
 
 

 

  
Abstract—This paper describes the reinforcement learning 

(RL) algorithm for the minimal consistent subset identification 
(MCSI) problem. MCSI is widely used in pattern recognition to 
select prototypes from a training set to be used in nearest 
neighbor classification. The RL agent solves the MCSI problem 
by deselecting a prototype one by one from the original data set 
to search for the best subset. Because the algorithm rarely 
descends to the smaller solution via its exploration strategy, a 
simple modification to the algorithm is proposed. The 
modification encourages the agent to try as many actions as 
possible at the current best solution to improve the results 
obtained. The paper concludes by comparing the performance 
of the proposed algorithm in handling the MCSI problem with 
the RL algorithm and the standard MCSI method. 
 

Index Terms—minimal consistent subset, nearest neighbor 
rule, prototype selection, reinforcement learning. 
 

I. INTRODUCTION 
Minimal consistent subset identification (MCSI) is the 

problem of selecting a minimum number of prototypes from 
training data set while maintaining the consistency property 
[2]. The set of prototypes selected can be used in the nearest 
neighbor classification [1] instead of using the original set. 
The selected prototype set is defined to be consistent if it is 
able to correctly classify the original data set by using the 
nearest neighbor classification. 

The MCSI problem is a hard combinatorial problem [5] 
that the optimum solution cannot be found by fully exploring 
the search space in limited time. The traditional MCSI 
method [3] by Dasarathy is one of the prototype selection 
methods that try to obtain the minimal consistent subset. The 
drawback of the method is that it employs the greedy strategy 
and is usually being trapped in a local minimum. This paper 
investigates the alternative solution by applying the 
reinforcement learning (RL) [4] to the MCSI problem. The 
standard RL method is also being trapped in a local 
minimum. In order to escape from the local minimum, a 
simple modification to the RL algorithm is proposed. The key 
modification is the new definition of the state transition 
function. This enables the agent to try as many actions as 
possible from the potential state and prevents the agent from 
exploring the unproductive region. 
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This paper is organized into 6 sections. The nearest 
neighbor classification is reviewed in section II. Section III 
reviews the minimal consistent set identification method by 
Dasarathy [3]. Section IV explains how to apply the 
reinforcement learning to the MCSI problem. Section V 
presents a modification to the RL algorithm to improve the 
results obtained. The experimental results are shown in 
section VI. Section VII is the conclusion. 

II. NEAREST NEIGHBOR RULE 
A prototype set ((x1, y1), c1), … , ((xn, yn), cn) is given, 

where the (xi, yi) is the attribute value of the data point ith and 
ci is the category of the data ith. 

The unknown data ((a, b), z) can be classified as cnn, which 
is the category of the prototype that is the nearest neighbor of 
(a, b). If d((x, y), (a, b)) is the distance function that measure 
the difference (x, y) and (a, b). The nearest neighbor of 
unknown at (a, b) is defined as follows: 

 
 (xnn, ynn) = min d((xi, yi), (a, b)) ; i = 1, 2, …, n (1) 
 

III. MINIMAL CONSISTENT SET IDENTIFICATION METHOD 
Minimal consistent set identification (MCSI) method is 

one of the condensing-selection prototype selection methods, 
which is based on the concept of covering defined by 
“NUN”, the Nearest Unlike Neighbor [3]. Any data point A 
is covered by any data point B which has the same class as A, 
as long as B is nearer to A than A’s NUN. Hence, A can be 
correctly classified, using nearest neighbor rule, to be the 
same class as B if B is selected as a prototype, as B is closer to 
A than A’s NUN. 

Once a distance matrix among all the data in the training 
set is sorted and all NUNs of each data point are located, a list 
of data points covered by any point B, B cover set, can be 
constructed. The cover list of B includes any data point A that 
has B located closer to A than A’s NUN. The prototypes can 
be selected greedily incrementally by choosing a data point 
which has the largest cover list. Once that prototype is 
selected all the data point in that data cover list is covered 
(guarantee to be correctly classified) and that cover list is 
subtracted from all the cover lists. Then the data with the 
largest cover list is selected again as another prototype. The 
selection and subtraction process continues until all the cover 
lists are empty, which indicate the occurring of consistence 
property, where all the training data can be correctly 
classified by the selected prototypes. 

The prototype set selected from the above algorithm is 
consistent but is still not minimal for two reasons. The first 
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one is the greedy order of the prototype selection which has 
no guarantee to minimal number of prototype. The second 
one is the inaccuracy of cover list calculation using NUN as 
boundary, since if the NUN is not selected as a prototype the 
cover lists can be expand. But before all prototypes are 
selected, it is safe to assume cover list boundary at NUN. To 
alleviate this problem, the prototypes selected are used again 
as boundary (instead of NUN) and the whole process is 
repeated until there is no change in the prototype set. 

The MCSI Algorithm proceeds in the following steps. (as 
shown in Fig. 1) 

1) Create a sorted distance table (c) among all data in the 
original prototype set (a). 

2) Label all the NUN (Nearest Unlike Neighbor) by 
assumes that all the NUN are selected prototype (c). 

3) Create a cover list for each prototype (d). 
4) Select the prototype with maximum cover, and remove 

all the data in the covered list from all the cover lists (e). 
5) Repeat step 4 until all the cover lists is empty and 

obtains all new selected prototypes (f) 
6) Stop if the new selected prototypes from step 5 are the 

same as the previous one. 
7) Re-Label the sorted distance table (g) with the new 

selected prototypes from step 5.   
8) Go to step 3. 
The “cover” concept is shown in Fig. 1 (c), (d), where A1 

covers A1, A2, A3 since A1 is closer to A1, A2 and A3 than  
B2, B2 and B1 (the nearest unlike neighbor of A1,A2 and 
A3). Hence, if A1 is selected as a prototype, A1, A2 and A3 
can be correctly recognized. 

 

   
 (a) Original prototype set. (b) Distance table. 
 

 
(c) 1st sorted and labeled distance table. 

 
 
 

 
(d) 1st selection. (e) 2nd selection. (f) 3rd selection. 

 

 
(g) Re-labeled sorted distance table. 

Fig. 1 Illustration of the MCSI algorithm 
 
From Fig. 1, the first round of the MCSI obtains A1, A4, 

and B1 as a prototype set. After the second round, the MCSI 
obtains the same prototype set. So the MCSI obtains 3 
prototypes (A1, A4 and B1) from 7  data. 

Initially, if only A2 and B3 are selected as a prototype set 
and used as a boundary instead of NUN, as shown in Fig. 2 
(a), the MCSI will obtain A2 and B3 as a prototype set. 
Hence, the optimality depends on how to initially label the 
boundary. 

 

 
(a) Sorted and labeled distance table. 

 

 
(d) 1st selection. (e) 2nd selection. 

Fig. 2 Illustration of another selection approach 
 

IV. REINFORCEMENT LEARNING ALGORITHM FOR THE MCSI 
PROBLEM 

Reinforcement learning (RL) [4] is a framework consisting 
of the agent going through states and the environment. In 
each state, the agent learns which action to take by obtaining 
the reward from an environment. After taking an action, the 
agent receives a reward and moves on to the other state.  The 
goal is to repeat taking action and learn the best action to take 
in order to obtain the largest total rewards (returns). 

It is natural to apply the RL framework to the MCSI 
problem as an episodic task by starting an episode from the 
start state with all of the training data being selected as a 
prototype, then let the RL agent repeat deselecting a 
prototype from the current state and move on to the next state 
which has one less prototype than the current one until 
reaching the terminal state which is the state that cannot be 
made consistent by deselecting more prototype (the state that 
represents an empty prototype set or a prototype set that 
doesn’t include a member from some class) and thus the 
episode ends. A positive reward will be given to the agent if 
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its action leads to the next state that is consistent (i.e. the state 
that represents a consistent prototype set) otherwise a reward 
of zero will be given. During an episode, the RL agent learns 
by averaging the expected returns of each action at each state 
and updating the state-action value function using a 
technique called Q-learning [4]. The agent can continue 
experiencing more episodes to learn more about a better way 
to deselect a prototype (thus gaining more returns). 

 
The standard Q-learning algorithm is shown as follows: 
For each episode: 
 s = the start state with all prototypes 
 While the episode does not end: 
  1) the agent selects an action a to deselect a prototype 
  from the state s using policy derived from Q 
  2) the environment provides a reward for an action a 
  at the state s and generates the next state sn 
  3) the agent updates Q(s,a) using Watkin’s Q(λ) [4] 
  4) the agent goes to the next state sn (s=sn) 
  5) If the state s is the terminal state 
   episode end = true; 
 
The reward is set to favor a path that leads to the consistent 

state with the minimum number of prototypes. The 
environment gives a reward of zero for an action that leads to 
an inconsistent state. There are N prototypes in the start state. 
Any action that leads to the consistent next state will have a 
positive reward. The reward can be more than +1 if the 
previous action has a reward of zero. 

The reward given for taking an action a from the state s 
and advancing to the next state sn is defined as follows: 

 
Reward(s, a, sn) = 0, if the state sn is not consistent 
 = P(scon) - P(sn), otherwise 
 
Where scon is the latest consistent state found in the current 

episode, and P(s) is the number of prototypes in the state s. 
There are many ways to balance between exploration and 

exploitation. The popular method is the ε-greedy policy 
which is to choose an action that has maximum action value 
with probability 1 - ε + (ε / |A|) and choose all other actions 
with probability ε / |A| where A is a set of all possible actions 
at the current state. The other method is the softmax policy. 

 
The softmax policy used in this paper is defined as 

follows: 
With probability ε: 
 Select an action a randomly 
With probability 1 - ε: 
 Select an action a based on its action value 
 with probability 
  (1 - ε) Q(s, a)1.4 / ∑Q(s, b)1.4 
 For all action b that has Q(s, b) > 0. 
 
This policy is adjusted to suit the MCSI problem which has 

many actions to choose at each state. 
 

 
Fig. 3 The sequences of moves made by the RL agent 

 
Fig. 3 illustrates the sequences of moves that the agent 

made in 2 episodes. An example data set used in this figure is 
the same data set as shown in Fig. 1 which consists of 7 data 
from two classes (4 from class A and 3 from class B). 

Initially, the value function Q(a) of each action is set to 
zero. In the first episode, the agent deselects A1, A2, B3, A4, 
B2, and B1 from the original set and the episode ends at the 
terminal state, represented by the double line rectangle, 
which has only A3 as a prototype in the set (thus cannot be 
made consistent by deselecting more prototypes). The best 
solution found in this episode is of size 4, {A3, A4, B1, B2} 
as represented by the thick line rectangle, thus the return of 
+3 is obtained and Q(a) is updated as shown in the figure. 

In the next episode, the agent learns to exploit by 
deselecting A1, A2, and, B3 according to its Q(a) at its 
corresponding state, and incidentally deselects A4 from the 
state {A3, A4, B1, B2} in which the best action so far is not 
known, then tries to explore by deselecting B1 (as 
represented by the thick line) which ends up in a consistent 
state, {A3, B2}, and is given a reward of +2. In the end, the 
terminal state is the state {A3} and the best state in this 
episode is of size 2, the state {A3, B2}, which is the optimum 
solution, and the return of +5 is obtained. The inconsistent 
state is represented by the dashed line rectangle and the 
dashed lines from {A3, B1} to {B1} and from {A3, B2} to 
{B2} represent an unexplored path. 

V. IMPROVING THE EFFECTIVENESS OF THE RL ALGORITHM 
The example in the previous section indicates that it is 

unlikely that the agent will obtain more rewards once it 
deselects a wrong prototype and advance to the inconsistent 
state. From that point on, the agent may just experience the 
sequence of zero rewards till the end of the episode. If the 
agent can return to the previous state before the wrong 
prototype is deselected, it may be able to find the better 
solution by trying another action from that state. However, 
the agent is not able to return to the previous state in the same 
episode and it rarely returns to the best state of the previous 
episodes via the normal action selection policy such as the 
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ε-greedy policy if the agent fails to obtain the largest returns 
from that state. This hampers the agent’s effort to locate the 
better solution from many potential states. 

For example, if the ε=0.1 is used in the ε-greedy policy, the 
agent will follow the path that leads to the smallest consistent 
state experienced so far for about 9 steps before the 
exploration step happens in the 10th step. If the exploration 
step at that state leads to an inconsistent state, the episode 
may end with no more rewards and fail to influence the 
change to the agent’s exploitation strategy. Consequently, the 
agent rarely returns to many consistent states located deeper 
than 10 steps unless they are part of the current best path. 

To overcome this shortcoming, a simple modification to 
the algorithm is presented. The idea is to force the agent to 
return to the last known consistent state if the current path 
from that state is overly long or the agent moves to the dead 
end. This encourages the agent to try as many actions as 
possible from that consistent state. The agent will eventually 
reach the smaller consistent state if there is one. The smaller 
consistent state then becomes the last known consistent state. 
The maximum steps allowed in the episode must be defined 
otherwise the episode will never end. The detail of the 
modification is as described below. 

 
The new state transition function is defined as follows: 
After the agent selects an action a 
and the environment generates the next state sn as usual 
If sn is consistent: 
 The environment provides a reward 
 and proceeds as usual 
Else: 
 If sn cannot leads to the smaller consistent state 
 or with probability x 
  sn = the last known consistent state in the episode 
  Reward = -1 
 Else: 
  Proceeds as usual 
 
This transition function prevents the agent from moving 

through a long sequence of inconsistent states and ending the 
episode prematurely without a chance to explore a better 
path. The reward -1 is given as a penalty to signal the agent 
that it is better to explore another path instead. 

The probability x can be any value between [0, 1]. The 
zero value means no backward transition is made unless the 
agent cannot deselect more prototypes. The value of 1 means 
the agent always moves back to the last known consistent 
state within the episode if the move does not lead to the next 
consistent state with one less prototype. The value of 0.2 is 
selected here because it prevents a move through a very long 
sequence of inconsistent states, but still allows an agent to 
move through a sequence of states that has some intermediate 
inconsistent states (this case is as shown in Fig. 3) which may 
be longer than 2 steps. 

The termination condition of the algorithm is also changed 
from reaching the terminal state (there are no terminal states 
here) to reaching the maximum steps allowed in each 
episode. The maximum steps can be any number larger than 
the size of the original data set, but 5 times of the size of the 
original data set is usually good. 

It is clear that the agent’s behavior is not changed since the 
update rule for the state-action value function is still the 
same. The major change is in the state transition function 
which is defined by the environment. 

The performance comparison of the standard RL and the 
modified RL for the MCSI problem is as shown in Fig. 4. 
Both algorithms use the ε-greedy policy. The data set used 
here is the IRIS data set of 150 data from 3 classes. 
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Fig. 4 Performance comparison of the standard RL and the 

modified RL for the MCSI problem 
 
Each point in the graph shows the best consistent state with 

the smallest number of prototypes found in each episode. The 
cross points show the results of the standard RL algorithm 
while the round points show the results of the modified RL 
algorithm. Each point in the graph is the size of the best 
consistent subset found in each episode associated with the 
cumulative steps used by the algorithm. The best state in the 
later episode keeps getting better but not monotonically 
depending on the exploration rate parameter (i.e. the ε). Each 
episode takes about 150 steps in the standard RL and about 
750 steps in the modified RL. The size of the best solutions 
found by the modified RL algorithm in each episode vary 
from 10 to 18 prototypes while the standard RL gets stuck in 
the long sequence of inconsistent states in some episodes and 
the size of the best solutions vary from 14 to 147 prototypes. 
The modified RL algorithm finds the solution of size 14 at the 
first episode as it also learns within an episode. The optimum 
set of 10 prototypes [5], [7] is eventually found by the 
modified RL algorithm while the best that the standard RL 
algorithm can find is of size 14 in this case. 

VI. EXPERIMENTAL RESULTS 
The size of the prototype set obtained from the standard 

RL algorithm is compared to the proposed modified RL 
algorithm and the standard MCSI [3] algorithm on the test 
data sets available at UCI site [6]. The test data sets are as 
shown in Table I. 

 
TABLE I 

DETAIL OF DATA SETS 
 NUMBER 

OF DATA 
DIMENSION CLASS 

IRIS 150 4 3 
GLASS 214 9 7 

 
Because RL-based algorithm has random elements, the 

algorithms are performed 10 times for each data set. The best 
solution found in each run for the IRIS data set is as shown in 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



 
 

 

table II. 
 

TABLE II 
THE RESULTS OF THE ALGORITHMS FOR THE IRIS DATA SET 

NUMBER OF 
PROTOTYPES 

10 11 12 13 14 15 16 17 

MCSI - - - - - 10 - - 
Standard RL 
(ε-greedy) 

- 1 - 2 2 2 2 1 

Standard RL 
(softmax) 

- 2 1 2 2 2 1 - 

Modified RL 
(ε-greedy) 

7 3 - - - - - - 

Modified RL 
(softmax) 

7 3 - - - - - - 

 
In the IRIS data set case, the optimum set was found with 

size 10 [5], [7], the standard MCSI method’s [3] result is 15. 
The standard RL does not perform well (for both ε-greedy 
and softmax). It finds the result with the size smaller than 15 
in some cases but performs poorer than the standard MCSI in 
the other cases. In addition, it could not find the optimum size 
(10 prototypes). The modified RL outperforms the standard 
RL and even finds the optimum size in most cases. It always 
performs better than the standard MCSI. 

 
TABLE III 

THE RESULTS OF THE ALGORITHMS FOR THE GLASS DATA SET 
NUMBER OF 

PROTOTYPES 
80 81 82 83 84 85 

MCSI - - - - - 10 
Modified RL 

(ε-greedy) 
- - 1 3 6 - 

Modified RL 
(softmax) 

- 1 3 3 2 1 

 
As shown in table III, the modified RL algorithm performs 

slightly better than the standard MCSI method in this data set. 
The softmax algorithm has more variance on the results 
obtained, but the best solution obtained by this method is 
better than the ε-greedy method in this case. The results from 
the standard RL are omitted here. 

VII. CONCLUSION 
This paper presents a reinforcement learning approach to 

the solution of the MCSI problem. The traditional RL method 
has some drawbacks and is easily being trapped in the local 
optimum. However, with a simple modification, the RL agent 
is able to get better results or obtain the optimum solution. 
Compared to the standard MCSI method, which is a greedy 
local search that usually obtains a suboptimum solution, the 
proposed method performs better as it learns to make a 
correct move through many trials in the potential region in 
the search space. 
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