

Abstract—This paper describes the reinforcement learning

(RL) algorithm for the minimal consistent subset identification
(MCSI) problem. MCSI is widely used in pattern recognition to
select prototypes from a training set to be used in nearest
neighbor classification. The RL agent solves the MCSI problem
by deselecting a prototype one by one from the original data set
to search for the best subset. Because the algorithm rarely
descends to the smaller solution via its exploration strategy, a
simple modification to the algorithm is proposed. The
modification encourages the agent to try as many actions as
possible at the current best solution to improve the results
obtained. The paper concludes by comparing the performance
of the proposed algorithm in handling the MCSI problem with
the RL algorithm and the standard MCSI method.

Index Terms—minimal consistent subset, nearest neighbor
rule, prototype selection, reinforcement learning.

I. INTRODUCTION
Minimal consistent subset identification (MCSI) is the

problem of selecting a minimum number of prototypes from
training data set while maintaining the consistency property
[2]. The set of prototypes selected can be used in the nearest
neighbor classification [1] instead of using the original set.
The selected prototype set is defined to be consistent if it is
able to correctly classify the original data set by using the
nearest neighbor classification.

The MCSI problem is a hard combinatorial problem [5]
that the optimum solution cannot be found by fully exploring
the search space in limited time. The traditional MCSI
method [3] by Dasarathy is one of the prototype selection
methods that try to obtain the minimal consistent subset. The
drawback of the method is that it employs the greedy strategy
and is usually being trapped in a local minimum. This paper
investigates the alternative solution by applying the
reinforcement learning (RL) [4] to the MCSI problem. The
standard RL method is also being trapped in a local
minimum. In order to escape from the local minimum, a
simple modification to the RL algorithm is proposed. The key
modification is the new definition of the state transition
function. This enables the agent to try as many actions as
possible from the potential state and prevents the agent from
exploring the unproductive region.

Manuscript received August 13, 2009.
Ekaphol Anantapornkit is with the Department of Computer Engineering,

Faculty of Engineering, King Mongkut`s Institute of Technology
Ladkrabang, Bangkok, Thailand (e-mail: ekreal@yahoo.com).

Boontee Kruatrachue is with the Department of Computer Engineering,
Faculty of Engineering, King Mongkut`s Institute of Technology
Ladkrabang, Bangkok, Thailand (e-mail: booontee@yahoo.com).

This paper is organized into 6 sections. The nearest
neighbor classification is reviewed in section II. Section III
reviews the minimal consistent set identification method by
Dasarathy [3]. Section IV explains how to apply the
reinforcement learning to the MCSI problem. Section V
presents a modification to the RL algorithm to improve the
results obtained. The experimental results are shown in
section VI. Section VII is the conclusion.

II. NEAREST NEIGHBOR RULE
A prototype set ((x1, y1), c1), … , ((xn, yn), cn) is given,

where the (xi, yi) is the attribute value of the data point ith and
ci is the category of the data ith.

The unknown data ((a, b), z) can be classified as cnn, which
is the category of the prototype that is the nearest neighbor of
(a, b). If d((x, y), (a, b)) is the distance function that measure
the difference (x, y) and (a, b). The nearest neighbor of
unknown at (a, b) is defined as follows:

 (xnn, ynn) = min d((xi, yi), (a, b)) ; i = 1, 2, …, n (1)

III. MINIMAL CONSISTENT SET IDENTIFICATION METHOD
Minimal consistent set identification (MCSI) method is

one of the condensing-selection prototype selection methods,
which is based on the concept of covering defined by
“NUN”, the Nearest Unlike Neighbor [3]. Any data point A
is covered by any data point B which has the same class as A,
as long as B is nearer to A than A’s NUN. Hence, A can be
correctly classified, using nearest neighbor rule, to be the
same class as B if B is selected as a prototype, as B is closer to
A than A’s NUN.

Once a distance matrix among all the data in the training
set is sorted and all NUNs of each data point are located, a list
of data points covered by any point B, B cover set, can be
constructed. The cover list of B includes any data point A that
has B located closer to A than A’s NUN. The prototypes can
be selected greedily incrementally by choosing a data point
which has the largest cover list. Once that prototype is
selected all the data point in that data cover list is covered
(guarantee to be correctly classified) and that cover list is
subtracted from all the cover lists. Then the data with the
largest cover list is selected again as another prototype. The
selection and subtraction process continues until all the cover
lists are empty, which indicate the occurring of consistence
property, where all the training data can be correctly
classified by the selected prototypes.

The prototype set selected from the above algorithm is
consistent but is still not minimal for two reasons. The first

Reinforcement Learning Algorithm for the
Minimal Consistent Subset Identification

Ekaphol Anantapornkit and Boontee Kruatrachue

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

one is the greedy order of the prototype selection which has
no guarantee to minimal number of prototype. The second
one is the inaccuracy of cover list calculation using NUN as
boundary, since if the NUN is not selected as a prototype the
cover lists can be expand. But before all prototypes are
selected, it is safe to assume cover list boundary at NUN. To
alleviate this problem, the prototypes selected are used again
as boundary (instead of NUN) and the whole process is
repeated until there is no change in the prototype set.

The MCSI Algorithm proceeds in the following steps. (as
shown in Fig. 1)

1) Create a sorted distance table (c) among all data in the
original prototype set (a).

2) Label all the NUN (Nearest Unlike Neighbor) by
assumes that all the NUN are selected prototype (c).

3) Create a cover list for each prototype (d).
4) Select the prototype with maximum cover, and remove

all the data in the covered list from all the cover lists (e).
5) Repeat step 4 until all the cover lists is empty and

obtains all new selected prototypes (f)
6) Stop if the new selected prototypes from step 5 are the

same as the previous one.
7) Re-Label the sorted distance table (g) with the new

selected prototypes from step 5.
8) Go to step 3.
The “cover” concept is shown in Fig. 1 (c), (d), where A1

covers A1, A2, A3 since A1 is closer to A1, A2 and A3 than
B2, B2 and B1 (the nearest unlike neighbor of A1,A2 and
A3). Hence, if A1 is selected as a prototype, A1, A2 and A3
can be correctly recognized.

 (a) Original prototype set. (b) Distance table.

(c) 1st sorted and labeled distance table.

(d) 1st selection. (e) 2nd selection. (f) 3rd selection.

(g) Re-labeled sorted distance table.

Fig. 1 Illustration of the MCSI algorithm

From Fig. 1, the first round of the MCSI obtains A1, A4,

and B1 as a prototype set. After the second round, the MCSI
obtains the same prototype set. So the MCSI obtains 3
prototypes (A1, A4 and B1) from 7 data.

Initially, if only A2 and B3 are selected as a prototype set
and used as a boundary instead of NUN, as shown in Fig. 2
(a), the MCSI will obtain A2 and B3 as a prototype set.
Hence, the optimality depends on how to initially label the
boundary.

(a) Sorted and labeled distance table.

(d) 1st selection. (e) 2nd selection.

Fig. 2 Illustration of another selection approach

IV. REINFORCEMENT LEARNING ALGORITHM FOR THE MCSI
PROBLEM

Reinforcement learning (RL) [4] is a framework consisting
of the agent going through states and the environment. In
each state, the agent learns which action to take by obtaining
the reward from an environment. After taking an action, the
agent receives a reward and moves on to the other state. The
goal is to repeat taking action and learn the best action to take
in order to obtain the largest total rewards (returns).

It is natural to apply the RL framework to the MCSI
problem as an episodic task by starting an episode from the
start state with all of the training data being selected as a
prototype, then let the RL agent repeat deselecting a
prototype from the current state and move on to the next state
which has one less prototype than the current one until
reaching the terminal state which is the state that cannot be
made consistent by deselecting more prototype (the state that
represents an empty prototype set or a prototype set that
doesn’t include a member from some class) and thus the
episode ends. A positive reward will be given to the agent if

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

its action leads to the next state that is consistent (i.e. the state
that represents a consistent prototype set) otherwise a reward
of zero will be given. During an episode, the RL agent learns
by averaging the expected returns of each action at each state
and updating the state-action value function using a
technique called Q-learning [4]. The agent can continue
experiencing more episodes to learn more about a better way
to deselect a prototype (thus gaining more returns).

The standard Q-learning algorithm is shown as follows:
For each episode:
 s = the start state with all prototypes
 While the episode does not end:
 1) the agent selects an action a to deselect a prototype
 from the state s using policy derived from Q
 2) the environment provides a reward for an action a
 at the state s and generates the next state sn
 3) the agent updates Q(s,a) using Watkin’s Q(λ) [4]
 4) the agent goes to the next state sn (s=sn)
 5) If the state s is the terminal state
 episode end = true;

The reward is set to favor a path that leads to the consistent

state with the minimum number of prototypes. The
environment gives a reward of zero for an action that leads to
an inconsistent state. There are N prototypes in the start state.
Any action that leads to the consistent next state will have a
positive reward. The reward can be more than +1 if the
previous action has a reward of zero.

The reward given for taking an action a from the state s
and advancing to the next state sn is defined as follows:

Reward(s, a, sn) = 0, if the state sn is not consistent
 = P(scon) - P(sn), otherwise

Where scon is the latest consistent state found in the current

episode, and P(s) is the number of prototypes in the state s.
There are many ways to balance between exploration and

exploitation. The popular method is the ε-greedy policy
which is to choose an action that has maximum action value
with probability 1 - ε + (ε / |A|) and choose all other actions
with probability ε / |A| where A is a set of all possible actions
at the current state. The other method is the softmax policy.

The softmax policy used in this paper is defined as

follows:
With probability ε:
 Select an action a randomly
With probability 1 - ε:
 Select an action a based on its action value
 with probability
 (1 - ε) Q(s, a)1.4 / ∑Q(s, b)1.4
 For all action b that has Q(s, b) > 0.

This policy is adjusted to suit the MCSI problem which has

many actions to choose at each state.

Fig. 3 The sequences of moves made by the RL agent

Fig. 3 illustrates the sequences of moves that the agent

made in 2 episodes. An example data set used in this figure is
the same data set as shown in Fig. 1 which consists of 7 data
from two classes (4 from class A and 3 from class B).

Initially, the value function Q(a) of each action is set to
zero. In the first episode, the agent deselects A1, A2, B3, A4,
B2, and B1 from the original set and the episode ends at the
terminal state, represented by the double line rectangle,
which has only A3 as a prototype in the set (thus cannot be
made consistent by deselecting more prototypes). The best
solution found in this episode is of size 4, {A3, A4, B1, B2}
as represented by the thick line rectangle, thus the return of
+3 is obtained and Q(a) is updated as shown in the figure.

In the next episode, the agent learns to exploit by
deselecting A1, A2, and, B3 according to its Q(a) at its
corresponding state, and incidentally deselects A4 from the
state {A3, A4, B1, B2} in which the best action so far is not
known, then tries to explore by deselecting B1 (as
represented by the thick line) which ends up in a consistent
state, {A3, B2}, and is given a reward of +2. In the end, the
terminal state is the state {A3} and the best state in this
episode is of size 2, the state {A3, B2}, which is the optimum
solution, and the return of +5 is obtained. The inconsistent
state is represented by the dashed line rectangle and the
dashed lines from {A3, B1} to {B1} and from {A3, B2} to
{B2} represent an unexplored path.

V. IMPROVING THE EFFECTIVENESS OF THE RL ALGORITHM
The example in the previous section indicates that it is

unlikely that the agent will obtain more rewards once it
deselects a wrong prototype and advance to the inconsistent
state. From that point on, the agent may just experience the
sequence of zero rewards till the end of the episode. If the
agent can return to the previous state before the wrong
prototype is deselected, it may be able to find the better
solution by trying another action from that state. However,
the agent is not able to return to the previous state in the same
episode and it rarely returns to the best state of the previous
episodes via the normal action selection policy such as the

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

ε-greedy policy if the agent fails to obtain the largest returns
from that state. This hampers the agent’s effort to locate the
better solution from many potential states.

For example, if the ε=0.1 is used in the ε-greedy policy, the
agent will follow the path that leads to the smallest consistent
state experienced so far for about 9 steps before the
exploration step happens in the 10th step. If the exploration
step at that state leads to an inconsistent state, the episode
may end with no more rewards and fail to influence the
change to the agent’s exploitation strategy. Consequently, the
agent rarely returns to many consistent states located deeper
than 10 steps unless they are part of the current best path.

To overcome this shortcoming, a simple modification to
the algorithm is presented. The idea is to force the agent to
return to the last known consistent state if the current path
from that state is overly long or the agent moves to the dead
end. This encourages the agent to try as many actions as
possible from that consistent state. The agent will eventually
reach the smaller consistent state if there is one. The smaller
consistent state then becomes the last known consistent state.
The maximum steps allowed in the episode must be defined
otherwise the episode will never end. The detail of the
modification is as described below.

The new state transition function is defined as follows:
After the agent selects an action a
and the environment generates the next state sn as usual
If sn is consistent:
 The environment provides a reward
 and proceeds as usual
Else:
 If sn cannot leads to the smaller consistent state
 or with probability x
 sn = the last known consistent state in the episode
 Reward = -1
 Else:
 Proceeds as usual

This transition function prevents the agent from moving

through a long sequence of inconsistent states and ending the
episode prematurely without a chance to explore a better
path. The reward -1 is given as a penalty to signal the agent
that it is better to explore another path instead.

The probability x can be any value between [0, 1]. The
zero value means no backward transition is made unless the
agent cannot deselect more prototypes. The value of 1 means
the agent always moves back to the last known consistent
state within the episode if the move does not lead to the next
consistent state with one less prototype. The value of 0.2 is
selected here because it prevents a move through a very long
sequence of inconsistent states, but still allows an agent to
move through a sequence of states that has some intermediate
inconsistent states (this case is as shown in Fig. 3) which may
be longer than 2 steps.

The termination condition of the algorithm is also changed
from reaching the terminal state (there are no terminal states
here) to reaching the maximum steps allowed in each
episode. The maximum steps can be any number larger than
the size of the original data set, but 5 times of the size of the
original data set is usually good.

It is clear that the agent’s behavior is not changed since the
update rule for the state-action value function is still the
same. The major change is in the state transition function
which is defined by the environment.

The performance comparison of the standard RL and the
modified RL for the MCSI problem is as shown in Fig. 4.
Both algorithms use the ε-greedy policy. The data set used
here is the IRIS data set of 150 data from 3 classes.

8

28

48

68

88

108

128

148

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Steps

N
um

be
r o

f P
ro

to
ty

pe
s

Fig. 4 Performance comparison of the standard RL and the

modified RL for the MCSI problem

Each point in the graph shows the best consistent state with

the smallest number of prototypes found in each episode. The
cross points show the results of the standard RL algorithm
while the round points show the results of the modified RL
algorithm. Each point in the graph is the size of the best
consistent subset found in each episode associated with the
cumulative steps used by the algorithm. The best state in the
later episode keeps getting better but not monotonically
depending on the exploration rate parameter (i.e. the ε). Each
episode takes about 150 steps in the standard RL and about
750 steps in the modified RL. The size of the best solutions
found by the modified RL algorithm in each episode vary
from 10 to 18 prototypes while the standard RL gets stuck in
the long sequence of inconsistent states in some episodes and
the size of the best solutions vary from 14 to 147 prototypes.
The modified RL algorithm finds the solution of size 14 at the
first episode as it also learns within an episode. The optimum
set of 10 prototypes [5], [7] is eventually found by the
modified RL algorithm while the best that the standard RL
algorithm can find is of size 14 in this case.

VI. EXPERIMENTAL RESULTS
The size of the prototype set obtained from the standard

RL algorithm is compared to the proposed modified RL
algorithm and the standard MCSI [3] algorithm on the test
data sets available at UCI site [6]. The test data sets are as
shown in Table I.

TABLE I

DETAIL OF DATA SETS
 NUMBER

OF DATA
DIMENSION CLASS

IRIS 150 4 3
GLASS 214 9 7

Because RL-based algorithm has random elements, the

algorithms are performed 10 times for each data set. The best
solution found in each run for the IRIS data set is as shown in

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

table II.

TABLE II
THE RESULTS OF THE ALGORITHMS FOR THE IRIS DATA SET

NUMBER OF
PROTOTYPES

10 11 12 13 14 15 16 17

MCSI - - - - - 10 - -
Standard RL
(ε-greedy)

- 1 - 2 2 2 2 1

Standard RL
(softmax)

- 2 1 2 2 2 1 -

Modified RL
(ε-greedy)

7 3 - - - - - -

Modified RL
(softmax)

7 3 - - - - - -

In the IRIS data set case, the optimum set was found with

size 10 [5], [7], the standard MCSI method’s [3] result is 15.
The standard RL does not perform well (for both ε-greedy
and softmax). It finds the result with the size smaller than 15
in some cases but performs poorer than the standard MCSI in
the other cases. In addition, it could not find the optimum size
(10 prototypes). The modified RL outperforms the standard
RL and even finds the optimum size in most cases. It always
performs better than the standard MCSI.

TABLE III

THE RESULTS OF THE ALGORITHMS FOR THE GLASS DATA SET
NUMBER OF

PROTOTYPES
80 81 82 83 84 85

MCSI - - - - - 10
Modified RL

(ε-greedy)
- - 1 3 6 -

Modified RL
(softmax)

- 1 3 3 2 1

As shown in table III, the modified RL algorithm performs

slightly better than the standard MCSI method in this data set.
The softmax algorithm has more variance on the results
obtained, but the best solution obtained by this method is
better than the ε-greedy method in this case. The results from
the standard RL are omitted here.

VII. CONCLUSION
This paper presents a reinforcement learning approach to

the solution of the MCSI problem. The traditional RL method
has some drawbacks and is easily being trapped in the local
optimum. However, with a simple modification, the RL agent
is able to get better results or obtain the optimum solution.
Compared to the standard MCSI method, which is a greedy
local search that usually obtains a suboptimum solution, the
proposed method performs better as it learns to make a
correct move through many trials in the potential region in
the search space.

REFERENCES
[1] T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification”,

IEEE Transactions on Information Theory, Vol. IT-13, No. 1, January
1967, pp. 21-27.

[2] P. E. Hart, “The Condensed Nearest Neighbor Rule”, IEEE
Transactions on Information Theory, Vol. 14, 1968, pp. 515-516.

[3] B. V. Dasarathy, “Minimal Consistent Set (MCS) Identification for
Optimal Nearest Neighbor Decision Systems Design”, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 24, No. 3, 1994,
pp. 511-517.

[4] R. S. Sutton and A. G. Barto, “Reinforcement learning: An
introduction.” MIT Press, Cambridge, MA, 1998.

[5] V. Cerveron and F. J. Ferri, “Another move toward the minimum
consistent subset: a tabu search approach to the condensed nearest
neighbor rule”, IEEE Transactions on Systems, Man and Cybernetics,
Vol. 31, No. 3, 2001, pp. 408-413.

[6] Department of Information and Computer Science, University of
California, Irvine. “UCI Machine Learning Repository” [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html. 1998.

[7] K. Kangkan, B. Kruatrachue, “Minimal Consistent Subset Selection as
Interger Nonlinear Programming Problem”, ISCIT 2006, October
2006.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

