various times (in this work
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Figure 5: Comparison of predicted and real density of two datasets

10000) and the percentage of failed tests is the indica-
tor for the model quality The comparison of the pre-
dicted and the real density of two representative datasets
is shown in figure 5. The used model fits the data of test
T02 almost perfectly, because only 0.01% of the GoF
tests fail. In contrast to this result 100% of the GoF
tests fail for test T15. In total, three posterior predic-
tive distributions fit the data well (failed GoF < 3%),
two show weaknesses (failed GoF ≈ 35%) and three show
poor fitting quality (failed GoF > 87%).
One reason for bad quality in the five cases was already
mentioned in section 2. The data show a division into two
groups with different failure mechanisms and additionally
a transition zone, this means that some datasets belong
to both groups, e.g. T14. The mathematical reasons for
bad model quality for these tests are:

• T12 and T09 have smaller σ2 than other tests

• T05, T14 and T15 do not behave “well”, they show
a mixture of two distributions

This implies that the model fits well for datasets of the
second group in figure 1. Calculating the posterior pre-
dictive distribution of the next two performed tests (T13
and T16), which are mainly part of the second group, ver-
ifies the assumption. The percentage of failed GoF tests
is 0% and 5%, respectively. This means the predicted
values are reasonable.
The investigations show that the proposed Bayesian LM
can be used for lifetime tests which are part of the sec-
ond group, but model improvement is needed since weak-
nesses for the first group of tests are observed. One so-
lution is to adapt the model more to the mixed behavior
of the data, this will be addressed in the next section.

7 Bayesian Linear Models with Mixed
Distribution

In section 2 the theory about two dominating failure
mechanisms was introduced. This assumption leads to
the idea of using Bayesian LM with a mixture of dis-
tributions for this data. The used model consists of a
combination of two normal distributions with a mixing
proportion (π), this is:

y ∼ π ∗ N(μ1, σ1) + (1 − π) ∗ N(μ2, σ2) (10)

where μ1 and μ2 are modeled with LMs:

μ1 = β ∗ X

μ2 = γ ∗ X (11)

Using this model more than doubles the number of model
parameters, i.e. from 6 to 13. The simulation with diffuse
priors showed high variations in the model parameters,
therefore less informed priors than for the Bayesian LM
will be considered, these are uniform distributions on a
pessimistically chosen interval. The information for the
intervals is extracted from the performed tests, the ob-
servations in figure 1 and the previously used Bayesian
LM. This leads to the following priors:

π ∼ U(0, 1)
β0 ∼ U(2, 6)
γ0 ∼ U(6, 10)

β1, β2, β3, γ1, γ2, γ3 ∼ U(−100, 0)
β4, γ4 ∼ U(0, 100)
σ1, σ2 ∼ U(0, 100) (12)

The prior distributions of β0 and γ0 contain the infor-
mation that 106 seams to be the border between the two
groups, π is a weighting parameter, hence it has to be
chosen from the interval [0,1] and the priors of the other
parameters only restrict the sign.

The simulation results (see table 2) show that the model
parameters of the first distribution (βi’s and σ1) tend to
vary more than the others. A possible explanation is the
lack of data, because out of the 123 data points only 35
are part of the first group.
The intention for using a mixture of distributions was to
increase the quality of the model, but the higher variation
in the parameters is already an indicator that the model
will not fulfill the expectations.

Figure 6 shows the comparison in prediction quality and
confirms the assumptions. Quality increase for one test
(right side) means at the same time decrease for a test
which was well explained by the Bayesian LM. Hence
using a mixture of distributions does not lead to satisfying
results.
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Figure 6: Comparison of predictions of the two LMs investigated

Table 2: Summary statistics of posterior distributions for
model with mixed distribution

Quantiles
parameter mean st.dev 5% 95%

π 0.16 0.06 0.06 0.27
β0 4.73 0.61 3.89 5.92
β1 -3.45 2.37 -7.45 -0.26
β2 -7.98 2.07 -11.01 -4.31
β3 -5.61 4.12 -14.68 -1.32
β4 2.85 1.53 0.29 5.11
σ1 0.19 0.18 0.09 0.35
γ0 6.85 0.11 6.58 7.03
γ1 -13.55 1.39 -16.28 -11.30
γ2 -24.58 1.98 -27.82 -21.32
γ3 -14.40 1.49 -16.82 -11.96
γ4 5.77 0.82 4.31 7.09
σ2 0.60 0.06 0.49 0.71

8 Conclusions and Future Work

This work showed that modeling the lifetimes of power
semiconductor devices with Bayesian LMs is possible, but
restricted to a specific range, where tested devices have
the same failure mechanisms. Expanding the prediction
range showed the poor extrapolation quality of the model
for tests with probably other failure mechanisms. As a
step of improvement a Bayesian LM with mixed distri-
butions was used, but no significant increase in quality
could have been observed, hence further improvements
and/or other model assumptions are needed.
Among all possible new or advanced approaches four have
been chosen to be the most promising for the given data,
these are:

• include accurate temperature measurements

• using non-linear models and incorporate known
physical relationships and models for parameters

• add more prior information into the Bayesian LM
with mixed distributions, e.g. model the mixing pro-
portion (π) dependent on a parameter

• consider censored data (adapt the likelihood func-
tion)
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